2019-05-27 08:55:01 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2016-04-04 14:00:32 +01:00
|
|
|
/* RxRPC remote transport endpoint record management
|
2007-04-26 15:48:28 -07:00
|
|
|
*
|
2016-04-04 14:00:32 +01:00
|
|
|
* Copyright (C) 2007, 2016 Red Hat, Inc. All Rights Reserved.
|
2007-04-26 15:48:28 -07:00
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*/
|
|
|
|
|
2016-06-02 12:08:52 -07:00
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
2007-04-26 15:48:28 -07:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/net.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/udp.h>
|
|
|
|
#include <linux/in.h>
|
2016-09-13 08:49:05 +01:00
|
|
|
#include <linux/in6.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
|
|
|
#include <linux/slab.h>
|
2016-04-04 14:00:32 +01:00
|
|
|
#include <linux/hashtable.h>
|
2007-04-26 15:48:28 -07:00
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/af_rxrpc.h>
|
|
|
|
#include <net/ip.h>
|
2007-05-04 12:41:11 -07:00
|
|
|
#include <net/route.h>
|
2016-09-13 08:49:05 +01:00
|
|
|
#include <net/ip6_route.h>
|
2007-04-26 15:48:28 -07:00
|
|
|
#include "ar-internal.h"
|
|
|
|
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
static const struct sockaddr_rxrpc rxrpc_null_addr;
|
|
|
|
|
2016-04-04 14:00:32 +01:00
|
|
|
/*
|
|
|
|
* Hash a peer key.
|
|
|
|
*/
|
|
|
|
static unsigned long rxrpc_peer_hash_key(struct rxrpc_local *local,
|
|
|
|
const struct sockaddr_rxrpc *srx)
|
|
|
|
{
|
|
|
|
const u16 *p;
|
|
|
|
unsigned int i, size;
|
|
|
|
unsigned long hash_key;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
hash_key = (unsigned long)local / __alignof__(*local);
|
|
|
|
hash_key += srx->transport_type;
|
|
|
|
hash_key += srx->transport_len;
|
|
|
|
hash_key += srx->transport.family;
|
|
|
|
|
|
|
|
switch (srx->transport.family) {
|
|
|
|
case AF_INET:
|
|
|
|
hash_key += (u16 __force)srx->transport.sin.sin_port;
|
|
|
|
size = sizeof(srx->transport.sin.sin_addr);
|
|
|
|
p = (u16 *)&srx->transport.sin.sin_addr;
|
|
|
|
break;
|
2016-09-17 07:26:01 +01:00
|
|
|
#ifdef CONFIG_AF_RXRPC_IPV6
|
2016-09-13 08:49:05 +01:00
|
|
|
case AF_INET6:
|
|
|
|
hash_key += (u16 __force)srx->transport.sin.sin_port;
|
|
|
|
size = sizeof(srx->transport.sin6.sin6_addr);
|
|
|
|
p = (u16 *)&srx->transport.sin6.sin6_addr;
|
|
|
|
break;
|
2016-09-17 07:26:01 +01:00
|
|
|
#endif
|
2016-06-17 11:55:22 +02:00
|
|
|
default:
|
|
|
|
WARN(1, "AF_RXRPC: Unsupported transport address family\n");
|
|
|
|
return 0;
|
2016-04-04 14:00:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Step through the peer address in 16-bit portions for speed */
|
|
|
|
for (i = 0; i < size; i += sizeof(*p), p++)
|
|
|
|
hash_key += *p;
|
|
|
|
|
|
|
|
_leave(" 0x%lx", hash_key);
|
|
|
|
return hash_key;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compare a peer to a key. Return -ve, 0 or +ve to indicate less than, same
|
|
|
|
* or greater than.
|
|
|
|
*
|
|
|
|
* Unfortunately, the primitives in linux/hashtable.h don't allow for sorted
|
|
|
|
* buckets and mid-bucket insertion, so we don't make full use of this
|
|
|
|
* information at this point.
|
|
|
|
*/
|
|
|
|
static long rxrpc_peer_cmp_key(const struct rxrpc_peer *peer,
|
|
|
|
struct rxrpc_local *local,
|
|
|
|
const struct sockaddr_rxrpc *srx,
|
|
|
|
unsigned long hash_key)
|
|
|
|
{
|
|
|
|
long diff;
|
|
|
|
|
|
|
|
diff = ((peer->hash_key - hash_key) ?:
|
|
|
|
((unsigned long)peer->local - (unsigned long)local) ?:
|
|
|
|
(peer->srx.transport_type - srx->transport_type) ?:
|
|
|
|
(peer->srx.transport_len - srx->transport_len) ?:
|
|
|
|
(peer->srx.transport.family - srx->transport.family));
|
|
|
|
if (diff != 0)
|
|
|
|
return diff;
|
|
|
|
|
|
|
|
switch (srx->transport.family) {
|
|
|
|
case AF_INET:
|
|
|
|
return ((u16 __force)peer->srx.transport.sin.sin_port -
|
|
|
|
(u16 __force)srx->transport.sin.sin_port) ?:
|
|
|
|
memcmp(&peer->srx.transport.sin.sin_addr,
|
|
|
|
&srx->transport.sin.sin_addr,
|
|
|
|
sizeof(struct in_addr));
|
2016-09-17 07:26:01 +01:00
|
|
|
#ifdef CONFIG_AF_RXRPC_IPV6
|
2016-09-13 08:49:05 +01:00
|
|
|
case AF_INET6:
|
|
|
|
return ((u16 __force)peer->srx.transport.sin6.sin6_port -
|
|
|
|
(u16 __force)srx->transport.sin6.sin6_port) ?:
|
|
|
|
memcmp(&peer->srx.transport.sin6.sin6_addr,
|
|
|
|
&srx->transport.sin6.sin6_addr,
|
|
|
|
sizeof(struct in6_addr));
|
2016-09-17 07:26:01 +01:00
|
|
|
#endif
|
2016-04-04 14:00:32 +01:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look up a remote transport endpoint for the specified address using RCU.
|
|
|
|
*/
|
|
|
|
static struct rxrpc_peer *__rxrpc_lookup_peer_rcu(
|
|
|
|
struct rxrpc_local *local,
|
|
|
|
const struct sockaddr_rxrpc *srx,
|
|
|
|
unsigned long hash_key)
|
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer;
|
2017-05-24 17:02:32 +01:00
|
|
|
struct rxrpc_net *rxnet = local->rxnet;
|
2016-04-04 14:00:32 +01:00
|
|
|
|
2017-05-24 17:02:32 +01:00
|
|
|
hash_for_each_possible_rcu(rxnet->peer_hash, peer, hash_link, hash_key) {
|
2018-09-27 15:13:09 +01:00
|
|
|
if (rxrpc_peer_cmp_key(peer, local, srx, hash_key) == 0 &&
|
2022-05-21 08:45:22 +01:00
|
|
|
refcount_read(&peer->ref) > 0)
|
2016-04-04 14:00:32 +01:00
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look up a remote transport endpoint for the specified address using RCU.
|
|
|
|
*/
|
|
|
|
struct rxrpc_peer *rxrpc_lookup_peer_rcu(struct rxrpc_local *local,
|
|
|
|
const struct sockaddr_rxrpc *srx)
|
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer;
|
|
|
|
unsigned long hash_key = rxrpc_peer_hash_key(local, srx);
|
|
|
|
|
|
|
|
peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key);
|
2022-10-20 12:04:20 +01:00
|
|
|
if (peer)
|
2022-05-21 08:45:22 +01:00
|
|
|
_leave(" = %p {u=%d}", peer, refcount_read(&peer->ref));
|
2016-04-04 14:00:32 +01:00
|
|
|
return peer;
|
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2007-05-04 12:41:11 -07:00
|
|
|
/*
|
|
|
|
* assess the MTU size for the network interface through which this peer is
|
|
|
|
* reached
|
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
static void rxrpc_assess_MTU_size(struct rxrpc_local *local,
|
2018-10-05 14:05:34 +01:00
|
|
|
struct rxrpc_peer *peer)
|
2007-05-04 12:41:11 -07:00
|
|
|
{
|
2022-10-20 23:17:06 +01:00
|
|
|
struct net *net = local->net;
|
2016-09-13 08:49:05 +01:00
|
|
|
struct dst_entry *dst;
|
2007-05-04 12:41:11 -07:00
|
|
|
struct rtable *rt;
|
2016-09-13 08:49:05 +01:00
|
|
|
struct flowi fl;
|
|
|
|
struct flowi4 *fl4 = &fl.u.ip4;
|
2016-09-17 07:26:01 +01:00
|
|
|
#ifdef CONFIG_AF_RXRPC_IPV6
|
2016-09-13 08:49:05 +01:00
|
|
|
struct flowi6 *fl6 = &fl.u.ip6;
|
2016-09-17 07:26:01 +01:00
|
|
|
#endif
|
2007-05-04 12:41:11 -07:00
|
|
|
|
|
|
|
peer->if_mtu = 1500;
|
2024-12-04 07:46:37 +00:00
|
|
|
if (peer->max_data < peer->if_mtu - peer->hdrsize) {
|
|
|
|
trace_rxrpc_pmtud_reduce(peer, 0, peer->if_mtu - peer->hdrsize,
|
|
|
|
rxrpc_pmtud_reduce_route);
|
|
|
|
peer->max_data = peer->if_mtu - peer->hdrsize;
|
|
|
|
}
|
2007-05-04 12:41:11 -07:00
|
|
|
|
2016-09-13 08:49:05 +01:00
|
|
|
memset(&fl, 0, sizeof(fl));
|
|
|
|
switch (peer->srx.transport.family) {
|
|
|
|
case AF_INET:
|
|
|
|
rt = ip_route_output_ports(
|
2018-10-05 14:05:34 +01:00
|
|
|
net, fl4, NULL,
|
2016-09-13 08:49:05 +01:00
|
|
|
peer->srx.transport.sin.sin_addr.s_addr, 0,
|
|
|
|
htons(7000), htons(7001), IPPROTO_UDP, 0, 0);
|
|
|
|
if (IS_ERR(rt)) {
|
|
|
|
_leave(" [route err %ld]", PTR_ERR(rt));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dst = &rt->dst;
|
|
|
|
break;
|
|
|
|
|
2016-09-17 07:26:01 +01:00
|
|
|
#ifdef CONFIG_AF_RXRPC_IPV6
|
2016-09-13 08:49:05 +01:00
|
|
|
case AF_INET6:
|
|
|
|
fl6->flowi6_iif = LOOPBACK_IFINDEX;
|
|
|
|
fl6->flowi6_scope = RT_SCOPE_UNIVERSE;
|
|
|
|
fl6->flowi6_proto = IPPROTO_UDP;
|
|
|
|
memcpy(&fl6->daddr, &peer->srx.transport.sin6.sin6_addr,
|
|
|
|
sizeof(struct in6_addr));
|
|
|
|
fl6->fl6_dport = htons(7001);
|
|
|
|
fl6->fl6_sport = htons(7000);
|
2018-10-05 14:05:34 +01:00
|
|
|
dst = ip6_route_output(net, NULL, fl6);
|
2016-10-13 08:43:17 +01:00
|
|
|
if (dst->error) {
|
|
|
|
_leave(" [route err %d]", dst->error);
|
2016-09-13 08:49:05 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
2016-09-17 07:26:01 +01:00
|
|
|
#endif
|
2016-09-13 08:49:05 +01:00
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
2007-05-04 12:41:11 -07:00
|
|
|
}
|
|
|
|
|
2016-09-13 08:49:05 +01:00
|
|
|
peer->if_mtu = dst_mtu(dst);
|
2024-12-04 07:46:37 +00:00
|
|
|
peer->hdrsize += dst->header_len + dst->trailer_len;
|
|
|
|
peer->tx_seg_max = dst->dev->gso_max_segs;
|
2016-09-13 08:49:05 +01:00
|
|
|
dst_release(dst);
|
2007-05-04 12:41:11 -07:00
|
|
|
|
2024-12-04 07:46:37 +00:00
|
|
|
peer->max_data = umin(RXRPC_JUMBO(1), peer->if_mtu - peer->hdrsize);
|
|
|
|
peer->pmtud_good = 500;
|
|
|
|
peer->pmtud_bad = peer->if_mtu - peer->hdrsize + 1;
|
|
|
|
peer->pmtud_trial = umin(peer->max_data, peer->pmtud_bad - 1);
|
|
|
|
peer->pmtud_pending = true;
|
|
|
|
|
2007-05-10 03:15:25 -07:00
|
|
|
_leave(" [if_mtu %u]", peer->if_mtu);
|
2007-05-04 12:41:11 -07:00
|
|
|
}
|
|
|
|
|
2007-04-26 15:48:28 -07:00
|
|
|
/*
|
2016-04-04 14:00:32 +01:00
|
|
|
* Allocate a peer.
|
2007-04-26 15:48:28 -07:00
|
|
|
*/
|
2022-10-21 13:39:34 +01:00
|
|
|
struct rxrpc_peer *rxrpc_alloc_peer(struct rxrpc_local *local, gfp_t gfp,
|
|
|
|
enum rxrpc_peer_trace why)
|
2007-04-26 15:48:28 -07:00
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
peer = kzalloc(sizeof(struct rxrpc_peer), gfp);
|
|
|
|
if (peer) {
|
2022-05-21 08:45:22 +01:00
|
|
|
refcount_set(&peer->ref, 1);
|
2022-10-21 13:00:34 +01:00
|
|
|
peer->local = rxrpc_get_local(local, rxrpc_local_get_peer);
|
2016-04-04 14:00:34 +01:00
|
|
|
INIT_HLIST_HEAD(&peer->error_targets);
|
2016-06-17 10:06:56 +01:00
|
|
|
peer->service_conns = RB_ROOT;
|
2016-07-01 07:51:50 +01:00
|
|
|
seqlock_init(&peer->service_conn_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
spin_lock_init(&peer->lock);
|
2024-12-04 07:46:37 +00:00
|
|
|
seqcount_init(&peer->mtu_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
peer->debug_id = atomic_inc_return(&rxrpc_debug_id);
|
2024-12-04 07:47:05 +00:00
|
|
|
peer->recent_srtt_us = UINT_MAX;
|
2022-10-03 18:49:11 +01:00
|
|
|
peer->cong_ssthresh = RXRPC_TX_MAX_WINDOW;
|
2022-12-15 16:20:30 +00:00
|
|
|
trace_rxrpc_peer(peer->debug_id, 1, why);
|
2016-04-04 14:00:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
_leave(" = %p", peer);
|
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
/*
|
|
|
|
* Initialise peer record.
|
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
static void rxrpc_init_peer(struct rxrpc_local *local, struct rxrpc_peer *peer,
|
2018-10-05 14:05:34 +01:00
|
|
|
unsigned long hash_key)
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
{
|
2016-09-13 22:36:21 +01:00
|
|
|
peer->hash_key = hash_key;
|
2024-12-04 07:46:37 +00:00
|
|
|
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
|
2016-09-13 08:49:05 +01:00
|
|
|
switch (peer->srx.transport.family) {
|
|
|
|
case AF_INET:
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
peer->hdrsize = sizeof(struct iphdr);
|
2016-09-13 08:49:05 +01:00
|
|
|
break;
|
2016-09-17 07:26:01 +01:00
|
|
|
#ifdef CONFIG_AF_RXRPC_IPV6
|
2016-09-13 08:49:05 +01:00
|
|
|
case AF_INET6:
|
|
|
|
peer->hdrsize = sizeof(struct ipv6hdr);
|
|
|
|
break;
|
2016-09-17 07:26:01 +01:00
|
|
|
#endif
|
2016-09-13 08:49:05 +01:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (peer->srx.transport_type) {
|
|
|
|
case SOCK_DGRAM:
|
|
|
|
peer->hdrsize += sizeof(struct udphdr);
|
|
|
|
break;
|
|
|
|
default:
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
peer->hdrsize += sizeof(struct rxrpc_wire_header);
|
2024-12-04 07:46:37 +00:00
|
|
|
peer->max_data = peer->if_mtu - peer->hdrsize;
|
|
|
|
|
|
|
|
rxrpc_assess_MTU_size(local, peer);
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
}
|
|
|
|
|
2016-04-04 14:00:32 +01:00
|
|
|
/*
|
|
|
|
* Set up a new peer.
|
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
static struct rxrpc_peer *rxrpc_create_peer(struct rxrpc_local *local,
|
2016-04-04 14:00:32 +01:00
|
|
|
struct sockaddr_rxrpc *srx,
|
|
|
|
unsigned long hash_key,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
2022-10-21 13:39:34 +01:00
|
|
|
peer = rxrpc_alloc_peer(local, gfp, rxrpc_peer_new_client);
|
2016-04-04 14:00:32 +01:00
|
|
|
if (peer) {
|
2007-04-26 15:48:28 -07:00
|
|
|
memcpy(&peer->srx, srx, sizeof(*srx));
|
2022-10-20 23:17:06 +01:00
|
|
|
rxrpc_init_peer(local, peer, hash_key);
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
_leave(" = %p", peer);
|
|
|
|
return peer;
|
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2021-11-21 04:16:08 +00:00
|
|
|
static void rxrpc_free_peer(struct rxrpc_peer *peer)
|
|
|
|
{
|
2022-10-21 13:39:34 +01:00
|
|
|
trace_rxrpc_peer(peer->debug_id, 0, rxrpc_peer_free);
|
2022-10-21 13:00:34 +01:00
|
|
|
rxrpc_put_local(peer->local, rxrpc_local_put_peer);
|
2021-11-21 04:16:08 +00:00
|
|
|
kfree_rcu(peer, rcu);
|
|
|
|
}
|
|
|
|
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
/*
|
2018-09-27 15:13:09 +01:00
|
|
|
* Set up a new incoming peer. There shouldn't be any other matching peers
|
|
|
|
* since we've already done a search in the list from the non-reentrant context
|
|
|
|
* (the data_ready handler) that is the only place we can add new peers.
|
2024-12-04 07:47:01 +00:00
|
|
|
* Called with interrupts disabled.
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
void rxrpc_new_incoming_peer(struct rxrpc_local *local, struct rxrpc_peer *peer)
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
{
|
2017-05-24 17:02:32 +01:00
|
|
|
struct rxrpc_net *rxnet = local->rxnet;
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
unsigned long hash_key;
|
|
|
|
|
2018-09-27 15:13:09 +01:00
|
|
|
hash_key = rxrpc_peer_hash_key(local, &peer->srx);
|
2022-10-20 23:17:06 +01:00
|
|
|
rxrpc_init_peer(local, peer, hash_key);
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
|
|
|
|
2017-05-24 17:02:32 +01:00
|
|
|
spin_lock(&rxnet->peer_hash_lock);
|
2018-09-27 15:13:09 +01:00
|
|
|
hash_add_rcu(rxnet->peer_hash, &peer->hash_link, hash_key);
|
|
|
|
list_add_tail(&peer->keepalive_link, &rxnet->peer_keepalive_new);
|
2017-05-24 17:02:32 +01:00
|
|
|
spin_unlock(&rxnet->peer_hash_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* obtain a remote transport endpoint for the specified address
|
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
struct rxrpc_peer *rxrpc_lookup_peer(struct rxrpc_local *local,
|
2016-04-04 14:00:32 +01:00
|
|
|
struct sockaddr_rxrpc *srx, gfp_t gfp)
|
2007-04-26 15:48:28 -07:00
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer, *candidate;
|
2017-05-24 17:02:32 +01:00
|
|
|
struct rxrpc_net *rxnet = local->rxnet;
|
2016-04-04 14:00:32 +01:00
|
|
|
unsigned long hash_key = rxrpc_peer_hash_key(local, srx);
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2016-09-13 08:49:05 +01:00
|
|
|
_enter("{%pISp}", &srx->transport);
|
2007-04-26 15:48:28 -07:00
|
|
|
|
|
|
|
/* search the peer list first */
|
2016-04-04 14:00:32 +01:00
|
|
|
rcu_read_lock();
|
|
|
|
peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key);
|
2022-10-21 13:39:34 +01:00
|
|
|
if (peer && !rxrpc_get_peer_maybe(peer, rxrpc_peer_get_lookup_client))
|
2016-04-04 14:00:32 +01:00
|
|
|
peer = NULL;
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
if (!peer) {
|
|
|
|
/* The peer is not yet present in hash - create a candidate
|
|
|
|
* for a new record and then redo the search.
|
|
|
|
*/
|
2022-10-20 23:17:06 +01:00
|
|
|
candidate = rxrpc_create_peer(local, srx, hash_key, gfp);
|
2016-04-04 14:00:32 +01:00
|
|
|
if (!candidate) {
|
|
|
|
_leave(" = NULL [nomem]");
|
|
|
|
return NULL;
|
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2020-01-24 10:21:15 +00:00
|
|
|
spin_lock(&rxnet->peer_hash_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2016-04-04 14:00:32 +01:00
|
|
|
/* Need to check that we aren't racing with someone else */
|
|
|
|
peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key);
|
2022-10-21 13:39:34 +01:00
|
|
|
if (peer && !rxrpc_get_peer_maybe(peer, rxrpc_peer_get_lookup_client))
|
2016-04-04 14:00:32 +01:00
|
|
|
peer = NULL;
|
2018-03-30 21:04:43 +01:00
|
|
|
if (!peer) {
|
2017-05-24 17:02:32 +01:00
|
|
|
hash_add_rcu(rxnet->peer_hash,
|
2016-04-04 14:00:32 +01:00
|
|
|
&candidate->hash_link, hash_key);
|
2018-08-08 11:30:02 +01:00
|
|
|
list_add_tail(&candidate->keepalive_link,
|
|
|
|
&rxnet->peer_keepalive_new);
|
2018-03-30 21:04:43 +01:00
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2020-01-24 10:21:15 +00:00
|
|
|
spin_unlock(&rxnet->peer_hash_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2016-04-04 14:00:32 +01:00
|
|
|
if (peer)
|
2021-11-21 04:16:08 +00:00
|
|
|
rxrpc_free_peer(candidate);
|
2016-04-04 14:00:32 +01:00
|
|
|
else
|
|
|
|
peer = candidate;
|
|
|
|
}
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2022-05-21 08:45:22 +01:00
|
|
|
_leave(" = %p {u=%d}", peer, refcount_read(&peer->ref));
|
2007-04-26 15:48:28 -07:00
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-03-30 21:05:38 +01:00
|
|
|
* Get a ref on a peer record.
|
2007-04-26 15:48:28 -07:00
|
|
|
*/
|
2022-10-21 13:39:34 +01:00
|
|
|
struct rxrpc_peer *rxrpc_get_peer(struct rxrpc_peer *peer, enum rxrpc_peer_trace why)
|
2018-03-30 21:05:38 +01:00
|
|
|
{
|
2022-05-21 08:45:22 +01:00
|
|
|
int r;
|
2018-03-30 21:05:38 +01:00
|
|
|
|
2022-05-21 08:45:22 +01:00
|
|
|
__refcount_inc(&peer->ref, &r);
|
2022-12-15 16:20:30 +00:00
|
|
|
trace_rxrpc_peer(peer->debug_id, r + 1, why);
|
2018-03-30 21:05:38 +01:00
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get a ref on a peer record unless its usage has already reached 0.
|
|
|
|
*/
|
2022-10-21 13:39:34 +01:00
|
|
|
struct rxrpc_peer *rxrpc_get_peer_maybe(struct rxrpc_peer *peer,
|
|
|
|
enum rxrpc_peer_trace why)
|
2018-03-30 21:05:38 +01:00
|
|
|
{
|
2022-05-21 08:45:22 +01:00
|
|
|
int r;
|
2018-03-30 21:05:38 +01:00
|
|
|
|
|
|
|
if (peer) {
|
2022-05-21 08:45:22 +01:00
|
|
|
if (__refcount_inc_not_zero(&peer->ref, &r))
|
2022-10-21 13:39:34 +01:00
|
|
|
trace_rxrpc_peer(peer->debug_id, r + 1, why);
|
2018-03-30 21:05:38 +01:00
|
|
|
else
|
|
|
|
peer = NULL;
|
|
|
|
}
|
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard a peer record.
|
|
|
|
*/
|
|
|
|
static void __rxrpc_put_peer(struct rxrpc_peer *peer)
|
2007-04-26 15:48:28 -07:00
|
|
|
{
|
2017-05-24 17:02:32 +01:00
|
|
|
struct rxrpc_net *rxnet = peer->local->rxnet;
|
|
|
|
|
2016-04-04 14:00:34 +01:00
|
|
|
ASSERT(hlist_empty(&peer->error_targets));
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2020-01-24 10:21:15 +00:00
|
|
|
spin_lock(&rxnet->peer_hash_lock);
|
2016-04-04 14:00:32 +01:00
|
|
|
hash_del_rcu(&peer->hash_link);
|
2018-08-08 11:30:02 +01:00
|
|
|
list_del_init(&peer->keepalive_link);
|
2020-01-24 10:21:15 +00:00
|
|
|
spin_unlock(&rxnet->peer_hash_lock);
|
2007-04-26 15:48:28 -07:00
|
|
|
|
2021-11-21 04:16:08 +00:00
|
|
|
rxrpc_free_peer(peer);
|
2007-04-26 15:48:28 -07:00
|
|
|
}
|
2016-08-30 09:49:29 +01:00
|
|
|
|
2018-03-30 21:05:38 +01:00
|
|
|
/*
|
|
|
|
* Drop a ref on a peer record.
|
|
|
|
*/
|
2022-10-21 13:39:34 +01:00
|
|
|
void rxrpc_put_peer(struct rxrpc_peer *peer, enum rxrpc_peer_trace why)
|
2018-03-30 21:05:38 +01:00
|
|
|
{
|
2019-10-07 10:58:29 +01:00
|
|
|
unsigned int debug_id;
|
2022-05-21 08:45:22 +01:00
|
|
|
bool dead;
|
|
|
|
int r;
|
2018-03-30 21:05:38 +01:00
|
|
|
|
|
|
|
if (peer) {
|
2019-10-07 10:58:29 +01:00
|
|
|
debug_id = peer->debug_id;
|
2022-05-21 08:45:22 +01:00
|
|
|
dead = __refcount_dec_and_test(&peer->ref, &r);
|
2022-10-21 13:39:34 +01:00
|
|
|
trace_rxrpc_peer(debug_id, r - 1, why);
|
2022-05-21 08:45:22 +01:00
|
|
|
if (dead)
|
2018-03-30 21:05:38 +01:00
|
|
|
__rxrpc_put_peer(peer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-30 21:05:44 +01:00
|
|
|
/*
|
|
|
|
* Make sure all peer records have been discarded.
|
|
|
|
*/
|
|
|
|
void rxrpc_destroy_all_peers(struct rxrpc_net *rxnet)
|
|
|
|
{
|
|
|
|
struct rxrpc_peer *peer;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < HASH_SIZE(rxnet->peer_hash); i++) {
|
|
|
|
if (hlist_empty(&rxnet->peer_hash[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
hlist_for_each_entry(peer, &rxnet->peer_hash[i], hash_link) {
|
|
|
|
pr_err("Leaked peer %u {%u} %pISp\n",
|
|
|
|
peer->debug_id,
|
2022-05-21 08:45:22 +01:00
|
|
|
refcount_read(&peer->ref),
|
2018-03-30 21:05:44 +01:00
|
|
|
&peer->srx.transport);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-30 09:49:29 +01:00
|
|
|
/**
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
* rxrpc_kernel_get_call_peer - Get the peer address of a call
|
2016-08-30 09:49:29 +01:00
|
|
|
* @sock: The socket on which the call is in progress.
|
|
|
|
* @call: The call to query
|
|
|
|
*
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
* Get a record for the remote peer in a call.
|
2016-08-30 09:49:29 +01:00
|
|
|
*/
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
struct rxrpc_peer *rxrpc_kernel_get_call_peer(struct socket *sock, struct rxrpc_call *call)
|
2016-08-30 09:49:29 +01:00
|
|
|
{
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
return call->peer;
|
2016-08-30 09:49:29 +01:00
|
|
|
}
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_get_call_peer);
|
2017-10-18 11:07:31 +01:00
|
|
|
|
|
|
|
/**
|
2020-05-11 14:54:34 +01:00
|
|
|
* rxrpc_kernel_get_srtt - Get a call's peer smoothed RTT
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
* @peer: The peer to query
|
2017-10-18 11:07:31 +01:00
|
|
|
*
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
* Get the call's peer smoothed RTT in uS or UINT_MAX if we have no samples.
|
2017-10-18 11:07:31 +01:00
|
|
|
*/
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
unsigned int rxrpc_kernel_get_srtt(const struct rxrpc_peer *peer)
|
2017-10-18 11:07:31 +01:00
|
|
|
{
|
2024-12-04 07:47:05 +00:00
|
|
|
return READ_ONCE(peer->recent_srtt_us);
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_get_srtt);
|
2020-08-20 15:13:00 +01:00
|
|
|
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
/**
|
|
|
|
* rxrpc_kernel_remote_srx - Get the address of a peer
|
|
|
|
* @peer: The peer to query
|
|
|
|
*
|
|
|
|
* Get a pointer to the address from a peer record. The caller is responsible
|
|
|
|
* for making sure that the address is not deallocated.
|
|
|
|
*/
|
|
|
|
const struct sockaddr_rxrpc *rxrpc_kernel_remote_srx(const struct rxrpc_peer *peer)
|
|
|
|
{
|
|
|
|
return peer ? &peer->srx : &rxrpc_null_addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_remote_srx);
|
2020-08-20 15:13:00 +01:00
|
|
|
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
/**
|
|
|
|
* rxrpc_kernel_remote_addr - Get the peer transport address of a call
|
|
|
|
* @peer: The peer to query
|
|
|
|
*
|
|
|
|
* Get a pointer to the transport address from a peer record. The caller is
|
|
|
|
* responsible for making sure that the address is not deallocated.
|
|
|
|
*/
|
|
|
|
const struct sockaddr *rxrpc_kernel_remote_addr(const struct rxrpc_peer *peer)
|
|
|
|
{
|
|
|
|
return (const struct sockaddr *)
|
|
|
|
(peer ? &peer->srx.transport : &rxrpc_null_addr.transport);
|
2017-10-18 11:07:31 +01:00
|
|
|
}
|
rxrpc, afs: Allow afs to pin rxrpc_peer objects
Change rxrpc's API such that:
(1) A new function, rxrpc_kernel_lookup_peer(), is provided to look up an
rxrpc_peer record for a remote address and a corresponding function,
rxrpc_kernel_put_peer(), is provided to dispose of it again.
(2) When setting up a call, the rxrpc_peer object used during a call is
now passed in rather than being set up by rxrpc_connect_call(). For
afs, this meenat passing it to rxrpc_kernel_begin_call() rather than
the full address (the service ID then has to be passed in as a
separate parameter).
(3) A new function, rxrpc_kernel_remote_addr(), is added so that afs can
get a pointer to the transport address for display purposed, and
another, rxrpc_kernel_remote_srx(), to gain a pointer to the full
rxrpc address.
(4) The function to retrieve the RTT from a call, rxrpc_kernel_get_srtt(),
is then altered to take a peer. This now returns the RTT or -1 if
there are insufficient samples.
(5) Rename rxrpc_kernel_get_peer() to rxrpc_kernel_call_get_peer().
(6) Provide a new function, rxrpc_kernel_get_peer(), to get a ref on a
peer the caller already has.
This allows the afs filesystem to pin the rxrpc_peer records that it is
using, allowing faster lookups and pointer comparisons rather than
comparing sockaddr_rxrpc contents. It also makes it easier to get hold of
the RTT. The following changes are made to afs:
(1) The addr_list struct's addrs[] elements now hold a peer struct pointer
and a service ID rather than a sockaddr_rxrpc.
(2) When displaying the transport address, rxrpc_kernel_remote_addr() is
used.
(3) The port arg is removed from afs_alloc_addrlist() since it's always
overridden.
(4) afs_merge_fs_addr4() and afs_merge_fs_addr6() do peer lookup and may
now return an error that must be handled.
(5) afs_find_server() now takes a peer pointer to specify the address.
(6) afs_find_server(), afs_compare_fs_alists() and afs_merge_fs_addr[46]{}
now do peer pointer comparison rather than address comparison.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-10-19 12:55:11 +01:00
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_remote_addr);
|