linux-next/drivers/ptp/ptp_chardev.c

592 lines
14 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PTP 1588 clock support - character device implementation.
*
* Copyright (C) 2010 OMICRON electronics GmbH
*/
#include <linux/module.h>
#include <linux/posix-clock.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/slab.h>
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping Currently, network /system cross-timestamping is performed in the PTP_SYS_OFFSET ioctl. The PTP clock driver reads gettimeofday() and the gettime64() callback provided by the driver. The cross-timestamp is best effort where the latency between the capture of system time (getnstimeofday()) and the device time (driver callback) may be significant. The getcrosststamp() callback and corresponding PTP_SYS_OFFSET_PRECISE ioctl allows the driver to perform this device/system correlation when for example cross timestamp hardware is available. Modern Intel systems can do this for onboard Ethernet controllers using the ART counter. There is virtually zero latency between captures of the ART and network device clock. The capabilities ioctl (PTP_CLOCK_GETCAPS), is augmented allowing applications to query whether or not drivers implement the getcrosststamp callback, providing more precise cross timestamping. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com> [jstultz: Commit subject tweaks] Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-02-22 11:15:25 +00:00
#include <linux/timekeeping.h>
#include <linux/debugfs.h>
#include <linux/nospec.h>
#include "ptp_private.h"
static int ptp_disable_pinfunc(struct ptp_clock_info *ops,
enum ptp_pin_function func, unsigned int chan)
{
struct ptp_clock_request rq;
int err = 0;
memset(&rq, 0, sizeof(rq));
switch (func) {
case PTP_PF_NONE:
break;
case PTP_PF_EXTTS:
rq.type = PTP_CLK_REQ_EXTTS;
rq.extts.index = chan;
err = ops->enable(ops, &rq, 0);
break;
case PTP_PF_PEROUT:
rq.type = PTP_CLK_REQ_PEROUT;
rq.perout.index = chan;
err = ops->enable(ops, &rq, 0);
break;
case PTP_PF_PHYSYNC:
break;
default:
return -EINVAL;
}
return err;
}
int ptp_set_pinfunc(struct ptp_clock *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
struct ptp_clock_info *info = ptp->info;
struct ptp_pin_desc *pin1 = NULL, *pin2 = &info->pin_config[pin];
unsigned int i;
/* Check to see if any other pin previously had this function. */
for (i = 0; i < info->n_pins; i++) {
if (info->pin_config[i].func == func &&
info->pin_config[i].chan == chan) {
pin1 = &info->pin_config[i];
break;
}
}
if (pin1 && i == pin)
return 0;
/* Check the desired function and channel. */
switch (func) {
case PTP_PF_NONE:
break;
case PTP_PF_EXTTS:
if (chan >= info->n_ext_ts)
return -EINVAL;
break;
case PTP_PF_PEROUT:
if (chan >= info->n_per_out)
return -EINVAL;
break;
case PTP_PF_PHYSYNC:
if (chan != 0)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (info->verify(info, pin, func, chan)) {
pr_err("driver cannot use function %u on pin %u\n", func, chan);
return -EOPNOTSUPP;
}
/* Disable whatever function was previously assigned. */
if (pin1) {
ptp_disable_pinfunc(info, func, chan);
pin1->func = PTP_PF_NONE;
pin1->chan = 0;
}
ptp_disable_pinfunc(info, pin2->func, pin2->chan);
pin2->func = func;
pin2->chan = chan;
return 0;
}
int ptp_open(struct posix_clock_context *pccontext, fmode_t fmode)
{
struct ptp_clock *ptp =
container_of(pccontext->clk, struct ptp_clock, clock);
struct timestamp_event_queue *queue;
char debugfsname[32];
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
if (!queue)
return -EINVAL;
queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
if (!queue->mask) {
kfree(queue);
return -EINVAL;
}
bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
spin_lock_init(&queue->lock);
list_add_tail(&queue->qlist, &ptp->tsevqs);
pccontext->private_clkdata = queue;
/* Debugfs contents */
sprintf(debugfsname, "0x%p", queue);
queue->debugfs_instance =
debugfs_create_dir(debugfsname, ptp->debugfs_root);
queue->dfs_bitmap.array = (u32 *)queue->mask;
queue->dfs_bitmap.n_elements =
DIV_ROUND_UP(PTP_MAX_CHANNELS, BITS_PER_BYTE * sizeof(u32));
debugfs_create_u32_array("mask", 0444, queue->debugfs_instance,
&queue->dfs_bitmap);
return 0;
}
int ptp_release(struct posix_clock_context *pccontext)
{
struct timestamp_event_queue *queue = pccontext->private_clkdata;
unsigned long flags;
if (queue) {
debugfs_remove(queue->debugfs_instance);
pccontext->private_clkdata = NULL;
spin_lock_irqsave(&queue->lock, flags);
list_del(&queue->qlist);
spin_unlock_irqrestore(&queue->lock, flags);
bitmap_free(queue->mask);
kfree(queue);
}
return 0;
}
long ptp_ioctl(struct posix_clock_context *pccontext, unsigned int cmd,
unsigned long arg)
{
struct ptp_clock *ptp =
container_of(pccontext->clk, struct ptp_clock, clock);
struct ptp_sys_offset_extended *extoff = NULL;
struct ptp_sys_offset_precise precise_offset;
struct system_device_crosststamp xtstamp;
struct ptp_clock_info *ops = ptp->info;
struct ptp_sys_offset *sysoff = NULL;
struct timestamp_event_queue *tsevq;
struct ptp_system_timestamp sts;
struct ptp_clock_request req;
struct ptp_clock_caps caps;
struct ptp_clock_time *pct;
unsigned int i, pin_index;
struct ptp_pin_desc pd;
struct timespec64 ts;
int enable, err = 0;
tsevq = pccontext->private_clkdata;
switch (cmd) {
case PTP_CLOCK_GETCAPS:
case PTP_CLOCK_GETCAPS2:
memset(&caps, 0, sizeof(caps));
caps.max_adj = ptp->info->max_adj;
caps.n_alarm = ptp->info->n_alarm;
caps.n_ext_ts = ptp->info->n_ext_ts;
caps.n_per_out = ptp->info->n_per_out;
caps.pps = ptp->info->pps;
caps.n_pins = ptp->info->n_pins;
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping Currently, network /system cross-timestamping is performed in the PTP_SYS_OFFSET ioctl. The PTP clock driver reads gettimeofday() and the gettime64() callback provided by the driver. The cross-timestamp is best effort where the latency between the capture of system time (getnstimeofday()) and the device time (driver callback) may be significant. The getcrosststamp() callback and corresponding PTP_SYS_OFFSET_PRECISE ioctl allows the driver to perform this device/system correlation when for example cross timestamp hardware is available. Modern Intel systems can do this for onboard Ethernet controllers using the ART counter. There is virtually zero latency between captures of the ART and network device clock. The capabilities ioctl (PTP_CLOCK_GETCAPS), is augmented allowing applications to query whether or not drivers implement the getcrosststamp callback, providing more precise cross timestamping. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com> [jstultz: Commit subject tweaks] Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-02-22 11:15:25 +00:00
caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
caps.adjust_phase = ptp->info->adjphase != NULL &&
ptp->info->getmaxphase != NULL;
if (caps.adjust_phase)
caps.max_phase_adj = ptp->info->getmaxphase(ptp->info);
if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))
err = -EFAULT;
break;
case PTP_EXTTS_REQUEST:
case PTP_EXTTS_REQUEST2:
memset(&req, 0, sizeof(req));
if (copy_from_user(&req.extts, (void __user *)arg,
sizeof(req.extts))) {
err = -EFAULT;
break;
}
if (cmd == PTP_EXTTS_REQUEST2) {
/* Tell the drivers to check the flags carefully. */
req.extts.flags |= PTP_STRICT_FLAGS;
/* Make sure no reserved bit is set. */
if ((req.extts.flags & ~PTP_EXTTS_VALID_FLAGS) ||
req.extts.rsv[0] || req.extts.rsv[1]) {
err = -EINVAL;
break;
}
/* Ensure one of the rising/falling edge bits is set. */
if ((req.extts.flags & PTP_ENABLE_FEATURE) &&
(req.extts.flags & PTP_EXTTS_EDGES) == 0) {
err = -EINVAL;
break;
}
} else if (cmd == PTP_EXTTS_REQUEST) {
ptp: correctly disable flags on old ioctls Commit 415606588c61 ("PTP: introduce new versions of IOCTLs", 2019-09-13) introduced new versions of the PTP ioctls which actually validate that the flags are acceptable values. As part of this, it cleared the flags value using a bitwise and+negation, in an attempt to prevent the old ioctl from accidentally enabling new features. This is incorrect for a couple of reasons. First, it results in accidentally preventing previously working flags on the request ioctl. By clearing the "valid" flags, we now no longer allow setting the enable, rising edge, or falling edge flags. Second, if we add new additional flags in the future, they must not be set by the old ioctl. (Since the flag wasn't checked before, we could potentially break userspace programs which sent garbage flag data. The correct way to resolve this is to check for and clear all but the originally valid flags. Create defines indicating which flags are correctly checked and interpreted by the original ioctls. Use these to clear any bits which will not be correctly interpreted by the original ioctls. In the future, new flags must be added to the VALID_FLAGS macros, but *not* to the V1_VALID_FLAGS macros. In this way, new features may be exposed over the v2 ioctls, but without breaking previous userspace which happened to not clear the flags value properly. The old ioctl will continue to behave the same way, while the new ioctl gains the benefit of using the flags fields. Cc: Richard Cochran <richardcochran@gmail.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Christopher Hall <christopher.s.hall@intel.com> Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-26 02:28:19 +00:00
req.extts.flags &= PTP_EXTTS_V1_VALID_FLAGS;
req.extts.rsv[0] = 0;
req.extts.rsv[1] = 0;
}
if (req.extts.index >= ops->n_ext_ts) {
err = -EINVAL;
break;
}
req.type = PTP_CLK_REQ_EXTTS;
enable = req.extts.flags & PTP_ENABLE_FEATURE ? 1 : 0;
if (mutex_lock_interruptible(&ptp->pincfg_mux))
return -ERESTARTSYS;
err = ops->enable(ops, &req, enable);
mutex_unlock(&ptp->pincfg_mux);
break;
case PTP_PEROUT_REQUEST:
case PTP_PEROUT_REQUEST2:
memset(&req, 0, sizeof(req));
if (copy_from_user(&req.perout, (void __user *)arg,
sizeof(req.perout))) {
err = -EFAULT;
break;
}
ptp: add ability to configure duty cycle for periodic output There are external event timestampers (PHCs with support for PTP_EXTTS_REQUEST) that timestamp both event edges. When those edges are very close (such as in the case of a short pulse), there is a chance that the collected timestamp might be of the rising, or of the falling edge, we never know. There are also PHCs capable of generating periodic output with a configurable duty cycle. This is good news, because we can space the rising and falling edge out enough in time, that the risks to overrun the 1-entry timestamp FIFO of the extts PHC are lower (example: the perout PHC can be configured for a period of 1 second, and an "on" time of 0.5 seconds, resulting in a duty cycle of 50%). A flag is introduced for signaling that an on time is present in the perout request structure, for preserving compatibility. Logically speaking, the duty cycle cannot exceed 100% and the PTP core checks for this. PHC drivers that don't support this flag emit a periodic output of an unspecified duty cycle, same as before. The duty cycle is encoded as an "on" time, similar to the "start" and "period" times, and reuses the reserved space while preserving overall binary layout. Pahole reported before: struct ptp_perout_request { struct ptp_clock_time start; /* 0 16 */ struct ptp_clock_time period; /* 16 16 */ unsigned int index; /* 32 4 */ unsigned int flags; /* 36 4 */ unsigned int rsv[4]; /* 40 16 */ /* size: 56, cachelines: 1, members: 5 */ /* last cacheline: 56 bytes */ }; And now: struct ptp_perout_request { struct ptp_clock_time start; /* 0 16 */ struct ptp_clock_time period; /* 16 16 */ unsigned int index; /* 32 4 */ unsigned int flags; /* 36 4 */ union { struct ptp_clock_time on; /* 40 16 */ unsigned int rsv[4]; /* 40 16 */ }; /* 40 16 */ /* size: 56, cachelines: 1, members: 5 */ /* last cacheline: 56 bytes */ }; Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-16 22:45:29 +00:00
if (cmd == PTP_PEROUT_REQUEST2) {
struct ptp_perout_request *perout = &req.perout;
if (perout->flags & ~PTP_PEROUT_VALID_FLAGS) {
err = -EINVAL;
break;
}
/*
* The "on" field has undefined meaning if
* PTP_PEROUT_DUTY_CYCLE isn't set, we must still treat
* it as reserved, which must be set to zero.
*/
if (!(perout->flags & PTP_PEROUT_DUTY_CYCLE) &&
(perout->rsv[0] || perout->rsv[1] ||
perout->rsv[2] || perout->rsv[3])) {
err = -EINVAL;
break;
}
if (perout->flags & PTP_PEROUT_DUTY_CYCLE) {
/* The duty cycle must be subunitary. */
if (perout->on.sec > perout->period.sec ||
(perout->on.sec == perout->period.sec &&
perout->on.nsec > perout->period.nsec)) {
err = -ERANGE;
break;
}
}
if (perout->flags & PTP_PEROUT_PHASE) {
/*
* The phase should be specified modulo the
* period, therefore anything equal or larger
* than 1 period is invalid.
*/
if (perout->phase.sec > perout->period.sec ||
(perout->phase.sec == perout->period.sec &&
perout->phase.nsec >= perout->period.nsec)) {
err = -ERANGE;
break;
}
}
} else if (cmd == PTP_PEROUT_REQUEST) {
ptp: correctly disable flags on old ioctls Commit 415606588c61 ("PTP: introduce new versions of IOCTLs", 2019-09-13) introduced new versions of the PTP ioctls which actually validate that the flags are acceptable values. As part of this, it cleared the flags value using a bitwise and+negation, in an attempt to prevent the old ioctl from accidentally enabling new features. This is incorrect for a couple of reasons. First, it results in accidentally preventing previously working flags on the request ioctl. By clearing the "valid" flags, we now no longer allow setting the enable, rising edge, or falling edge flags. Second, if we add new additional flags in the future, they must not be set by the old ioctl. (Since the flag wasn't checked before, we could potentially break userspace programs which sent garbage flag data. The correct way to resolve this is to check for and clear all but the originally valid flags. Create defines indicating which flags are correctly checked and interpreted by the original ioctls. Use these to clear any bits which will not be correctly interpreted by the original ioctls. In the future, new flags must be added to the VALID_FLAGS macros, but *not* to the V1_VALID_FLAGS macros. In this way, new features may be exposed over the v2 ioctls, but without breaking previous userspace which happened to not clear the flags value properly. The old ioctl will continue to behave the same way, while the new ioctl gains the benefit of using the flags fields. Cc: Richard Cochran <richardcochran@gmail.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Christopher Hall <christopher.s.hall@intel.com> Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-26 02:28:19 +00:00
req.perout.flags &= PTP_PEROUT_V1_VALID_FLAGS;
req.perout.rsv[0] = 0;
req.perout.rsv[1] = 0;
req.perout.rsv[2] = 0;
req.perout.rsv[3] = 0;
}
if (req.perout.index >= ops->n_per_out) {
err = -EINVAL;
break;
}
req.type = PTP_CLK_REQ_PEROUT;
enable = req.perout.period.sec || req.perout.period.nsec;
if (mutex_lock_interruptible(&ptp->pincfg_mux))
return -ERESTARTSYS;
err = ops->enable(ops, &req, enable);
mutex_unlock(&ptp->pincfg_mux);
break;
case PTP_ENABLE_PPS:
case PTP_ENABLE_PPS2:
memset(&req, 0, sizeof(req));
if (!capable(CAP_SYS_TIME))
return -EPERM;
req.type = PTP_CLK_REQ_PPS;
enable = arg ? 1 : 0;
if (mutex_lock_interruptible(&ptp->pincfg_mux))
return -ERESTARTSYS;
err = ops->enable(ops, &req, enable);
mutex_unlock(&ptp->pincfg_mux);
break;
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping Currently, network /system cross-timestamping is performed in the PTP_SYS_OFFSET ioctl. The PTP clock driver reads gettimeofday() and the gettime64() callback provided by the driver. The cross-timestamp is best effort where the latency between the capture of system time (getnstimeofday()) and the device time (driver callback) may be significant. The getcrosststamp() callback and corresponding PTP_SYS_OFFSET_PRECISE ioctl allows the driver to perform this device/system correlation when for example cross timestamp hardware is available. Modern Intel systems can do this for onboard Ethernet controllers using the ART counter. There is virtually zero latency between captures of the ART and network device clock. The capabilities ioctl (PTP_CLOCK_GETCAPS), is augmented allowing applications to query whether or not drivers implement the getcrosststamp callback, providing more precise cross timestamping. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com> [jstultz: Commit subject tweaks] Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-02-22 11:15:25 +00:00
case PTP_SYS_OFFSET_PRECISE:
case PTP_SYS_OFFSET_PRECISE2:
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping Currently, network /system cross-timestamping is performed in the PTP_SYS_OFFSET ioctl. The PTP clock driver reads gettimeofday() and the gettime64() callback provided by the driver. The cross-timestamp is best effort where the latency between the capture of system time (getnstimeofday()) and the device time (driver callback) may be significant. The getcrosststamp() callback and corresponding PTP_SYS_OFFSET_PRECISE ioctl allows the driver to perform this device/system correlation when for example cross timestamp hardware is available. Modern Intel systems can do this for onboard Ethernet controllers using the ART counter. There is virtually zero latency between captures of the ART and network device clock. The capabilities ioctl (PTP_CLOCK_GETCAPS), is augmented allowing applications to query whether or not drivers implement the getcrosststamp callback, providing more precise cross timestamping. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com> [jstultz: Commit subject tweaks] Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-02-22 11:15:25 +00:00
if (!ptp->info->getcrosststamp) {
err = -EOPNOTSUPP;
break;
}
err = ptp->info->getcrosststamp(ptp->info, &xtstamp);
if (err)
break;
memset(&precise_offset, 0, sizeof(precise_offset));
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping Currently, network /system cross-timestamping is performed in the PTP_SYS_OFFSET ioctl. The PTP clock driver reads gettimeofday() and the gettime64() callback provided by the driver. The cross-timestamp is best effort where the latency between the capture of system time (getnstimeofday()) and the device time (driver callback) may be significant. The getcrosststamp() callback and corresponding PTP_SYS_OFFSET_PRECISE ioctl allows the driver to perform this device/system correlation when for example cross timestamp hardware is available. Modern Intel systems can do this for onboard Ethernet controllers using the ART counter. There is virtually zero latency between captures of the ART and network device clock. The capabilities ioctl (PTP_CLOCK_GETCAPS), is augmented allowing applications to query whether or not drivers implement the getcrosststamp callback, providing more precise cross timestamping. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com> [jstultz: Commit subject tweaks] Signed-off-by: John Stultz <john.stultz@linaro.org>
2016-02-22 11:15:25 +00:00
ts = ktime_to_timespec64(xtstamp.device);
precise_offset.device.sec = ts.tv_sec;
precise_offset.device.nsec = ts.tv_nsec;
ts = ktime_to_timespec64(xtstamp.sys_realtime);
precise_offset.sys_realtime.sec = ts.tv_sec;
precise_offset.sys_realtime.nsec = ts.tv_nsec;
ts = ktime_to_timespec64(xtstamp.sys_monoraw);
precise_offset.sys_monoraw.sec = ts.tv_sec;
precise_offset.sys_monoraw.nsec = ts.tv_nsec;
if (copy_to_user((void __user *)arg, &precise_offset,
sizeof(precise_offset)))
err = -EFAULT;
break;
case PTP_SYS_OFFSET_EXTENDED:
case PTP_SYS_OFFSET_EXTENDED2:
if (!ptp->info->gettimex64) {
err = -EOPNOTSUPP;
break;
}
extoff = memdup_user((void __user *)arg, sizeof(*extoff));
if (IS_ERR(extoff)) {
err = PTR_ERR(extoff);
extoff = NULL;
break;
}
if (extoff->n_samples > PTP_MAX_SAMPLES
|| extoff->rsv[0] || extoff->rsv[1] || extoff->rsv[2]) {
err = -EINVAL;
break;
}
for (i = 0; i < extoff->n_samples; i++) {
err = ptp->info->gettimex64(ptp->info, &ts, &sts);
if (err)
goto out;
extoff->ts[i][0].sec = sts.pre_ts.tv_sec;
extoff->ts[i][0].nsec = sts.pre_ts.tv_nsec;
extoff->ts[i][1].sec = ts.tv_sec;
extoff->ts[i][1].nsec = ts.tv_nsec;
extoff->ts[i][2].sec = sts.post_ts.tv_sec;
extoff->ts[i][2].nsec = sts.post_ts.tv_nsec;
}
if (copy_to_user((void __user *)arg, extoff, sizeof(*extoff)))
err = -EFAULT;
break;
case PTP_SYS_OFFSET:
case PTP_SYS_OFFSET2:
sysoff = memdup_user((void __user *)arg, sizeof(*sysoff));
if (IS_ERR(sysoff)) {
err = PTR_ERR(sysoff);
sysoff = NULL;
break;
}
if (sysoff->n_samples > PTP_MAX_SAMPLES) {
err = -EINVAL;
break;
}
pct = &sysoff->ts[0];
for (i = 0; i < sysoff->n_samples; i++) {
ktime_get_real_ts64(&ts);
pct->sec = ts.tv_sec;
pct->nsec = ts.tv_nsec;
pct++;
if (ops->gettimex64)
err = ops->gettimex64(ops, &ts, NULL);
else
err = ops->gettime64(ops, &ts);
if (err)
goto out;
pct->sec = ts.tv_sec;
pct->nsec = ts.tv_nsec;
pct++;
}
ktime_get_real_ts64(&ts);
pct->sec = ts.tv_sec;
pct->nsec = ts.tv_nsec;
if (copy_to_user((void __user *)arg, sysoff, sizeof(*sysoff)))
err = -EFAULT;
break;
case PTP_PIN_GETFUNC:
case PTP_PIN_GETFUNC2:
if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) {
err = -EFAULT;
break;
}
if ((pd.rsv[0] || pd.rsv[1] || pd.rsv[2]
|| pd.rsv[3] || pd.rsv[4])
&& cmd == PTP_PIN_GETFUNC2) {
err = -EINVAL;
break;
} else if (cmd == PTP_PIN_GETFUNC) {
pd.rsv[0] = 0;
pd.rsv[1] = 0;
pd.rsv[2] = 0;
pd.rsv[3] = 0;
pd.rsv[4] = 0;
}
pin_index = pd.index;
if (pin_index >= ops->n_pins) {
err = -EINVAL;
break;
}
pin_index = array_index_nospec(pin_index, ops->n_pins);
if (mutex_lock_interruptible(&ptp->pincfg_mux))
return -ERESTARTSYS;
pd = ops->pin_config[pin_index];
mutex_unlock(&ptp->pincfg_mux);
if (!err && copy_to_user((void __user *)arg, &pd, sizeof(pd)))
err = -EFAULT;
break;
case PTP_PIN_SETFUNC:
case PTP_PIN_SETFUNC2:
if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) {
err = -EFAULT;
break;
}
if ((pd.rsv[0] || pd.rsv[1] || pd.rsv[2]
|| pd.rsv[3] || pd.rsv[4])
&& cmd == PTP_PIN_SETFUNC2) {
err = -EINVAL;
break;
} else if (cmd == PTP_PIN_SETFUNC) {
pd.rsv[0] = 0;
pd.rsv[1] = 0;
pd.rsv[2] = 0;
pd.rsv[3] = 0;
pd.rsv[4] = 0;
}
pin_index = pd.index;
if (pin_index >= ops->n_pins) {
err = -EINVAL;
break;
}
pin_index = array_index_nospec(pin_index, ops->n_pins);
if (mutex_lock_interruptible(&ptp->pincfg_mux))
return -ERESTARTSYS;
err = ptp_set_pinfunc(ptp, pin_index, pd.func, pd.chan);
mutex_unlock(&ptp->pincfg_mux);
break;
case PTP_MASK_CLEAR_ALL:
bitmap_clear(tsevq->mask, 0, PTP_MAX_CHANNELS);
break;
case PTP_MASK_EN_SINGLE:
if (copy_from_user(&i, (void __user *)arg, sizeof(i))) {
err = -EFAULT;
break;
}
if (i >= PTP_MAX_CHANNELS) {
err = -EFAULT;
break;
}
set_bit(i, tsevq->mask);
break;
default:
err = -ENOTTY;
break;
}
out:
kfree(extoff);
kfree(sysoff);
return err;
}
__poll_t ptp_poll(struct posix_clock_context *pccontext, struct file *fp,
poll_table *wait)
{
struct ptp_clock *ptp =
container_of(pccontext->clk, struct ptp_clock, clock);
struct timestamp_event_queue *queue;
queue = pccontext->private_clkdata;
if (!queue)
return EPOLLERR;
poll_wait(fp, &ptp->tsev_wq, wait);
return queue_cnt(queue) ? EPOLLIN : 0;
}
#define EXTTS_BUFSIZE (PTP_BUF_TIMESTAMPS * sizeof(struct ptp_extts_event))
ssize_t ptp_read(struct posix_clock_context *pccontext, uint rdflags,
char __user *buf, size_t cnt)
{
struct ptp_clock *ptp =
container_of(pccontext->clk, struct ptp_clock, clock);
struct timestamp_event_queue *queue;
struct ptp_extts_event *event;
unsigned long flags;
size_t qcnt, i;
int result;
queue = pccontext->private_clkdata;
if (!queue) {
result = -EINVAL;
goto exit;
}
if (cnt % sizeof(struct ptp_extts_event) != 0) {
result = -EINVAL;
goto exit;
}
if (cnt > EXTTS_BUFSIZE)
cnt = EXTTS_BUFSIZE;
cnt = cnt / sizeof(struct ptp_extts_event);
if (wait_event_interruptible(ptp->tsev_wq,
ptp->defunct || queue_cnt(queue))) {
return -ERESTARTSYS;
}
if (ptp->defunct) {
result = -ENODEV;
goto exit;
}
event = kmalloc(EXTTS_BUFSIZE, GFP_KERNEL);
if (!event) {
result = -ENOMEM;
goto exit;
}
spin_lock_irqsave(&queue->lock, flags);
qcnt = queue_cnt(queue);
if (cnt > qcnt)
cnt = qcnt;
for (i = 0; i < cnt; i++) {
event[i] = queue->buf[queue->head];
queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
}
spin_unlock_irqrestore(&queue->lock, flags);
cnt = cnt * sizeof(struct ptp_extts_event);
result = cnt;
if (copy_to_user(buf, event, cnt)) {
result = -EFAULT;
goto free_event;
}
free_event:
kfree(event);
exit:
if (result < 0)
ptp_release(pccontext);
return result;
}