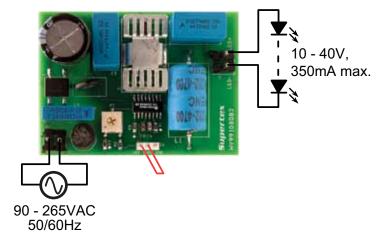
Universal, Off-Line, High Brightness, 350mA LED Driver Demoboard

General Description

The Supertex HV9910BDB2 demoboard is a High Brightness LED power driver to supply a string of LEDs using the HV9910B IC from a universal AC input. The HV9910BDB2 can supply a maximum output current of 350mA to drive 10 - 40V LED strings from a wide input voltage - 90 to 265VAC, 50/60Hz.


The power conversion stage of the HV9910BDB2 consists of a diode bridge rectifier, followed by a current-controlled buck converter operating at a switching frequency of 50kHz. The nominal output current of the demoboard can be adjusted to any value between 30 and 350mA using the on-board trimming potentiometer. PWM dimming can be achieved by applying a pulse-width-modulated square wave signal between the PWMD and GND pins. Zero output current can be obtained only by PWM dimming.

The HV9910BDB2 is not CISPR-15 compliant. Additional filtering is required to make the board meet CISPR-15 limits.

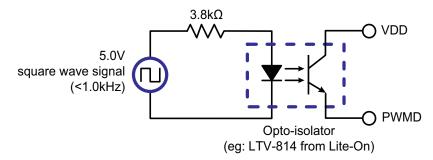
Specifications

Baramatar	Value		
Parameter	Value		
Input voltage	90 - 265Vrms, 50/60Hz		
Output voltage	10 - 40V		
Output current	350mA max		
Output current ripple (typ) @110V input	25% (peak-peak) @40V output, 350mA		
Full load officions.	88% @110VAC		
Full load efficiency	86% @230VAC		
Davisatas	0.70 @110VAC		
Power factor	0.48 @230VAC		
lament accommant (mana)	0.20A @110VAC		
Input current (rms)	0.14A @230VAC		
Input ourrent THD	94% @110VAC		
Input current THD	95% @230VAC		
Switching frequency (typ)	50kHz		
Minimum autout august	20mA @110VAC		
Minimum output current	30mA @230VAC		
Open LED protection	yes		
Output short circuit protection	no		
Dimensions	68.6mm X 49.6mm		

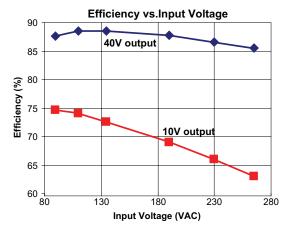
Connection Diagram

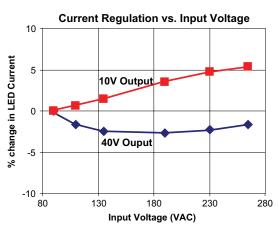
WARNING!!!

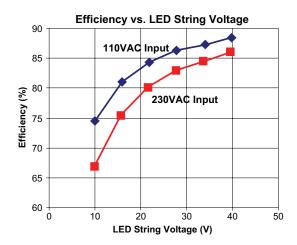
Do not connect earth-grounded test instruments. Doing so will short the AC line, resulting in damage to the instrument and/or the HV9910BDB2. Use floating high voltage differential probes or isolate the demoboard by using an isolating transformer.

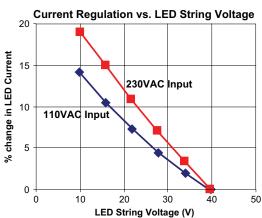

There is no galvanic isolation. Dangerous voltages are present when connected to the AC line.

Connections

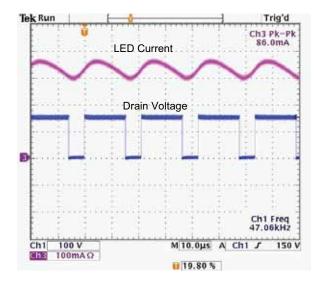

- Connect the input AC voltage between the AC IN terminals as shown in the connection diagram.
- Connect the LED string between LED+ (anode of LED string) and LED- (cathode of LED string).
- Connect the PWMD terminal to the VDD terminal using the jumper provided to enable the LED driver.
- The current level can be adjusted using the on-board potentiometer.

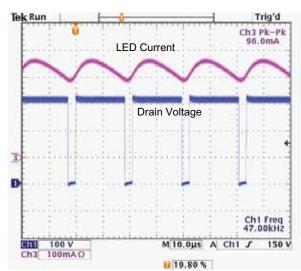

PWM Dimming

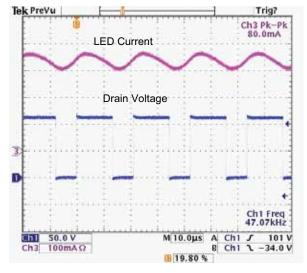

The HV9910BDB2 is capable of being PWM dimmed by applying a square wave TTL compatible signal between PWMD and GND terminals. However, since there is no galvanic isolation on the board, care must be taken to prevent damage to the PWM dimming source and/or the HV9910BDB2. One simple way is to isolate the LED driver from the AC line using an isolation transformer. Another approach is to use an opto-isolator to drive the PWMD pin as shown in the figure below.

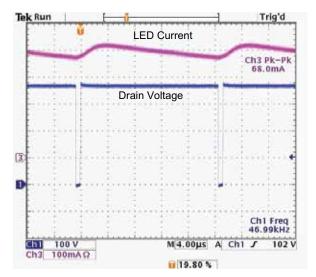


Typical Results

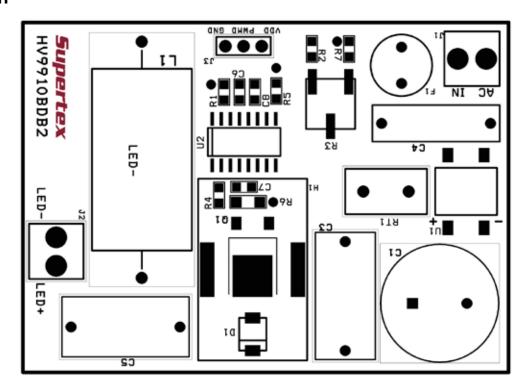




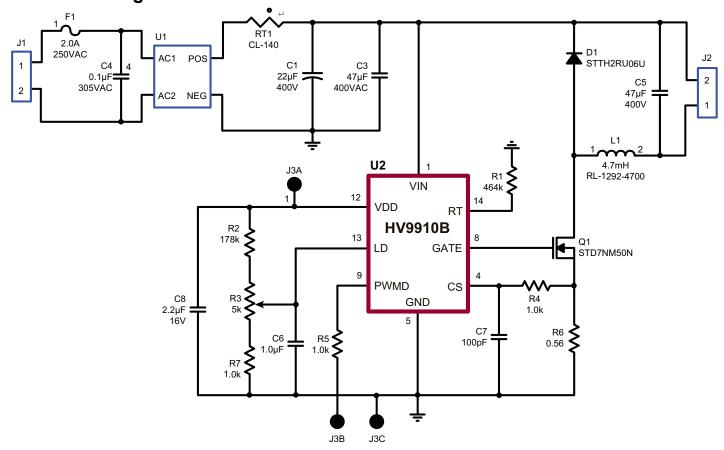

Waveforms


Steady State waveforms at 110VAC input and full load output

Steady State waveforms at 230VAC input and full load output



Steady State waveforms at 90VAC input and 40V, 350mA output



Steady State waveforms at 230VAC input and 10V, 350mA output

Silk Screen

Schematic Diagram

Bill of Materials

#	Qty	RefDes	Description	Package	Manufacturer	Manufacturer's Part Number
1	1	C1	22μF, 400V electrolytic capacitor	Radial	Nichion	UVR2G220MHD
2	2	C3,C5	0.47µF, 400V metal film capacitor	Radial	EPCOS Inc	B32522C6474K
3	1	C4	0.1µF, 305VAC EMI suppresion capacitor	Radial	EPCOS Inc	B32922C3104M
4	1	C6	0.1μF, 16V X7R ceramic chip capacitor	SMD0805	Panasonic	ECJ-2VB1C104K
5	1	C7	100pF, 50V C0G ceramic chip capacitor	SMD0805	TDK Corp	C2012C0G1H101J
6	1	C8	2.2µF, 16V X7R ceramic chip capacitor	SMD0805	TDK Corp	C2012X7R1C225K
7	1	D1	600V, 2.0A ultrafast diode	SMB	ST Micro	STTH2R06U
8	1	F1	2.0A, 250VAC time lag fuse	Radial	Cooper Bussman	SR-5-2A-BK
9	1	H1	15C/W DPAK heatsink	SMT	Aavid	7106PD
10	2	J1,J2	2 position, 0.156" pitch, vertical header	Thru-Hole	Molex	26-48-1021
11	1	J3	3 position, 0.100" pitch, vertical header	Thru-Hole	Molex	22-03-2031
12	1	L1	4.7mH, 400mA rms, 470mA sat inductor	Axial	Renco USA	RL-1292-4700
13	1	Q1	550V, 0.7Ω N-channel FET	DPAK	ST Micro	STD5NM50
14	1	RT1	50Ω NTC inrush limiter	Thru-Hole	GE Sensing	CL-140
15	1	R1	464KΩ, 1/8W, 1% chip resistor	SMD0805		
16	1	R2	178KΩ, 1/8W, 1% chip resistor	SMD0805		
17	1	R3	5.0KΩ top adjust trimpot	SMT	Bourns Inc	3361P-1-502G
18	3	R4,R5,R7	1.0KΩ, 1/8W, 1% chip resistor	SMD0805		
19	1	R6	0.56Ω, 1/4W, 1% chip resistor	SMD1206		
20	1	U1	400V, 1.0A single phase diode bridge	DF-S	Diodes Inc	DF04S
21	1	U2	Universal LED Driver	SO-16	Supertex	HV9910BNG-G

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex Inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

