linux-next/drivers/gpu/drm/drm_file.c

795 lines
22 KiB
C
Raw Normal View History

/*
* \author Rickard E. (Rik) Faith <faith@valinux.com>
* \author Daryll Strauss <daryll@valinux.com>
* \author Gareth Hughes <gareth@valinux.com>
*/
/*
* Created: Mon Jan 4 08:58:31 1999 by faith@valinux.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/poll.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/module.h>
#include <drm/drm_client.h>
#include <drm/drm_file.h>
#include <drm/drmP.h>
#include "drm_legacy.h"
#include "drm_internal.h"
#include "drm_crtc_internal.h"
/* from BKL pushdown */
DEFINE_MUTEX(drm_global_mutex);
/**
* DOC: file operations
*
* Drivers must define the file operations structure that forms the DRM
* userspace API entry point, even though most of those operations are
* implemented in the DRM core. The resulting &struct file_operations must be
* stored in the &drm_driver.fops field. The mandatory functions are drm_open(),
* drm_read(), drm_ioctl() and drm_compat_ioctl() if CONFIG_COMPAT is enabled
* Note that drm_compat_ioctl will be NULL if CONFIG_COMPAT=n, so there's no
* need to sprinkle #ifdef into the code. Drivers which implement private ioctls
* that require 32/64 bit compatibility support must provide their own
* &file_operations.compat_ioctl handler that processes private ioctls and calls
* drm_compat_ioctl() for core ioctls.
*
* In addition drm_read() and drm_poll() provide support for DRM events. DRM
* events are a generic and extensible means to send asynchronous events to
* userspace through the file descriptor. They are used to send vblank event and
* page flip completions by the KMS API. But drivers can also use it for their
* own needs, e.g. to signal completion of rendering.
*
* For the driver-side event interface see drm_event_reserve_init() and
* drm_send_event() as the main starting points.
*
* The memory mapping implementation will vary depending on how the driver
* manages memory. Legacy drivers will use the deprecated drm_legacy_mmap()
* function, modern drivers should use one of the provided memory-manager
* specific implementations. For GEM-based drivers this is drm_gem_mmap(), and
* for drivers which use the CMA GEM helpers it's drm_gem_cma_mmap().
*
* No other file operations are supported by the DRM userspace API. Overall the
* following is an example &file_operations structure::
*
* static const example_drm_fops = {
* .owner = THIS_MODULE,
* .open = drm_open,
* .release = drm_release,
* .unlocked_ioctl = drm_ioctl,
* .compat_ioctl = drm_compat_ioctl, // NULL if CONFIG_COMPAT=n
* .poll = drm_poll,
* .read = drm_read,
* .llseek = no_llseek,
* .mmap = drm_gem_mmap,
* };
*
* For plain GEM based drivers there is the DEFINE_DRM_GEM_FOPS() macro, and for
* CMA based drivers there is the DEFINE_DRM_GEM_CMA_FOPS() macro to make this
* simpler.
*
* The driver's &file_operations must be stored in &drm_driver.fops.
*
* For driver-private IOCTL handling see the more detailed discussion in
* :ref:`IOCTL support in the userland interfaces chapter<drm_driver_ioctl>`.
*/
static int drm_open_helper(struct file *filp, struct drm_minor *minor);
/**
* drm_file_alloc - allocate file context
* @minor: minor to allocate on
*
* This allocates a new DRM file context. It is not linked into any context and
* can be used by the caller freely. Note that the context keeps a pointer to
* @minor, so it must be freed before @minor is.
*
* RETURNS:
* Pointer to newly allocated context, ERR_PTR on failure.
*/
struct drm_file *drm_file_alloc(struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct drm_file *file;
int ret;
file = kzalloc(sizeof(*file), GFP_KERNEL);
if (!file)
return ERR_PTR(-ENOMEM);
file->pid = get_pid(task_pid(current));
file->minor = minor;
/* for compatibility root is always authenticated */
file->authenticated = capable(CAP_SYS_ADMIN);
file->lock_count = 0;
INIT_LIST_HEAD(&file->lhead);
INIT_LIST_HEAD(&file->fbs);
mutex_init(&file->fbs_lock);
INIT_LIST_HEAD(&file->blobs);
INIT_LIST_HEAD(&file->pending_event_list);
INIT_LIST_HEAD(&file->event_list);
init_waitqueue_head(&file->event_wait);
file->event_space = 4096; /* set aside 4k for event buffer */
mutex_init(&file->event_read_lock);
if (drm_core_check_feature(dev, DRIVER_GEM))
drm_gem_open(dev, file);
if (drm_core_check_feature(dev, DRIVER_SYNCOBJ))
drm_syncobj_open(file);
if (drm_core_check_feature(dev, DRIVER_PRIME))
drm_prime_init_file_private(&file->prime);
if (dev->driver->open) {
ret = dev->driver->open(dev, file);
if (ret < 0)
goto out_prime_destroy;
}
return file;
out_prime_destroy:
if (drm_core_check_feature(dev, DRIVER_PRIME))
drm_prime_destroy_file_private(&file->prime);
if (drm_core_check_feature(dev, DRIVER_SYNCOBJ))
drm_syncobj_release(file);
if (drm_core_check_feature(dev, DRIVER_GEM))
drm_gem_release(dev, file);
put_pid(file->pid);
kfree(file);
return ERR_PTR(ret);
}
static void drm_events_release(struct drm_file *file_priv)
{
struct drm_device *dev = file_priv->minor->dev;
struct drm_pending_event *e, *et;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
/* Unlink pending events */
list_for_each_entry_safe(e, et, &file_priv->pending_event_list,
pending_link) {
list_del(&e->pending_link);
e->file_priv = NULL;
}
/* Remove unconsumed events */
list_for_each_entry_safe(e, et, &file_priv->event_list, link) {
list_del(&e->link);
kfree(e);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
/**
* drm_file_free - free file context
* @file: context to free, or NULL
*
* This destroys and deallocates a DRM file context previously allocated via
* drm_file_alloc(). The caller must make sure to unlink it from any contexts
* before calling this.
*
* If NULL is passed, this is a no-op.
*
* RETURNS:
* 0 on success, or error code on failure.
*/
void drm_file_free(struct drm_file *file)
{
struct drm_device *dev;
if (!file)
return;
dev = file->minor->dev;
DRM_DEBUG("pid = %d, device = 0x%lx, open_count = %d\n",
task_pid_nr(current),
(long)old_encode_dev(file->minor->kdev->devt),
dev->open_count);
if (drm_core_check_feature(dev, DRIVER_LEGACY) &&
dev->driver->preclose)
dev->driver->preclose(dev, file);
if (drm_core_check_feature(dev, DRIVER_LEGACY))
drm_legacy_lock_release(dev, file->filp);
if (drm_core_check_feature(dev, DRIVER_HAVE_DMA))
drm_legacy_reclaim_buffers(dev, file);
drm_events_release(file);
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
drm_fb_release(file);
drm_property_destroy_user_blobs(dev, file);
}
if (drm_core_check_feature(dev, DRIVER_SYNCOBJ))
drm_syncobj_release(file);
if (drm_core_check_feature(dev, DRIVER_GEM))
drm_gem_release(dev, file);
drm_legacy_ctxbitmap_flush(dev, file);
if (drm_is_primary_client(file))
drm_master_release(file);
if (dev->driver->postclose)
dev->driver->postclose(dev, file);
if (drm_core_check_feature(dev, DRIVER_PRIME))
drm_prime_destroy_file_private(&file->prime);
WARN_ON(!list_empty(&file->event_list));
put_pid(file->pid);
kfree(file);
}
static int drm_setup(struct drm_device * dev)
{
int ret;
if (dev->driver->firstopen &&
drm_core_check_feature(dev, DRIVER_LEGACY)) {
ret = dev->driver->firstopen(dev);
if (ret != 0)
return ret;
}
ret = drm_legacy_dma_setup(dev);
if (ret < 0)
return ret;
DRM_DEBUG("\n");
return 0;
}
/**
* drm_open - open method for DRM file
* @inode: device inode
* @filp: file pointer.
*
* This function must be used by drivers as their &file_operations.open method.
* It looks up the correct DRM device and instantiates all the per-file
* resources for it. It also calls the &drm_driver.open driver callback.
*
* RETURNS:
*
* 0 on success or negative errno value on falure.
*/
int drm_open(struct inode *inode, struct file *filp)
{
struct drm_device *dev;
struct drm_minor *minor;
int retcode;
int need_setup = 0;
minor = drm_minor_acquire(iminor(inode));
if (IS_ERR(minor))
return PTR_ERR(minor);
dev = minor->dev;
if (!dev->open_count++)
need_setup = 1;
/* share address_space across all char-devs of a single device */
filp->f_mapping = dev->anon_inode->i_mapping;
retcode = drm_open_helper(filp, minor);
if (retcode)
goto err_undo;
if (need_setup) {
retcode = drm_setup(dev);
if (retcode)
goto err_undo;
}
return 0;
err_undo:
dev->open_count--;
drm_minor_release(minor);
return retcode;
}
EXPORT_SYMBOL(drm_open);
/*
* Check whether DRI will run on this CPU.
*
* \return non-zero if the DRI will run on this CPU, or zero otherwise.
*/
static int drm_cpu_valid(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
return 0; /* No cmpxchg before v9 sparc. */
#endif
return 1;
}
/*
* Called whenever a process opens /dev/drm.
*
* \param filp file pointer.
* \param minor acquired minor-object.
* \return zero on success or a negative number on failure.
*
* Creates and initializes a drm_file structure for the file private data in \p
* filp and add it into the double linked list in \p dev.
*/
static int drm_open_helper(struct file *filp, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct drm_file *priv;
int ret;
if (filp->f_flags & O_EXCL)
return -EBUSY; /* No exclusive opens */
if (!drm_cpu_valid())
return -EINVAL;
if (dev->switch_power_state != DRM_SWITCH_POWER_ON && dev->switch_power_state != DRM_SWITCH_POWER_DYNAMIC_OFF)
return -EINVAL;
DRM_DEBUG("pid = %d, minor = %d\n", task_pid_nr(current), minor->index);
priv = drm_file_alloc(minor);
if (IS_ERR(priv))
return PTR_ERR(priv);
if (drm_is_primary_client(priv)) {
ret = drm_master_open(priv);
if (ret) {
drm_file_free(priv);
return ret;
}
}
filp->private_data = priv;
filp->f_mode |= FMODE_UNSIGNED_OFFSET;
priv->filp = filp;
mutex_lock(&dev->filelist_mutex);
list_add(&priv->lhead, &dev->filelist);
mutex_unlock(&dev->filelist_mutex);
#ifdef __alpha__
/*
* Default the hose
*/
if (!dev->hose) {
struct pci_dev *pci_dev;
pci_dev = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, NULL);
if (pci_dev) {
dev->hose = pci_dev->sysdata;
pci_dev_put(pci_dev);
}
if (!dev->hose) {
struct pci_bus *b = list_entry(pci_root_buses.next,
struct pci_bus, node);
if (b)
dev->hose = b->sysdata;
}
}
#endif
return 0;
}
static void drm_legacy_dev_reinit(struct drm_device *dev)
{
if (dev->irq_enabled)
drm_irq_uninstall(dev);
mutex_lock(&dev->struct_mutex);
drm_legacy_agp_clear(dev);
drm_legacy_sg_cleanup(dev);
drm_legacy_vma_flush(dev);
drm_legacy_dma_takedown(dev);
mutex_unlock(&dev->struct_mutex);
dev->sigdata.lock = NULL;
dev->context_flag = 0;
dev->last_context = 0;
dev->if_version = 0;
DRM_DEBUG("lastclose completed\n");
}
void drm_lastclose(struct drm_device * dev)
{
DRM_DEBUG("\n");
if (dev->driver->lastclose)
dev->driver->lastclose(dev);
DRM_DEBUG("driver lastclose completed\n");
if (drm_core_check_feature(dev, DRIVER_LEGACY))
drm_legacy_dev_reinit(dev);
drm_client_dev_restore(dev);
}
/**
* drm_release - release method for DRM file
* @inode: device inode
* @filp: file pointer.
*
* This function must be used by drivers as their &file_operations.release
* method. It frees any resources associated with the open file, and calls the
* &drm_driver.postclose driver callback. If this is the last open file for the
* DRM device also proceeds to call the &drm_driver.lastclose driver callback.
*
* RETURNS:
*
* Always succeeds and returns 0.
*/
int drm_release(struct inode *inode, struct file *filp)
{
struct drm_file *file_priv = filp->private_data;
struct drm_minor *minor = file_priv->minor;
struct drm_device *dev = minor->dev;
mutex_lock(&drm_global_mutex);
DRM_DEBUG("open_count = %d\n", dev->open_count);
mutex_lock(&dev->filelist_mutex);
drm: Unlink dead file_priv from list of active files first In order to prevent external observers walking the list of open DRM files from seeing an invalid drm_file_private in the process of being torndown, the first operation we need to take is to unlink the drm_file_private from that list. general protection fault: 0000 [#1] PREEMPT SMP Modules linked in: i915 i2c_algo_bit drm_kms_helper drm lpc_ich mfd_core nls_iso8859_1 i2c_hid video hid_generic usbhid hid e1000e ahci ptp libahci pps_core CPU: 3 PID: 8220 Comm: cat Not tainted 3.16.0-rc6+ #4 Hardware name: Intel Corporation Shark Bay Client platform/WhiteTip Mountain 1, BIOS HSWLPTU1.86C.0119.R00.1303230105 03/23/2013 task: ffff8800219642c0 ti: ffff880047024000 task.ti: ffff880047024000 RIP: 0010:[<ffffffffa0137c70>] [<ffffffffa0137c70>] per_file_stats+0x110/0x160 [i915] RSP: 0018:ffff880047027d48 EFLAGS: 00010246 RAX: 6b6b6b6b6b6b6b6b RBX: ffff880047027e30 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff88003a05cd00 RBP: ffff880047027d58 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8800219642c0 R11: 0000000000000000 R12: ffff88003a05cd00 R13: 0000000000000000 R14: ffff88003a05cd00 R15: ffff880047027d88 FS: 00007f5f73a13740(0000) GS:ffff88014e380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000023ff038 CR3: 0000000021a4b000 CR4: 00000000001407e0 Stack: 0000000000000001 000000000000ffff ffff880047027dc8 ffffffff813438e4 ffff880047027e30 ffffffffa0137b60 ffff880021a8af58 ffff880021a8f1a0 ffff8800a2061fb0 ffff8800a2062048 ffff8800a2061fb0 ffff8800a1e23478 Call Trace: [<ffffffff813438e4>] idr_for_each+0xf4/0x180 [<ffffffffa0137b60>] ? i915_gem_stolen_list_info+0x1f0/0x1f0 [i915] [<ffffffffa013a17a>] i915_gem_object_info+0x5ca/0x6a0 [i915] [<ffffffff81193ec5>] seq_read+0xf5/0x3a0 [<ffffffff8116d950>] vfs_read+0x90/0x150 [<ffffffff8116e509>] SyS_read+0x49/0xb0 [<ffffffff815d8622>] tracesys+0xd0/0xd5 Code: 01 00 00 49 39 84 24 08 01 00 00 74 55 49 8b 84 24 b8 00 00 00 48 01 43 18 31 c0 5b 41 5c 5d c3 0f 1f 00 49 8b 44 24 08 4c 89 e7 <48> 8b 70 28 48 81 c6 48 80 00 00 e8 80 14 01 00 84 c0 74 bc 49 RIP [<ffffffffa0137c70>] per_file_stats+0x110/0x160 [i915] RSP <ffff880047027d48> Reported-by: "Ursulin, Tvrtko" <tvrtko.ursulin@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=81712 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Ursulin, Tvrtko" <tvrtko.ursulin@intel.com> Reviewed-by: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-07-24 14:23:10 +01:00
list_del(&file_priv->lhead);
mutex_unlock(&dev->filelist_mutex);
drm_file_free(file_priv);
if (!--dev->open_count) {
drm_lastclose(dev);
if (drm_dev_is_unplugged(dev))
drm_put_dev(dev);
}
mutex_unlock(&drm_global_mutex);
drm_minor_release(minor);
return 0;
}
EXPORT_SYMBOL(drm_release);
/**
* drm_read - read method for DRM file
* @filp: file pointer
* @buffer: userspace destination pointer for the read
* @count: count in bytes to read
* @offset: offset to read
*
* This function must be used by drivers as their &file_operations.read
* method iff they use DRM events for asynchronous signalling to userspace.
* Since events are used by the KMS API for vblank and page flip completion this
* means all modern display drivers must use it.
*
* @offset is ignored, DRM events are read like a pipe. Therefore drivers also
* must set the &file_operation.llseek to no_llseek(). Polling support is
* provided by drm_poll().
*
* This function will only ever read a full event. Therefore userspace must
* supply a big enough buffer to fit any event to ensure forward progress. Since
* the maximum event space is currently 4K it's recommended to just use that for
* safety.
*
* RETURNS:
*
* Number of bytes read (always aligned to full events, and can be 0) or a
* negative error code on failure.
*/
ssize_t drm_read(struct file *filp, char __user *buffer,
size_t count, loff_t *offset)
{
struct drm_file *file_priv = filp->private_data;
struct drm_device *dev = file_priv->minor->dev;
ssize_t ret;
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00
if (!access_ok(buffer, count))
return -EFAULT;
ret = mutex_lock_interruptible(&file_priv->event_read_lock);
if (ret)
return ret;
for (;;) {
struct drm_pending_event *e = NULL;
spin_lock_irq(&dev->event_lock);
if (!list_empty(&file_priv->event_list)) {
e = list_first_entry(&file_priv->event_list,
struct drm_pending_event, link);
file_priv->event_space += e->event->length;
list_del(&e->link);
}
spin_unlock_irq(&dev->event_lock);
if (e == NULL) {
if (ret)
break;
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
mutex_unlock(&file_priv->event_read_lock);
ret = wait_event_interruptible(file_priv->event_wait,
!list_empty(&file_priv->event_list));
if (ret >= 0)
ret = mutex_lock_interruptible(&file_priv->event_read_lock);
if (ret)
return ret;
} else {
unsigned length = e->event->length;
if (length > count - ret) {
put_back_event:
spin_lock_irq(&dev->event_lock);
file_priv->event_space -= length;
list_add(&e->link, &file_priv->event_list);
spin_unlock_irq(&dev->event_lock);
break;
}
if (copy_to_user(buffer + ret, e->event, length)) {
if (ret == 0)
ret = -EFAULT;
goto put_back_event;
}
ret += length;
kfree(e);
}
}
mutex_unlock(&file_priv->event_read_lock);
return ret;
}
EXPORT_SYMBOL(drm_read);
/**
* drm_poll - poll method for DRM file
* @filp: file pointer
* @wait: poll waiter table
*
* This function must be used by drivers as their &file_operations.read method
* iff they use DRM events for asynchronous signalling to userspace. Since
* events are used by the KMS API for vblank and page flip completion this means
* all modern display drivers must use it.
*
* See also drm_read().
*
* RETURNS:
*
* Mask of POLL flags indicating the current status of the file.
*/
__poll_t drm_poll(struct file *filp, struct poll_table_struct *wait)
{
struct drm_file *file_priv = filp->private_data;
__poll_t mask = 0;
poll_wait(filp, &file_priv->event_wait, wait);
if (!list_empty(&file_priv->event_list))
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
EXPORT_SYMBOL(drm_poll);
/**
* drm_event_reserve_init_locked - init a DRM event and reserve space for it
* @dev: DRM device
* @file_priv: DRM file private data
* @p: tracking structure for the pending event
* @e: actual event data to deliver to userspace
*
* This function prepares the passed in event for eventual delivery. If the event
* doesn't get delivered (because the IOCTL fails later on, before queuing up
* anything) then the even must be cancelled and freed using
* drm_event_cancel_free(). Successfully initialized events should be sent out
* using drm_send_event() or drm_send_event_locked() to signal completion of the
* asynchronous event to userspace.
*
* If callers embedded @p into a larger structure it must be allocated with
* kmalloc and @p must be the first member element.
*
* This is the locked version of drm_event_reserve_init() for callers which
* already hold &drm_device.event_lock.
*
* RETURNS:
*
* 0 on success or a negative error code on failure.
*/
int drm_event_reserve_init_locked(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_pending_event *p,
struct drm_event *e)
{
if (file_priv->event_space < e->length)
return -ENOMEM;
file_priv->event_space -= e->length;
p->event = e;
list_add(&p->pending_link, &file_priv->pending_event_list);
p->file_priv = file_priv;
return 0;
}
EXPORT_SYMBOL(drm_event_reserve_init_locked);
/**
* drm_event_reserve_init - init a DRM event and reserve space for it
* @dev: DRM device
* @file_priv: DRM file private data
* @p: tracking structure for the pending event
* @e: actual event data to deliver to userspace
*
* This function prepares the passed in event for eventual delivery. If the event
* doesn't get delivered (because the IOCTL fails later on, before queuing up
* anything) then the even must be cancelled and freed using
* drm_event_cancel_free(). Successfully initialized events should be sent out
* using drm_send_event() or drm_send_event_locked() to signal completion of the
* asynchronous event to userspace.
*
* If callers embedded @p into a larger structure it must be allocated with
* kmalloc and @p must be the first member element.
*
* Callers which already hold &drm_device.event_lock should use
* drm_event_reserve_init_locked() instead.
*
* RETURNS:
*
* 0 on success or a negative error code on failure.
*/
int drm_event_reserve_init(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_pending_event *p,
struct drm_event *e)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&dev->event_lock, flags);
ret = drm_event_reserve_init_locked(dev, file_priv, p, e);
spin_unlock_irqrestore(&dev->event_lock, flags);
return ret;
}
EXPORT_SYMBOL(drm_event_reserve_init);
/**
* drm_event_cancel_free - free a DRM event and release its space
* @dev: DRM device
* @p: tracking structure for the pending event
*
* This function frees the event @p initialized with drm_event_reserve_init()
* and releases any allocated space. It is used to cancel an event when the
* nonblocking operation could not be submitted and needed to be aborted.
*/
void drm_event_cancel_free(struct drm_device *dev,
struct drm_pending_event *p)
{
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (p->file_priv) {
p->file_priv->event_space += p->event->length;
list_del(&p->pending_link);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
if (p->fence)
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
dma_fence_put(p->fence);
kfree(p);
}
EXPORT_SYMBOL(drm_event_cancel_free);
/**
* drm_send_event_locked - send DRM event to file descriptor
* @dev: DRM device
* @e: DRM event to deliver
*
* This function sends the event @e, initialized with drm_event_reserve_init(),
* to its associated userspace DRM file. Callers must already hold
* &drm_device.event_lock, see drm_send_event() for the unlocked version.
*
* Note that the core will take care of unlinking and disarming events when the
* corresponding DRM file is closed. Drivers need not worry about whether the
* DRM file for this event still exists and can call this function upon
* completion of the asynchronous work unconditionally.
*/
void drm_send_event_locked(struct drm_device *dev, struct drm_pending_event *e)
{
assert_spin_locked(&dev->event_lock);
if (e->completion) {
complete_all(e->completion);
drm: reference count event->completion When writing the generic nonblocking commit code I assumed that through clever lifetime management I can assure that the completion (stored in drm_crtc_commit) only gets freed after it is completed. And that worked. I also wanted to make nonblocking helpers resilient against driver bugs, by having timeouts everywhere. And that worked too. Unfortunately taking boths things together results in oopses :( Well, at least sometimes: What seems to happen is that the drm event hangs around forever stuck in limbo land. The nonblocking helpers eventually time out, move on and release it. Now the bug I tested all this against is drivers that just entirely fail to deliver the vblank events like they should, and in those cases the event is simply leaked. But what seems to happen, at least sometimes, on i915 is that the event is set up correctly, but somohow the vblank fails to fire in time. Which means the event isn't leaked, it's still there waiting for eventually a vblank to fire. That tends to happen when re-enabling the pipe, and then the trap springs and the kernel oopses. The correct fix here is simply to refcount the crtc commit to make sure that the event sticks around even for drivers which only sometimes fail to deliver vblanks for some arbitrary reasons. Since crtc commits are already refcounted that's easy to do. References: https://bugs.freedesktop.org/show_bug.cgi?id=96781 Cc: Jim Rees <rees@umich.edu> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161221102331.31033-1-daniel.vetter@ffwll.ch
2016-12-21 11:23:30 +01:00
e->completion_release(e->completion);
e->completion = NULL;
}
if (e->fence) {
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
dma_fence_signal(e->fence);
dma_fence_put(e->fence);
}
if (!e->file_priv) {
kfree(e);
return;
}
list_del(&e->pending_link);
list_add_tail(&e->link,
&e->file_priv->event_list);
wake_up_interruptible(&e->file_priv->event_wait);
}
EXPORT_SYMBOL(drm_send_event_locked);
/**
* drm_send_event - send DRM event to file descriptor
* @dev: DRM device
* @e: DRM event to deliver
*
* This function sends the event @e, initialized with drm_event_reserve_init(),
* to its associated userspace DRM file. This function acquires
* &drm_device.event_lock, see drm_send_event_locked() for callers which already
* hold this lock.
*
* Note that the core will take care of unlinking and disarming events when the
* corresponding DRM file is closed. Drivers need not worry about whether the
* DRM file for this event still exists and can call this function upon
* completion of the asynchronous work unconditionally.
*/
void drm_send_event(struct drm_device *dev, struct drm_pending_event *e)
{
unsigned long irqflags;
spin_lock_irqsave(&dev->event_lock, irqflags);
drm_send_event_locked(dev, e);
spin_unlock_irqrestore(&dev->event_lock, irqflags);
}
EXPORT_SYMBOL(drm_send_event);