linux-next/drivers/edac/e752x_edac.c

1145 lines
31 KiB
C
Raw Normal View History

/*
* Intel e752x Memory Controller kernel module
* (C) 2004 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* See "enum e752x_chips" below for supported chipsets
*
* Written by Tom Zimmerman
*
* Contributors:
* Thayne Harbaugh at realmsys.com (?)
* Wang Zhenyu at intel.com
* Dave Jiang at mvista.com
*
* $Id: edac_e752x.c,v 1.5.2.11 2005/10/05 00:43:44 dsp_llnl Exp $
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include "edac_core.h"
#define E752X_REVISION " Ver: 2.0.2 " __DATE__
#define EDAC_MOD_STR "e752x_edac"
static int force_function_unhide;
static struct edac_pci_ctl_info *e752x_pci;
#define e752x_printk(level, fmt, arg...) \
edac_printk(level, "e752x", fmt, ##arg)
#define e752x_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "e752x", fmt, ##arg)
#ifndef PCI_DEVICE_ID_INTEL_7520_0
#define PCI_DEVICE_ID_INTEL_7520_0 0x3590
#endif /* PCI_DEVICE_ID_INTEL_7520_0 */
#ifndef PCI_DEVICE_ID_INTEL_7520_1_ERR
#define PCI_DEVICE_ID_INTEL_7520_1_ERR 0x3591
#endif /* PCI_DEVICE_ID_INTEL_7520_1_ERR */
#ifndef PCI_DEVICE_ID_INTEL_7525_0
#define PCI_DEVICE_ID_INTEL_7525_0 0x359E
#endif /* PCI_DEVICE_ID_INTEL_7525_0 */
#ifndef PCI_DEVICE_ID_INTEL_7525_1_ERR
#define PCI_DEVICE_ID_INTEL_7525_1_ERR 0x3593
#endif /* PCI_DEVICE_ID_INTEL_7525_1_ERR */
#ifndef PCI_DEVICE_ID_INTEL_7320_0
#define PCI_DEVICE_ID_INTEL_7320_0 0x3592
#endif /* PCI_DEVICE_ID_INTEL_7320_0 */
#ifndef PCI_DEVICE_ID_INTEL_7320_1_ERR
#define PCI_DEVICE_ID_INTEL_7320_1_ERR 0x3593
#endif /* PCI_DEVICE_ID_INTEL_7320_1_ERR */
#define E752X_NR_CSROWS 8 /* number of csrows */
/* E752X register addresses - device 0 function 0 */
#define E752X_DRB 0x60 /* DRAM row boundary register (8b) */
#define E752X_DRA 0x70 /* DRAM row attribute register (8b) */
/*
* 31:30 Device width row 7
* 01=x8 10=x4 11=x8 DDR2
* 27:26 Device width row 6
* 23:22 Device width row 5
* 19:20 Device width row 4
* 15:14 Device width row 3
* 11:10 Device width row 2
* 7:6 Device width row 1
* 3:2 Device width row 0
*/
#define E752X_DRC 0x7C /* DRAM controller mode reg (32b) */
/* FIXME:IS THIS RIGHT? */
/*
* 22 Number channels 0=1,1=2
* 19:18 DRB Granularity 32/64MB
*/
#define E752X_DRM 0x80 /* Dimm mapping register */
#define E752X_DDRCSR 0x9A /* DDR control and status reg (16b) */
/*
* 14:12 1 single A, 2 single B, 3 dual
*/
#define E752X_TOLM 0xC4 /* DRAM top of low memory reg (16b) */
#define E752X_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */
#define E752X_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */
#define E752X_REMAPOFFSET 0xCA /* DRAM remap limit offset reg (16b) */
/* E752X register addresses - device 0 function 1 */
#define E752X_FERR_GLOBAL 0x40 /* Global first error register (32b) */
#define E752X_NERR_GLOBAL 0x44 /* Global next error register (32b) */
#define E752X_HI_FERR 0x50 /* Hub interface first error reg (8b) */
#define E752X_HI_NERR 0x52 /* Hub interface next error reg (8b) */
#define E752X_HI_ERRMASK 0x54 /* Hub interface error mask reg (8b) */
#define E752X_HI_SMICMD 0x5A /* Hub interface SMI command reg (8b) */
#define E752X_SYSBUS_FERR 0x60 /* System buss first error reg (16b) */
#define E752X_SYSBUS_NERR 0x62 /* System buss next error reg (16b) */
#define E752X_SYSBUS_ERRMASK 0x64 /* System buss error mask reg (16b) */
#define E752X_SYSBUS_SMICMD 0x6A /* System buss SMI command reg (16b) */
#define E752X_BUF_FERR 0x70 /* Memory buffer first error reg (8b) */
#define E752X_BUF_NERR 0x72 /* Memory buffer next error reg (8b) */
#define E752X_BUF_ERRMASK 0x74 /* Memory buffer error mask reg (8b) */
#define E752X_BUF_SMICMD 0x7A /* Memory buffer SMI command reg (8b) */
#define E752X_DRAM_FERR 0x80 /* DRAM first error register (16b) */
#define E752X_DRAM_NERR 0x82 /* DRAM next error register (16b) */
#define E752X_DRAM_ERRMASK 0x84 /* DRAM error mask register (8b) */
#define E752X_DRAM_SMICMD 0x8A /* DRAM SMI command register (8b) */
#define E752X_DRAM_RETR_ADD 0xAC /* DRAM Retry address register (32b) */
#define E752X_DRAM_SEC1_ADD 0xA0 /* DRAM first correctable memory */
/* error address register (32b) */
/*
* 31 Reserved
* 30:2 CE address (64 byte block 34:6)
* 1 Reserved
* 0 HiLoCS
*/
#define E752X_DRAM_SEC2_ADD 0xC8 /* DRAM first correctable memory */
/* error address register (32b) */
/*
* 31 Reserved
* 30:2 CE address (64 byte block 34:6)
* 1 Reserved
* 0 HiLoCS
*/
#define E752X_DRAM_DED_ADD 0xA4 /* DRAM first uncorrectable memory */
/* error address register (32b) */
/*
* 31 Reserved
* 30:2 CE address (64 byte block 34:6)
* 1 Reserved
* 0 HiLoCS
*/
#define E752X_DRAM_SCRB_ADD 0xA8 /* DRAM first uncorrectable scrub memory */
/* error address register (32b) */
/*
* 31 Reserved
* 30:2 CE address (64 byte block 34:6)
* 1 Reserved
* 0 HiLoCS
*/
#define E752X_DRAM_SEC1_SYNDROME 0xC4 /* DRAM first correctable memory */
/* error syndrome register (16b) */
#define E752X_DRAM_SEC2_SYNDROME 0xC6 /* DRAM second correctable memory */
/* error syndrome register (16b) */
#define E752X_DEVPRES1 0xF4 /* Device Present 1 register (8b) */
/* ICH5R register addresses - device 30 function 0 */
#define ICH5R_PCI_STAT 0x06 /* PCI status register (16b) */
#define ICH5R_PCI_2ND_STAT 0x1E /* PCI status secondary reg (16b) */
#define ICH5R_PCI_BRIDGE_CTL 0x3E /* PCI bridge control register (16b) */
enum e752x_chips {
E7520 = 0,
E7525 = 1,
E7320 = 2
};
struct e752x_pvt {
struct pci_dev *bridge_ck;
struct pci_dev *dev_d0f0;
struct pci_dev *dev_d0f1;
u32 tolm;
u32 remapbase;
u32 remaplimit;
int mc_symmetric;
u8 map[8];
int map_type;
const struct e752x_dev_info *dev_info;
};
struct e752x_dev_info {
u16 err_dev;
u16 ctl_dev;
const char *ctl_name;
};
struct e752x_error_info {
u32 ferr_global;
u32 nerr_global;
u8 hi_ferr;
u8 hi_nerr;
u16 sysbus_ferr;
u16 sysbus_nerr;
u8 buf_ferr;
u8 buf_nerr;
u16 dram_ferr;
u16 dram_nerr;
u32 dram_sec1_add;
u32 dram_sec2_add;
u16 dram_sec1_syndrome;
u16 dram_sec2_syndrome;
u32 dram_ded_add;
u32 dram_scrb_add;
u32 dram_retr_add;
};
static const struct e752x_dev_info e752x_devs[] = {
[E7520] = {
.err_dev = PCI_DEVICE_ID_INTEL_7520_1_ERR,
.ctl_dev = PCI_DEVICE_ID_INTEL_7520_0,
.ctl_name = "E7520"},
[E7525] = {
.err_dev = PCI_DEVICE_ID_INTEL_7525_1_ERR,
.ctl_dev = PCI_DEVICE_ID_INTEL_7525_0,
.ctl_name = "E7525"},
[E7320] = {
.err_dev = PCI_DEVICE_ID_INTEL_7320_1_ERR,
.ctl_dev = PCI_DEVICE_ID_INTEL_7320_0,
.ctl_name = "E7320"},
};
static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci,
unsigned long page)
{
u32 remap;
struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info;
debugf3("%s()\n", __func__);
if (page < pvt->tolm)
return page;
if ((page >= 0x100000) && (page < pvt->remapbase))
return page;
remap = (page - pvt->tolm) + pvt->remapbase;
if (remap < pvt->remaplimit)
return remap;
e752x_printk(KERN_ERR, "Invalid page %lx - out of range\n", page);
return pvt->tolm - 1;
}
static void do_process_ce(struct mem_ctl_info *mci, u16 error_one,
u32 sec1_add, u16 sec1_syndrome)
{
u32 page;
int row;
int channel;
int i;
struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info;
debugf3("%s()\n", __func__);
/* convert the addr to 4k page */
page = sec1_add >> (PAGE_SHIFT - 4);
/* FIXME - check for -1 */
if (pvt->mc_symmetric) {
/* chip select are bits 14 & 13 */
row = ((page >> 1) & 3);
e752x_printk(KERN_WARNING,
"Test row %d Table %d %d %d %d %d %d %d %d\n", row,
pvt->map[0], pvt->map[1], pvt->map[2], pvt->map[3],
pvt->map[4], pvt->map[5], pvt->map[6],
pvt->map[7]);
/* test for channel remapping */
for (i = 0; i < 8; i++) {
if (pvt->map[i] == row)
break;
}
e752x_printk(KERN_WARNING, "Test computed row %d\n", i);
if (i < 8)
row = i;
else
e752x_mc_printk(mci, KERN_WARNING,
"row %d not found in remap table\n",
row);
} else
row = edac_mc_find_csrow_by_page(mci, page);
/* 0 = channel A, 1 = channel B */
channel = !(error_one & 1);
if (!pvt->map_type)
row = 7 - row;
/* e752x mc reads 34:6 of the DRAM linear address */
edac_mc_handle_ce(mci, page, offset_in_page(sec1_add << 4),
sec1_syndrome, row, channel, "e752x CE");
}
static inline void process_ce(struct mem_ctl_info *mci, u16 error_one,
u32 sec1_add, u16 sec1_syndrome, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_process_ce(mci, error_one, sec1_add, sec1_syndrome);
}
static void do_process_ue(struct mem_ctl_info *mci, u16 error_one,
u32 ded_add, u32 scrb_add)
{
u32 error_2b, block_page;
int row;
struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info;
debugf3("%s()\n", __func__);
if (error_one & 0x0202) {
error_2b = ded_add;
/* convert to 4k address */
block_page = error_2b >> (PAGE_SHIFT - 4);
row = pvt->mc_symmetric ?
/* chip select are bits 14 & 13 */
((block_page >> 1) & 3) :
edac_mc_find_csrow_by_page(mci, block_page);
/* e752x mc reads 34:6 of the DRAM linear address */
edac_mc_handle_ue(mci, block_page,
offset_in_page(error_2b << 4),
row, "e752x UE from Read");
}
if (error_one & 0x0404) {
error_2b = scrb_add;
/* convert to 4k address */
block_page = error_2b >> (PAGE_SHIFT - 4);
row = pvt->mc_symmetric ?
/* chip select are bits 14 & 13 */
((block_page >> 1) & 3) :
edac_mc_find_csrow_by_page(mci, block_page);
/* e752x mc reads 34:6 of the DRAM linear address */
edac_mc_handle_ue(mci, block_page,
offset_in_page(error_2b << 4),
row, "e752x UE from Scruber");
}
}
static inline void process_ue(struct mem_ctl_info *mci, u16 error_one,
u32 ded_add, u32 scrb_add, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_process_ue(mci, error_one, ded_add, scrb_add);
}
static inline void process_ue_no_info_wr(struct mem_ctl_info *mci,
int *error_found, int handle_error)
{
*error_found = 1;
if (!handle_error)
return;
debugf3("%s()\n", __func__);
edac_mc_handle_ue_no_info(mci, "e752x UE log memory write");
}
static void do_process_ded_retry(struct mem_ctl_info *mci, u16 error,
u32 retry_add)
{
u32 error_1b, page;
int row;
struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info;
error_1b = retry_add;
page = error_1b >> (PAGE_SHIFT - 4); /* convert the addr to 4k page */
row = pvt->mc_symmetric ? ((page >> 1) & 3) : /* chip select are bits 14 & 13 */
edac_mc_find_csrow_by_page(mci, page);
e752x_mc_printk(mci, KERN_WARNING,
"CE page 0x%lx, row %d : Memory read retry\n",
(long unsigned int)page, row);
}
static inline void process_ded_retry(struct mem_ctl_info *mci, u16 error,
u32 retry_add, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_process_ded_retry(mci, error, retry_add);
}
static inline void process_threshold_ce(struct mem_ctl_info *mci, u16 error,
int *error_found, int handle_error)
{
*error_found = 1;
if (handle_error)
e752x_mc_printk(mci, KERN_WARNING, "Memory threshold CE\n");
}
static char *global_message[11] = {
"PCI Express C1", "PCI Express C", "PCI Express B1",
"PCI Express B", "PCI Express A1", "PCI Express A",
"DMA Controler", "HUB Interface", "System Bus",
"DRAM Controler", "Internal Buffer"
};
static char *fatal_message[2] = { "Non-Fatal ", "Fatal " };
static void do_global_error(int fatal, u32 errors)
{
int i;
for (i = 0; i < 11; i++) {
if (errors & (1 << i))
e752x_printk(KERN_WARNING, "%sError %s\n",
fatal_message[fatal], global_message[i]);
}
}
static inline void global_error(int fatal, u32 errors, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_global_error(fatal, errors);
}
static char *hub_message[7] = {
"HI Address or Command Parity", "HI Illegal Access",
"HI Internal Parity", "Out of Range Access",
"HI Data Parity", "Enhanced Config Access",
"Hub Interface Target Abort"
};
static void do_hub_error(int fatal, u8 errors)
{
int i;
for (i = 0; i < 7; i++) {
if (errors & (1 << i))
e752x_printk(KERN_WARNING, "%sError %s\n",
fatal_message[fatal], hub_message[i]);
}
}
static inline void hub_error(int fatal, u8 errors, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_hub_error(fatal, errors);
}
static char *membuf_message[4] = {
"Internal PMWB to DRAM parity",
"Internal PMWB to System Bus Parity",
"Internal System Bus or IO to PMWB Parity",
"Internal DRAM to PMWB Parity"
};
static void do_membuf_error(u8 errors)
{
int i;
for (i = 0; i < 4; i++) {
if (errors & (1 << i))
e752x_printk(KERN_WARNING, "Non-Fatal Error %s\n",
membuf_message[i]);
}
}
static inline void membuf_error(u8 errors, int *error_found, int handle_error)
{
*error_found = 1;
if (handle_error)
do_membuf_error(errors);
}
static char *sysbus_message[10] = {
"Addr or Request Parity",
"Data Strobe Glitch",
"Addr Strobe Glitch",
"Data Parity",
"Addr Above TOM",
"Non DRAM Lock Error",
"MCERR", "BINIT",
"Memory Parity",
"IO Subsystem Parity"
};
static void do_sysbus_error(int fatal, u32 errors)
{
int i;
for (i = 0; i < 10; i++) {
if (errors & (1 << i))
e752x_printk(KERN_WARNING, "%sError System Bus %s\n",
fatal_message[fatal], sysbus_message[i]);
}
}
static inline void sysbus_error(int fatal, u32 errors, int *error_found,
int handle_error)
{
*error_found = 1;
if (handle_error)
do_sysbus_error(fatal, errors);
}
static void e752x_check_hub_interface(struct e752x_error_info *info,
int *error_found, int handle_error)
{
u8 stat8;
//pci_read_config_byte(dev,E752X_HI_FERR,&stat8);
stat8 = info->hi_ferr;
if (stat8 & 0x7f) { /* Error, so process */
stat8 &= 0x7f;
if (stat8 & 0x2b)
hub_error(1, stat8 & 0x2b, error_found, handle_error);
if (stat8 & 0x54)
hub_error(0, stat8 & 0x54, error_found, handle_error);
}
//pci_read_config_byte(dev,E752X_HI_NERR,&stat8);
stat8 = info->hi_nerr;
if (stat8 & 0x7f) { /* Error, so process */
stat8 &= 0x7f;
if (stat8 & 0x2b)
hub_error(1, stat8 & 0x2b, error_found, handle_error);
if (stat8 & 0x54)
hub_error(0, stat8 & 0x54, error_found, handle_error);
}
}
static void e752x_check_sysbus(struct e752x_error_info *info,
int *error_found, int handle_error)
{
u32 stat32, error32;
//pci_read_config_dword(dev,E752X_SYSBUS_FERR,&stat32);
stat32 = info->sysbus_ferr + (info->sysbus_nerr << 16);
if (stat32 == 0)
return; /* no errors */
error32 = (stat32 >> 16) & 0x3ff;
stat32 = stat32 & 0x3ff;
if (stat32 & 0x087)
sysbus_error(1, stat32 & 0x087, error_found, handle_error);
if (stat32 & 0x378)
sysbus_error(0, stat32 & 0x378, error_found, handle_error);
if (error32 & 0x087)
sysbus_error(1, error32 & 0x087, error_found, handle_error);
if (error32 & 0x378)
sysbus_error(0, error32 & 0x378, error_found, handle_error);
}
static void e752x_check_membuf(struct e752x_error_info *info,
int *error_found, int handle_error)
{
u8 stat8;
stat8 = info->buf_ferr;
if (stat8 & 0x0f) { /* Error, so process */
stat8 &= 0x0f;
membuf_error(stat8, error_found, handle_error);
}
stat8 = info->buf_nerr;
if (stat8 & 0x0f) { /* Error, so process */
stat8 &= 0x0f;
membuf_error(stat8, error_found, handle_error);
}
}
static void e752x_check_dram(struct mem_ctl_info *mci,
struct e752x_error_info *info, int *error_found,
int handle_error)
{
u16 error_one, error_next;
error_one = info->dram_ferr;
error_next = info->dram_nerr;
/* decode and report errors */
if (error_one & 0x0101) /* check first error correctable */
process_ce(mci, error_one, info->dram_sec1_add,
info->dram_sec1_syndrome, error_found, handle_error);
if (error_next & 0x0101) /* check next error correctable */
process_ce(mci, error_next, info->dram_sec2_add,
info->dram_sec2_syndrome, error_found, handle_error);
if (error_one & 0x4040)
process_ue_no_info_wr(mci, error_found, handle_error);
if (error_next & 0x4040)
process_ue_no_info_wr(mci, error_found, handle_error);
if (error_one & 0x2020)
process_ded_retry(mci, error_one, info->dram_retr_add,
error_found, handle_error);
if (error_next & 0x2020)
process_ded_retry(mci, error_next, info->dram_retr_add,
error_found, handle_error);
if (error_one & 0x0808)
process_threshold_ce(mci, error_one, error_found, handle_error);
if (error_next & 0x0808)
process_threshold_ce(mci, error_next, error_found,
handle_error);
if (error_one & 0x0606)
process_ue(mci, error_one, info->dram_ded_add,
info->dram_scrb_add, error_found, handle_error);
if (error_next & 0x0606)
process_ue(mci, error_next, info->dram_ded_add,
info->dram_scrb_add, error_found, handle_error);
}
static void e752x_get_error_info(struct mem_ctl_info *mci,
struct e752x_error_info *info)
{
struct pci_dev *dev;
struct e752x_pvt *pvt;
memset(info, 0, sizeof(*info));
pvt = (struct e752x_pvt *)mci->pvt_info;
dev = pvt->dev_d0f1;
pci_read_config_dword(dev, E752X_FERR_GLOBAL, &info->ferr_global);
if (info->ferr_global) {
pci_read_config_byte(dev, E752X_HI_FERR, &info->hi_ferr);
pci_read_config_word(dev, E752X_SYSBUS_FERR,
&info->sysbus_ferr);
pci_read_config_byte(dev, E752X_BUF_FERR, &info->buf_ferr);
pci_read_config_word(dev, E752X_DRAM_FERR, &info->dram_ferr);
pci_read_config_dword(dev, E752X_DRAM_SEC1_ADD,
&info->dram_sec1_add);
pci_read_config_word(dev, E752X_DRAM_SEC1_SYNDROME,
&info->dram_sec1_syndrome);
pci_read_config_dword(dev, E752X_DRAM_DED_ADD,
&info->dram_ded_add);
pci_read_config_dword(dev, E752X_DRAM_SCRB_ADD,
&info->dram_scrb_add);
pci_read_config_dword(dev, E752X_DRAM_RETR_ADD,
&info->dram_retr_add);
if (info->hi_ferr & 0x7f)
pci_write_config_byte(dev, E752X_HI_FERR,
info->hi_ferr);
if (info->sysbus_ferr)
pci_write_config_word(dev, E752X_SYSBUS_FERR,
info->sysbus_ferr);
if (info->buf_ferr & 0x0f)
pci_write_config_byte(dev, E752X_BUF_FERR,
info->buf_ferr);
if (info->dram_ferr)
pci_write_bits16(pvt->bridge_ck, E752X_DRAM_FERR,
info->dram_ferr, info->dram_ferr);
pci_write_config_dword(dev, E752X_FERR_GLOBAL,
info->ferr_global);
}
pci_read_config_dword(dev, E752X_NERR_GLOBAL, &info->nerr_global);
if (info->nerr_global) {
pci_read_config_byte(dev, E752X_HI_NERR, &info->hi_nerr);
pci_read_config_word(dev, E752X_SYSBUS_NERR,
&info->sysbus_nerr);
pci_read_config_byte(dev, E752X_BUF_NERR, &info->buf_nerr);
pci_read_config_word(dev, E752X_DRAM_NERR, &info->dram_nerr);
pci_read_config_dword(dev, E752X_DRAM_SEC2_ADD,
&info->dram_sec2_add);
pci_read_config_word(dev, E752X_DRAM_SEC2_SYNDROME,
&info->dram_sec2_syndrome);
if (info->hi_nerr & 0x7f)
pci_write_config_byte(dev, E752X_HI_NERR,
info->hi_nerr);
if (info->sysbus_nerr)
pci_write_config_word(dev, E752X_SYSBUS_NERR,
info->sysbus_nerr);
if (info->buf_nerr & 0x0f)
pci_write_config_byte(dev, E752X_BUF_NERR,
info->buf_nerr);
if (info->dram_nerr)
pci_write_bits16(pvt->bridge_ck, E752X_DRAM_NERR,
info->dram_nerr, info->dram_nerr);
pci_write_config_dword(dev, E752X_NERR_GLOBAL,
info->nerr_global);
}
}
static int e752x_process_error_info(struct mem_ctl_info *mci,
struct e752x_error_info *info,
int handle_errors)
{
u32 error32, stat32;
int error_found;
error_found = 0;
error32 = (info->ferr_global >> 18) & 0x3ff;
stat32 = (info->ferr_global >> 4) & 0x7ff;
if (error32)
global_error(1, error32, &error_found, handle_errors);
if (stat32)
global_error(0, stat32, &error_found, handle_errors);
error32 = (info->nerr_global >> 18) & 0x3ff;
stat32 = (info->nerr_global >> 4) & 0x7ff;
if (error32)
global_error(1, error32, &error_found, handle_errors);
if (stat32)
global_error(0, stat32, &error_found, handle_errors);
e752x_check_hub_interface(info, &error_found, handle_errors);
e752x_check_sysbus(info, &error_found, handle_errors);
e752x_check_membuf(info, &error_found, handle_errors);
e752x_check_dram(mci, info, &error_found, handle_errors);
return error_found;
}
static void e752x_check(struct mem_ctl_info *mci)
{
struct e752x_error_info info;
debugf3("%s()\n", __func__);
e752x_get_error_info(mci, &info);
e752x_process_error_info(mci, &info, 1);
}
/* Return 1 if dual channel mode is active. Else return 0. */
static inline int dual_channel_active(u16 ddrcsr)
{
return (((ddrcsr >> 12) & 3) == 3);
}
static void e752x_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
u16 ddrcsr)
{
struct csrow_info *csrow;
unsigned long last_cumul_size;
int index, mem_dev, drc_chan;
int drc_drbg; /* DRB granularity 0=64mb, 1=128mb */
int drc_ddim; /* DRAM Data Integrity Mode 0=none, 2=edac */
u8 value;
u32 dra, drc, cumul_size;
dra = 0;
for (index = 0; index < 4; index++) {
u8 dra_reg;
pci_read_config_byte(pdev, E752X_DRA + index, &dra_reg);
dra |= dra_reg << (index * 8);
}
pci_read_config_dword(pdev, E752X_DRC, &drc);
drc_chan = dual_channel_active(ddrcsr);
drc_drbg = drc_chan + 1; /* 128 in dual mode, 64 in single */
drc_ddim = (drc >> 20) & 0x3;
/* The dram row boundary (DRB) reg values are boundary address for
* each DRAM row with a granularity of 64 or 128MB (single/dual
* channel operation). DRB regs are cumulative; therefore DRB7 will
* contain the total memory contained in all eight rows.
*/
for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) {
/* mem_dev 0=x8, 1=x4 */
mem_dev = (dra >> (index * 4 + 2)) & 0x3;
csrow = &mci->csrows[index];
mem_dev = (mem_dev == 2);
pci_read_config_byte(pdev, E752X_DRB + index, &value);
/* convert a 128 or 64 MiB DRB to a page size. */
cumul_size = value << (25 + drc_drbg - PAGE_SHIFT);
debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index,
cumul_size);
if (cumul_size == last_cumul_size)
continue; /* not populated */
csrow->first_page = last_cumul_size;
csrow->last_page = cumul_size - 1;
csrow->nr_pages = cumul_size - last_cumul_size;
last_cumul_size = cumul_size;
csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */
csrow->mtype = MEM_RDDR; /* only one type supported */
csrow->dtype = mem_dev ? DEV_X4 : DEV_X8;
/*
* if single channel or x8 devices then SECDED
* if dual channel and x4 then S4ECD4ED
*/
if (drc_ddim) {
if (drc_chan && mem_dev) {
csrow->edac_mode = EDAC_S4ECD4ED;
mci->edac_cap |= EDAC_FLAG_S4ECD4ED;
} else {
csrow->edac_mode = EDAC_SECDED;
mci->edac_cap |= EDAC_FLAG_SECDED;
}
} else
csrow->edac_mode = EDAC_NONE;
}
}
static void e752x_init_mem_map_table(struct pci_dev *pdev,
struct e752x_pvt *pvt)
{
int index;
u8 value, last, row, stat8;
last = 0;
row = 0;
for (index = 0; index < 8; index += 2) {
pci_read_config_byte(pdev, E752X_DRB + index, &value);
/* test if there is a dimm in this slot */
if (value == last) {
/* no dimm in the slot, so flag it as empty */
pvt->map[index] = 0xff;
pvt->map[index + 1] = 0xff;
} else { /* there is a dimm in the slot */
pvt->map[index] = row;
row++;
last = value;
/* test the next value to see if the dimm is double
* sided
*/
pci_read_config_byte(pdev, E752X_DRB + index + 1,
&value);
/* the dimm is single sided, so flag as empty */
/* this is a double sided dimm to save the next row #*/
pvt->map[index + 1] = (value == last) ? 0xff : row;
row++;
last = value;
}
}
/* set the map type. 1 = normal, 0 = reversed */
pci_read_config_byte(pdev, E752X_DRM, &stat8);
pvt->map_type = ((stat8 & 0x0f) > ((stat8 >> 4) & 0x0f));
}
/* Return 0 on success or 1 on failure. */
static int e752x_get_devs(struct pci_dev *pdev, int dev_idx,
struct e752x_pvt *pvt)
{
struct pci_dev *dev;
pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
pvt->dev_info->err_dev, pvt->bridge_ck);
if (pvt->bridge_ck == NULL)
pvt->bridge_ck = pci_scan_single_device(pdev->bus,
PCI_DEVFN(0, 1));
if (pvt->bridge_ck == NULL) {
e752x_printk(KERN_ERR, "error reporting device not found:"
"vendor %x device 0x%x (broken BIOS?)\n",
PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].err_dev);
return 1;
}
dev = pci_get_device(PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].ctl_dev,
NULL);
if (dev == NULL)
goto fail;
pvt->dev_d0f0 = dev;
pvt->dev_d0f1 = pci_dev_get(pvt->bridge_ck);
return 0;
fail:
pci_dev_put(pvt->bridge_ck);
return 1;
}
static void e752x_init_error_reporting_regs(struct e752x_pvt *pvt)
{
struct pci_dev *dev;
dev = pvt->dev_d0f1;
/* Turn off error disable & SMI in case the BIOS turned it on */
pci_write_config_byte(dev, E752X_HI_ERRMASK, 0x00);
pci_write_config_byte(dev, E752X_HI_SMICMD, 0x00);
pci_write_config_word(dev, E752X_SYSBUS_ERRMASK, 0x00);
pci_write_config_word(dev, E752X_SYSBUS_SMICMD, 0x00);
pci_write_config_byte(dev, E752X_BUF_ERRMASK, 0x00);
pci_write_config_byte(dev, E752X_BUF_SMICMD, 0x00);
pci_write_config_byte(dev, E752X_DRAM_ERRMASK, 0x00);
pci_write_config_byte(dev, E752X_DRAM_SMICMD, 0x00);
}
static int e752x_probe1(struct pci_dev *pdev, int dev_idx)
{
u16 pci_data;
u8 stat8;
struct mem_ctl_info *mci;
struct e752x_pvt *pvt;
u16 ddrcsr;
int drc_chan; /* Number of channels 0=1chan,1=2chan */
struct e752x_error_info discard;
debugf0("%s(): mci\n", __func__);
debugf0("Starting Probe1\n");
/* make sure error reporting method is sane */
switch (edac_op_state) {
case EDAC_OPSTATE_POLL:
case EDAC_OPSTATE_NMI:
break;
default:
edac_op_state = EDAC_OPSTATE_POLL;
break;
}
/* check to see if device 0 function 1 is enabled; if it isn't, we
* assume the BIOS has reserved it for a reason and is expecting
* exclusive access, we take care not to violate that assumption and
* fail the probe. */
pci_read_config_byte(pdev, E752X_DEVPRES1, &stat8);
if (!force_function_unhide && !(stat8 & (1 << 5))) {
printk(KERN_INFO "Contact your BIOS vendor to see if the "
"E752x error registers can be safely un-hidden\n");
return -ENOMEM;
}
stat8 |= (1 << 5);
pci_write_config_byte(pdev, E752X_DEVPRES1, stat8);
pci_read_config_word(pdev, E752X_DDRCSR, &ddrcsr);
/* FIXME: should check >>12 or 0xf, true for all? */
/* Dual channel = 1, Single channel = 0 */
drc_chan = dual_channel_active(ddrcsr);
mci = edac_mc_alloc(sizeof(*pvt), E752X_NR_CSROWS, drc_chan + 1);
if (mci == NULL) {
return -ENOMEM;
}
debugf3("%s(): init mci\n", __func__);
mci->mtype_cap = MEM_FLAG_RDDR;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
EDAC_FLAG_S4ECD4ED;
/* FIXME - what if different memory types are in different csrows? */
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = E752X_REVISION;
mci->dev = &pdev->dev;
debugf3("%s(): init pvt\n", __func__);
pvt = (struct e752x_pvt *)mci->pvt_info;
pvt->dev_info = &e752x_devs[dev_idx];
pvt->mc_symmetric = ((ddrcsr & 0x10) != 0);
if (e752x_get_devs(pdev, dev_idx, pvt)) {
edac_mc_free(mci);
return -ENODEV;
}
debugf3("%s(): more mci init\n", __func__);
mci->ctl_name = pvt->dev_info->ctl_name;
mci->dev_name = pci_name(pdev);
mci->edac_check = e752x_check;
mci->ctl_page_to_phys = ctl_page_to_phys;
e752x_init_csrows(mci, pdev, ddrcsr);
e752x_init_mem_map_table(pdev, pvt);
/* set the map type. 1 = normal, 0 = reversed */
pci_read_config_byte(pdev, E752X_DRM, &stat8);
pvt->map_type = ((stat8 & 0x0f) > ((stat8 >> 4) & 0x0f));
mci->edac_cap |= EDAC_FLAG_NONE;
debugf3("%s(): tolm, remapbase, remaplimit\n", __func__);
/* load the top of low memory, remap base, and remap limit vars */
pci_read_config_word(pdev, E752X_TOLM, &pci_data);
pvt->tolm = ((u32) pci_data) << 4;
pci_read_config_word(pdev, E752X_REMAPBASE, &pci_data);
pvt->remapbase = ((u32) pci_data) << 14;
pci_read_config_word(pdev, E752X_REMAPLIMIT, &pci_data);
pvt->remaplimit = ((u32) pci_data) << 14;
e752x_printk(KERN_INFO,
"tolm = %x, remapbase = %x, remaplimit = %x\n",
pvt->tolm, pvt->remapbase, pvt->remaplimit);
/* Here we assume that we will never see multiple instances of this
* type of memory controller. The ID is therefore hardcoded to 0.
*/
if (edac_mc_add_mc(mci, 0)) {
debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
goto fail;
}
e752x_init_error_reporting_regs(pvt);
e752x_get_error_info(mci, &discard); /* clear other MCH errors */
/* allocating generic PCI control info */
e752x_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!e752x_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n", __func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
/* get this far and it's successful */
debugf3("%s(): success\n", __func__);
return 0;
fail:
pci_dev_put(pvt->dev_d0f0);
pci_dev_put(pvt->dev_d0f1);
pci_dev_put(pvt->bridge_ck);
edac_mc_free(mci);
return -ENODEV;
}
/* returns count (>= 0), or negative on error */
static int __devinit e752x_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
debugf0("%s()\n", __func__);
/* wake up and enable device */
if (pci_enable_device(pdev) < 0)
return -EIO;
return e752x_probe1(pdev, ent->driver_data);
}
static void __devexit e752x_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
struct e752x_pvt *pvt;
debugf0("%s()\n", __func__);
if (e752x_pci)
edac_pci_release_generic_ctl(e752x_pci);
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
return;
pvt = (struct e752x_pvt *)mci->pvt_info;
pci_dev_put(pvt->dev_d0f0);
pci_dev_put(pvt->dev_d0f1);
pci_dev_put(pvt->bridge_ck);
edac_mc_free(mci);
}
static const struct pci_device_id e752x_pci_tbl[] __devinitdata = {
{
PCI_VEND_DEV(INTEL, 7520_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
E7520},
{
PCI_VEND_DEV(INTEL, 7525_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
E7525},
{
PCI_VEND_DEV(INTEL, 7320_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
E7320},
{
0,
} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, e752x_pci_tbl);
static struct pci_driver e752x_driver = {
.name = EDAC_MOD_STR,
.probe = e752x_init_one,
.remove = __devexit_p(e752x_remove_one),
.id_table = e752x_pci_tbl,
};
static int __init e752x_init(void)
{
int pci_rc;
debugf3("%s()\n", __func__);
pci_rc = pci_register_driver(&e752x_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
static void __exit e752x_exit(void)
{
debugf3("%s()\n", __func__);
pci_unregister_driver(&e752x_driver);
}
module_init(e752x_init);
module_exit(e752x_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Linux Networx (http://lnxi.com) Tom Zimmerman\n");
MODULE_DESCRIPTION("MC support for Intel e752x memory controllers");
module_param(force_function_unhide, int, 0444);
MODULE_PARM_DESC(force_function_unhide, "if BIOS sets Dev0:Fun1 up as hidden:"
" 1=force unhide and hope BIOS doesn't fight driver for Dev0:Fun1 access");
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");