linux-next/drivers/crypto/ccp/sp-dev.c

304 lines
5.9 KiB
C
Raw Normal View History

/*
* AMD Secure Processor driver
*
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
* Author: Brijesh Singh <brijesh.singh@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/spinlock_types.h>
#include <linux/types.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
#include "sp-dev.h"
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_AUTHOR("Gary R Hook <gary.hook@amd.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.1.0");
MODULE_DESCRIPTION("AMD Secure Processor driver");
/* List of SPs, SP count, read-write access lock, and access functions
*
* Lock structure: get sp_unit_lock for reading whenever we need to
* examine the SP list.
*/
static DEFINE_RWLOCK(sp_unit_lock);
static LIST_HEAD(sp_units);
/* Ever-increasing value to produce unique unit numbers */
static atomic_t sp_ordinal;
static void sp_add_device(struct sp_device *sp)
{
unsigned long flags;
write_lock_irqsave(&sp_unit_lock, flags);
list_add_tail(&sp->entry, &sp_units);
write_unlock_irqrestore(&sp_unit_lock, flags);
}
static void sp_del_device(struct sp_device *sp)
{
unsigned long flags;
write_lock_irqsave(&sp_unit_lock, flags);
list_del(&sp->entry);
write_unlock_irqrestore(&sp_unit_lock, flags);
}
static irqreturn_t sp_irq_handler(int irq, void *data)
{
struct sp_device *sp = data;
if (sp->ccp_irq_handler)
sp->ccp_irq_handler(irq, sp->ccp_irq_data);
if (sp->psp_irq_handler)
sp->psp_irq_handler(irq, sp->psp_irq_data);
return IRQ_HANDLED;
}
int sp_request_ccp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data)
{
int ret;
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->psp_vdata) {
/* Need a common routine to manage all interrupts */
sp->ccp_irq_data = data;
sp->ccp_irq_handler = handler;
if (!sp->irq_registered) {
ret = request_irq(sp->ccp_irq, sp_irq_handler, 0,
sp->name, sp);
if (ret)
return ret;
sp->irq_registered = true;
}
} else {
/* Each sub-device can manage it's own interrupt */
ret = request_irq(sp->ccp_irq, handler, 0, name, data);
if (ret)
return ret;
}
return 0;
}
int sp_request_psp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data)
{
int ret;
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->ccp_vdata) {
/* Need a common routine to manage all interrupts */
sp->psp_irq_data = data;
sp->psp_irq_handler = handler;
if (!sp->irq_registered) {
ret = request_irq(sp->psp_irq, sp_irq_handler, 0,
sp->name, sp);
if (ret)
return ret;
sp->irq_registered = true;
}
} else {
/* Each sub-device can manage it's own interrupt */
ret = request_irq(sp->psp_irq, handler, 0, name, data);
if (ret)
return ret;
}
return 0;
}
void sp_free_ccp_irq(struct sp_device *sp, void *data)
{
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->psp_vdata) {
/* Using common routine to manage all interrupts */
if (!sp->psp_irq_handler) {
/* Nothing else using it, so free it */
free_irq(sp->ccp_irq, sp);
sp->irq_registered = false;
}
sp->ccp_irq_handler = NULL;
sp->ccp_irq_data = NULL;
} else {
/* Each sub-device can manage it's own interrupt */
free_irq(sp->ccp_irq, data);
}
}
void sp_free_psp_irq(struct sp_device *sp, void *data)
{
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->ccp_vdata) {
/* Using common routine to manage all interrupts */
if (!sp->ccp_irq_handler) {
/* Nothing else using it, so free it */
free_irq(sp->psp_irq, sp);
sp->irq_registered = false;
}
sp->psp_irq_handler = NULL;
sp->psp_irq_data = NULL;
} else {
/* Each sub-device can manage it's own interrupt */
free_irq(sp->psp_irq, data);
}
}
/**
* sp_alloc_struct - allocate and initialize the sp_device struct
*
* @dev: device struct of the SP
*/
struct sp_device *sp_alloc_struct(struct device *dev)
{
struct sp_device *sp;
sp = devm_kzalloc(dev, sizeof(*sp), GFP_KERNEL);
if (!sp)
return NULL;
sp->dev = dev;
sp->ord = atomic_inc_return(&sp_ordinal);
snprintf(sp->name, SP_MAX_NAME_LEN, "sp-%u", sp->ord);
return sp;
}
int sp_init(struct sp_device *sp)
{
sp_add_device(sp);
if (sp->dev_vdata->ccp_vdata)
ccp_dev_init(sp);
if (sp->dev_vdata->psp_vdata)
psp_dev_init(sp);
return 0;
}
void sp_destroy(struct sp_device *sp)
{
if (sp->dev_vdata->ccp_vdata)
ccp_dev_destroy(sp);
if (sp->dev_vdata->psp_vdata)
psp_dev_destroy(sp);
sp_del_device(sp);
}
#ifdef CONFIG_PM
int sp_suspend(struct sp_device *sp, pm_message_t state)
{
int ret;
if (sp->dev_vdata->ccp_vdata) {
ret = ccp_dev_suspend(sp, state);
if (ret)
return ret;
}
return 0;
}
int sp_resume(struct sp_device *sp)
{
int ret;
if (sp->dev_vdata->ccp_vdata) {
ret = ccp_dev_resume(sp);
if (ret)
return ret;
}
return 0;
}
#endif
struct sp_device *sp_get_psp_master_device(void)
{
struct sp_device *i, *ret = NULL;
unsigned long flags;
write_lock_irqsave(&sp_unit_lock, flags);
if (list_empty(&sp_units))
goto unlock;
list_for_each_entry(i, &sp_units, entry) {
if (i->psp_data)
break;
}
if (i->get_psp_master_device)
ret = i->get_psp_master_device();
unlock:
write_unlock_irqrestore(&sp_unit_lock, flags);
return ret;
}
static int __init sp_mod_init(void)
{
#ifdef CONFIG_X86
int ret;
ret = sp_pci_init();
if (ret)
return ret;
return 0;
#endif
#ifdef CONFIG_ARM64
int ret;
ret = sp_platform_init();
if (ret)
return ret;
return 0;
#endif
return -ENODEV;
}
static void __exit sp_mod_exit(void)
{
#ifdef CONFIG_X86
sp_pci_exit();
#endif
#ifdef CONFIG_ARM64
sp_platform_exit();
#endif
}
module_init(sp_mod_init);
module_exit(sp_mod_exit);