linux-next/include/linux/inet_diag.h

90 lines
2.8 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _INET_DIAG_H_
#define _INET_DIAG_H_ 1
#include <net/netlink.h>
#include <uapi/linux/inet_diag.h>
struct inet_hashinfo;
struct inet_diag_handler {
struct module *owner;
void (*dump)(struct sk_buff *skb,
struct netlink_callback *cb,
const struct inet_diag_req_v2 *r);
int (*dump_one)(struct netlink_callback *cb,
const struct inet_diag_req_v2 *req);
void (*idiag_get_info)(struct sock *sk,
struct inet_diag_msg *r,
void *info);
int (*idiag_get_aux)(struct sock *sk,
bool net_admin,
struct sk_buff *skb);
size_t (*idiag_get_aux_size)(struct sock *sk,
bool net_admin);
int (*destroy)(struct sk_buff *in_skb,
const struct inet_diag_req_v2 *req);
__u16 idiag_type;
__u16 idiag_info_size;
};
bpf: inet_diag: Dump bpf_sk_storages in inet_diag_dump() This patch will dump out the bpf_sk_storages of a sk if the request has the INET_DIAG_REQ_SK_BPF_STORAGES nlattr. An array of SK_DIAG_BPF_STORAGE_REQ_MAP_FD can be specified in INET_DIAG_REQ_SK_BPF_STORAGES to select which bpf_sk_storage to dump. If no map_fd is specified, all bpf_sk_storages of a sk will be dumped. bpf_sk_storages can be added to the system at runtime. It is difficult to find a proper static value for cb->min_dump_alloc. This patch learns the nlattr size required to dump the bpf_sk_storages of a sk. If it happens to be the very first nlmsg of a dump and it cannot fit the needed bpf_sk_storages, it will try to expand the skb by "pskb_expand_head()". Instead of expanding it in inet_sk_diag_fill(), it is expanded at a sleepable context in __inet_diag_dump() so __GFP_DIRECT_RECLAIM can be used. In __inet_diag_dump(), it will retry as long as the skb is empty and the cb->min_dump_alloc becomes larger than before. cb->min_dump_alloc is bounded by KMALLOC_MAX_SIZE. The min_dump_alloc is also changed from 'u16' to 'u32' to accommodate a sk that may have a few large bpf_sk_storages. The updated cb->min_dump_alloc will also be used to allocate the skb in the next dump. This logic already exists in netlink_dump(). Here is the sample output of a locally modified 'ss' and it could be made more readable by using BTF later: [root@arch-fb-vm1 ~]# ss --bpf-map-id 14 --bpf-map-id 13 -t6an 'dst [::1]:8989' State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess ESTAB 0 0 [::1]:51072 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] ESTAB 0 0 [::1]:51070 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] [root@arch-fb-vm1 ~]# ~/devshare/github/iproute2/misc/ss --bpf-maps -t6an 'dst [::1]:8989' State Recv-Q Send-Q Local Address:Port Peer Address:Port Process ESTAB 0 0 [::1]:51072 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ] ESTAB 0 0 [::1]:51070 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200225230427.1976129-1-kafai@fb.com
2020-02-25 23:04:27 +00:00
struct bpf_sk_storage_diag;
struct inet_diag_dump_data {
struct nlattr *req_nlas[__INET_DIAG_REQ_MAX];
#define inet_diag_nla_bc req_nlas[INET_DIAG_REQ_BYTECODE]
bpf: inet_diag: Dump bpf_sk_storages in inet_diag_dump() This patch will dump out the bpf_sk_storages of a sk if the request has the INET_DIAG_REQ_SK_BPF_STORAGES nlattr. An array of SK_DIAG_BPF_STORAGE_REQ_MAP_FD can be specified in INET_DIAG_REQ_SK_BPF_STORAGES to select which bpf_sk_storage to dump. If no map_fd is specified, all bpf_sk_storages of a sk will be dumped. bpf_sk_storages can be added to the system at runtime. It is difficult to find a proper static value for cb->min_dump_alloc. This patch learns the nlattr size required to dump the bpf_sk_storages of a sk. If it happens to be the very first nlmsg of a dump and it cannot fit the needed bpf_sk_storages, it will try to expand the skb by "pskb_expand_head()". Instead of expanding it in inet_sk_diag_fill(), it is expanded at a sleepable context in __inet_diag_dump() so __GFP_DIRECT_RECLAIM can be used. In __inet_diag_dump(), it will retry as long as the skb is empty and the cb->min_dump_alloc becomes larger than before. cb->min_dump_alloc is bounded by KMALLOC_MAX_SIZE. The min_dump_alloc is also changed from 'u16' to 'u32' to accommodate a sk that may have a few large bpf_sk_storages. The updated cb->min_dump_alloc will also be used to allocate the skb in the next dump. This logic already exists in netlink_dump(). Here is the sample output of a locally modified 'ss' and it could be made more readable by using BTF later: [root@arch-fb-vm1 ~]# ss --bpf-map-id 14 --bpf-map-id 13 -t6an 'dst [::1]:8989' State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess ESTAB 0 0 [::1]:51072 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] ESTAB 0 0 [::1]:51070 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] [root@arch-fb-vm1 ~]# ~/devshare/github/iproute2/misc/ss --bpf-maps -t6an 'dst [::1]:8989' State Recv-Q Send-Q Local Address:Port Peer Address:Port Process ESTAB 0 0 [::1]:51072 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ] ESTAB 0 0 [::1]:51070 [::1]:8989 bpf_map_id:14 value:[ 3feb ] bpf_map_id:13 value:[ 3f ] bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200225230427.1976129-1-kafai@fb.com
2020-02-25 23:04:27 +00:00
#define inet_diag_nla_bpf_stgs req_nlas[INET_DIAG_REQ_SK_BPF_STORAGES]
struct bpf_sk_storage_diag *bpf_stg_diag;
};
struct inet_connection_sock;
int inet_sk_diag_fill(struct sock *sk, struct inet_connection_sock *icsk,
struct sk_buff *skb, struct netlink_callback *cb,
const struct inet_diag_req_v2 *req,
u16 nlmsg_flags, bool net_admin);
void inet_diag_dump_icsk(struct inet_hashinfo *h, struct sk_buff *skb,
struct netlink_callback *cb,
const struct inet_diag_req_v2 *r);
int inet_diag_dump_one_icsk(struct inet_hashinfo *hashinfo,
struct netlink_callback *cb,
const struct inet_diag_req_v2 *req);
struct sock *inet_diag_find_one_icsk(struct net *net,
struct inet_hashinfo *hashinfo,
const struct inet_diag_req_v2 *req);
int inet_diag_bc_sk(const struct nlattr *_bc, struct sock *sk);
void inet_diag_msg_common_fill(struct inet_diag_msg *r, struct sock *sk);
static inline size_t inet_diag_msg_attrs_size(void)
{
return nla_total_size(1) /* INET_DIAG_SHUTDOWN */
+ nla_total_size(1) /* INET_DIAG_TOS */
#if IS_ENABLED(CONFIG_IPV6)
+ nla_total_size(1) /* INET_DIAG_TCLASS */
+ nla_total_size(1) /* INET_DIAG_SKV6ONLY */
#endif
+ nla_total_size(4) /* INET_DIAG_MARK */
+ nla_total_size(4) /* INET_DIAG_CLASS_ID */
#ifdef CONFIG_SOCK_CGROUP_DATA
+ nla_total_size_64bit(sizeof(u64)) /* INET_DIAG_CGROUP_ID */
#endif
+ nla_total_size(sizeof(struct inet_diag_sockopt))
/* INET_DIAG_SOCKOPT */
;
}
int inet_diag_msg_attrs_fill(struct sock *sk, struct sk_buff *skb,
struct inet_diag_msg *r, int ext,
struct user_namespace *user_ns, bool net_admin);
extern int inet_diag_register(const struct inet_diag_handler *handler);
extern void inet_diag_unregister(const struct inet_diag_handler *handler);
#endif /* _INET_DIAG_H_ */