340 lines
9.9 KiB
C
Raw Normal View History

cxl/mem: Find device capabilities Provide enough functionality to utilize the mailbox of a memory device. The mailbox is used to interact with the firmware running on the memory device. The flow is proven with one implemented command, "identify". Because the class code has already told the driver this is a memory device and the identify command is mandatory. CXL devices contain an array of capabilities that describe the interactions software can have with the device or firmware running on the device. A CXL compliant device must implement the device status and the mailbox capability. Additionally, a CXL compliant memory device must implement the memory device capability. Each of the capabilities can [will] provide an offset within the MMIO region for interacting with the CXL device. The capabilities tell the driver how to find and map the register space for CXL Memory Devices. The registers are required to utilize the CXL spec defined mailbox interface. The spec outlines two mailboxes, primary and secondary. The secondary mailbox is earmarked for system firmware, and not handled in this driver. Primary mailboxes are capable of generating an interrupt when submitting a background command. That implementation is saved for a later time. Reported-by: Colin Ian King <colin.king@canonical.com> (coverity) Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch) Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2) Link: https://www.computeexpresslink.org/download-the-specification Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-02-16 20:09:51 -08:00
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2020 Intel Corporation. */
#ifndef __CXL_H__
#define __CXL_H__
#include <linux/libnvdimm.h>
cxl/mem: Find device capabilities Provide enough functionality to utilize the mailbox of a memory device. The mailbox is used to interact with the firmware running on the memory device. The flow is proven with one implemented command, "identify". Because the class code has already told the driver this is a memory device and the identify command is mandatory. CXL devices contain an array of capabilities that describe the interactions software can have with the device or firmware running on the device. A CXL compliant device must implement the device status and the mailbox capability. Additionally, a CXL compliant memory device must implement the memory device capability. Each of the capabilities can [will] provide an offset within the MMIO region for interacting with the CXL device. The capabilities tell the driver how to find and map the register space for CXL Memory Devices. The registers are required to utilize the CXL spec defined mailbox interface. The spec outlines two mailboxes, primary and secondary. The secondary mailbox is earmarked for system firmware, and not handled in this driver. Primary mailboxes are capable of generating an interrupt when submitting a background command. That implementation is saved for a later time. Reported-by: Colin Ian King <colin.king@canonical.com> (coverity) Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch) Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2) Link: https://www.computeexpresslink.org/download-the-specification Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-02-16 20:09:51 -08:00
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/io.h>
/**
* DOC: cxl objects
*
* The CXL core objects like ports, decoders, and regions are shared
* between the subsystem drivers cxl_acpi, cxl_pci, and core drivers
* (port-driver, region-driver, nvdimm object-drivers... etc).
*/
/* CXL 2.0 8.2.5 CXL.cache and CXL.mem Registers*/
#define CXL_CM_OFFSET 0x1000
#define CXL_CM_CAP_HDR_OFFSET 0x0
#define CXL_CM_CAP_HDR_ID_MASK GENMASK(15, 0)
#define CM_CAP_HDR_CAP_ID 1
#define CXL_CM_CAP_HDR_VERSION_MASK GENMASK(19, 16)
#define CM_CAP_HDR_CAP_VERSION 1
#define CXL_CM_CAP_HDR_CACHE_MEM_VERSION_MASK GENMASK(23, 20)
#define CM_CAP_HDR_CACHE_MEM_VERSION 1
#define CXL_CM_CAP_HDR_ARRAY_SIZE_MASK GENMASK(31, 24)
#define CXL_CM_CAP_PTR_MASK GENMASK(31, 20)
#define CXL_CM_CAP_CAP_ID_HDM 0x5
#define CXL_CM_CAP_CAP_HDM_VERSION 1
/* HDM decoders CXL 2.0 8.2.5.12 CXL HDM Decoder Capability Structure */
#define CXL_HDM_DECODER_CAP_OFFSET 0x0
#define CXL_HDM_DECODER_COUNT_MASK GENMASK(3, 0)
#define CXL_HDM_DECODER_TARGET_COUNT_MASK GENMASK(7, 4)
#define CXL_HDM_DECODER0_BASE_LOW_OFFSET 0x10
#define CXL_HDM_DECODER0_BASE_HIGH_OFFSET 0x14
#define CXL_HDM_DECODER0_SIZE_LOW_OFFSET 0x18
#define CXL_HDM_DECODER0_SIZE_HIGH_OFFSET 0x1c
#define CXL_HDM_DECODER0_CTRL_OFFSET 0x20
static inline int cxl_hdm_decoder_count(u32 cap_hdr)
{
int val = FIELD_GET(CXL_HDM_DECODER_COUNT_MASK, cap_hdr);
return val ? val * 2 : 1;
}
cxl/mem: Find device capabilities Provide enough functionality to utilize the mailbox of a memory device. The mailbox is used to interact with the firmware running on the memory device. The flow is proven with one implemented command, "identify". Because the class code has already told the driver this is a memory device and the identify command is mandatory. CXL devices contain an array of capabilities that describe the interactions software can have with the device or firmware running on the device. A CXL compliant device must implement the device status and the mailbox capability. Additionally, a CXL compliant memory device must implement the memory device capability. Each of the capabilities can [will] provide an offset within the MMIO region for interacting with the CXL device. The capabilities tell the driver how to find and map the register space for CXL Memory Devices. The registers are required to utilize the CXL spec defined mailbox interface. The spec outlines two mailboxes, primary and secondary. The secondary mailbox is earmarked for system firmware, and not handled in this driver. Primary mailboxes are capable of generating an interrupt when submitting a background command. That implementation is saved for a later time. Reported-by: Colin Ian King <colin.king@canonical.com> (coverity) Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch) Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2) Link: https://www.computeexpresslink.org/download-the-specification Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-02-16 20:09:51 -08:00
/* CXL 2.0 8.2.8.1 Device Capabilities Array Register */
#define CXLDEV_CAP_ARRAY_OFFSET 0x0
#define CXLDEV_CAP_ARRAY_CAP_ID 0
#define CXLDEV_CAP_ARRAY_ID_MASK GENMASK_ULL(15, 0)
#define CXLDEV_CAP_ARRAY_COUNT_MASK GENMASK_ULL(47, 32)
/* CXL 2.0 8.2.8.2 CXL Device Capability Header Register */
#define CXLDEV_CAP_HDR_CAP_ID_MASK GENMASK(15, 0)
/* CXL 2.0 8.2.8.2.1 CXL Device Capabilities */
#define CXLDEV_CAP_CAP_ID_DEVICE_STATUS 0x1
#define CXLDEV_CAP_CAP_ID_PRIMARY_MAILBOX 0x2
#define CXLDEV_CAP_CAP_ID_SECONDARY_MAILBOX 0x3
#define CXLDEV_CAP_CAP_ID_MEMDEV 0x4000
/* CXL 2.0 8.2.8.4 Mailbox Registers */
#define CXLDEV_MBOX_CAPS_OFFSET 0x00
#define CXLDEV_MBOX_CAP_PAYLOAD_SIZE_MASK GENMASK(4, 0)
#define CXLDEV_MBOX_CTRL_OFFSET 0x04
#define CXLDEV_MBOX_CTRL_DOORBELL BIT(0)
#define CXLDEV_MBOX_CMD_OFFSET 0x08
#define CXLDEV_MBOX_CMD_COMMAND_OPCODE_MASK GENMASK_ULL(15, 0)
#define CXLDEV_MBOX_CMD_PAYLOAD_LENGTH_MASK GENMASK_ULL(36, 16)
#define CXLDEV_MBOX_STATUS_OFFSET 0x10
#define CXLDEV_MBOX_STATUS_RET_CODE_MASK GENMASK_ULL(47, 32)
#define CXLDEV_MBOX_BG_CMD_STATUS_OFFSET 0x18
#define CXLDEV_MBOX_PAYLOAD_OFFSET 0x20
#define CXL_COMPONENT_REGS() \
void __iomem *hdm_decoder
cxl/mem: Introduce 'struct cxl_regs' for "composable" CXL devices CXL MMIO register blocks are organized by device type and capabilities. There are Component registers, Device registers (yes, an ambiguous name), and Memory Device registers (a specific extension of Device registers). It is possible for a given device instance (endpoint or port) to implement register sets from multiple of the above categories. The driver code that enumerates and maps the registers is type specific so it is useful to have a dedicated type and helpers for each block type. At the same time, once the registers are mapped the origin type does not matter. It is overly pedantic to reference the register block type in code that is using the registers. In preparation for the endpoint driver to incorporate Component registers into its MMIO operations reorganize the registers to allow typed enumeration + mapping, but anonymous usage. With the end state of 'struct cxl_regs' to be: struct cxl_regs { union { struct { CXL_DEVICE_REGS(); }; struct cxl_device_regs device_regs; }; union { struct { CXL_COMPONENT_REGS(); }; struct cxl_component_regs component_regs; }; }; With this arrangement the driver can share component init code with ports, but when using the registers it can directly reference the component register block type by name without the 'component_regs' prefix. So, map + enumerate can be shared across drivers of different CXL classes e.g.: void cxl_setup_device_regs(struct device *dev, void __iomem *base, struct cxl_device_regs *regs); void cxl_setup_component_regs(struct device *dev, void __iomem *base, struct cxl_component_regs *regs); ...while inline usage in the driver need not indicate where the registers came from: readl(cxlm->regs.mbox + MBOX_OFFSET); readl(cxlm->regs.hdm + HDM_OFFSET); ...instead of: readl(cxlm->regs.device_regs.mbox + MBOX_OFFSET); readl(cxlm->regs.component_regs.hdm + HDM_OFFSET); This complexity of the definition in .h yields improvement in code readability in .c while maintaining type-safety for organization of setup code. It prepares the implementation to maintain organization in the face of CXL devices that compose register interfaces consisting of multiple types. Given that this new container is named 'regs' rename the common register base pointer @base, and fixup the kernel-doc for the missing @cxlmd description. Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/162096971451.1865304.13540251513463515153.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-13 22:21:54 -07:00
#define CXL_DEVICE_REGS() \
void __iomem *status; \
void __iomem *mbox; \
void __iomem *memdev
/* See note for 'struct cxl_regs' for the rationale of this organization */
/*
* CXL_COMPONENT_REGS - Common set of CXL Component register block base pointers
* @hdm_decoder: CXL 2.0 8.2.5.12 CXL HDM Decoder Capability Structure
*/
struct cxl_component_regs {
CXL_COMPONENT_REGS();
};
/* See note for 'struct cxl_regs' for the rationale of this organization */
/*
* CXL_DEVICE_REGS - Common set of CXL Device register block base pointers
* @status: CXL 2.0 8.2.8.3 Device Status Registers
* @mbox: CXL 2.0 8.2.8.4 Mailbox Registers
* @memdev: CXL 2.0 8.2.8.5 Memory Device Registers
*/
cxl/mem: Introduce 'struct cxl_regs' for "composable" CXL devices CXL MMIO register blocks are organized by device type and capabilities. There are Component registers, Device registers (yes, an ambiguous name), and Memory Device registers (a specific extension of Device registers). It is possible for a given device instance (endpoint or port) to implement register sets from multiple of the above categories. The driver code that enumerates and maps the registers is type specific so it is useful to have a dedicated type and helpers for each block type. At the same time, once the registers are mapped the origin type does not matter. It is overly pedantic to reference the register block type in code that is using the registers. In preparation for the endpoint driver to incorporate Component registers into its MMIO operations reorganize the registers to allow typed enumeration + mapping, but anonymous usage. With the end state of 'struct cxl_regs' to be: struct cxl_regs { union { struct { CXL_DEVICE_REGS(); }; struct cxl_device_regs device_regs; }; union { struct { CXL_COMPONENT_REGS(); }; struct cxl_component_regs component_regs; }; }; With this arrangement the driver can share component init code with ports, but when using the registers it can directly reference the component register block type by name without the 'component_regs' prefix. So, map + enumerate can be shared across drivers of different CXL classes e.g.: void cxl_setup_device_regs(struct device *dev, void __iomem *base, struct cxl_device_regs *regs); void cxl_setup_component_regs(struct device *dev, void __iomem *base, struct cxl_component_regs *regs); ...while inline usage in the driver need not indicate where the registers came from: readl(cxlm->regs.mbox + MBOX_OFFSET); readl(cxlm->regs.hdm + HDM_OFFSET); ...instead of: readl(cxlm->regs.device_regs.mbox + MBOX_OFFSET); readl(cxlm->regs.component_regs.hdm + HDM_OFFSET); This complexity of the definition in .h yields improvement in code readability in .c while maintaining type-safety for organization of setup code. It prepares the implementation to maintain organization in the face of CXL devices that compose register interfaces consisting of multiple types. Given that this new container is named 'regs' rename the common register base pointer @base, and fixup the kernel-doc for the missing @cxlmd description. Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/162096971451.1865304.13540251513463515153.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-13 22:21:54 -07:00
struct cxl_device_regs {
CXL_DEVICE_REGS();
};
/*
* Note, the anonymous union organization allows for per
* register-block-type helper routines, without requiring block-type
* agnostic code to include the prefix.
cxl/mem: Introduce 'struct cxl_regs' for "composable" CXL devices CXL MMIO register blocks are organized by device type and capabilities. There are Component registers, Device registers (yes, an ambiguous name), and Memory Device registers (a specific extension of Device registers). It is possible for a given device instance (endpoint or port) to implement register sets from multiple of the above categories. The driver code that enumerates and maps the registers is type specific so it is useful to have a dedicated type and helpers for each block type. At the same time, once the registers are mapped the origin type does not matter. It is overly pedantic to reference the register block type in code that is using the registers. In preparation for the endpoint driver to incorporate Component registers into its MMIO operations reorganize the registers to allow typed enumeration + mapping, but anonymous usage. With the end state of 'struct cxl_regs' to be: struct cxl_regs { union { struct { CXL_DEVICE_REGS(); }; struct cxl_device_regs device_regs; }; union { struct { CXL_COMPONENT_REGS(); }; struct cxl_component_regs component_regs; }; }; With this arrangement the driver can share component init code with ports, but when using the registers it can directly reference the component register block type by name without the 'component_regs' prefix. So, map + enumerate can be shared across drivers of different CXL classes e.g.: void cxl_setup_device_regs(struct device *dev, void __iomem *base, struct cxl_device_regs *regs); void cxl_setup_component_regs(struct device *dev, void __iomem *base, struct cxl_component_regs *regs); ...while inline usage in the driver need not indicate where the registers came from: readl(cxlm->regs.mbox + MBOX_OFFSET); readl(cxlm->regs.hdm + HDM_OFFSET); ...instead of: readl(cxlm->regs.device_regs.mbox + MBOX_OFFSET); readl(cxlm->regs.component_regs.hdm + HDM_OFFSET); This complexity of the definition in .h yields improvement in code readability in .c while maintaining type-safety for organization of setup code. It prepares the implementation to maintain organization in the face of CXL devices that compose register interfaces consisting of multiple types. Given that this new container is named 'regs' rename the common register base pointer @base, and fixup the kernel-doc for the missing @cxlmd description. Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/162096971451.1865304.13540251513463515153.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-13 22:21:54 -07:00
*/
struct cxl_regs {
union {
struct {
CXL_COMPONENT_REGS();
};
struct cxl_component_regs component;
};
cxl/mem: Introduce 'struct cxl_regs' for "composable" CXL devices CXL MMIO register blocks are organized by device type and capabilities. There are Component registers, Device registers (yes, an ambiguous name), and Memory Device registers (a specific extension of Device registers). It is possible for a given device instance (endpoint or port) to implement register sets from multiple of the above categories. The driver code that enumerates and maps the registers is type specific so it is useful to have a dedicated type and helpers for each block type. At the same time, once the registers are mapped the origin type does not matter. It is overly pedantic to reference the register block type in code that is using the registers. In preparation for the endpoint driver to incorporate Component registers into its MMIO operations reorganize the registers to allow typed enumeration + mapping, but anonymous usage. With the end state of 'struct cxl_regs' to be: struct cxl_regs { union { struct { CXL_DEVICE_REGS(); }; struct cxl_device_regs device_regs; }; union { struct { CXL_COMPONENT_REGS(); }; struct cxl_component_regs component_regs; }; }; With this arrangement the driver can share component init code with ports, but when using the registers it can directly reference the component register block type by name without the 'component_regs' prefix. So, map + enumerate can be shared across drivers of different CXL classes e.g.: void cxl_setup_device_regs(struct device *dev, void __iomem *base, struct cxl_device_regs *regs); void cxl_setup_component_regs(struct device *dev, void __iomem *base, struct cxl_component_regs *regs); ...while inline usage in the driver need not indicate where the registers came from: readl(cxlm->regs.mbox + MBOX_OFFSET); readl(cxlm->regs.hdm + HDM_OFFSET); ...instead of: readl(cxlm->regs.device_regs.mbox + MBOX_OFFSET); readl(cxlm->regs.component_regs.hdm + HDM_OFFSET); This complexity of the definition in .h yields improvement in code readability in .c while maintaining type-safety for organization of setup code. It prepares the implementation to maintain organization in the face of CXL devices that compose register interfaces consisting of multiple types. Given that this new container is named 'regs' rename the common register base pointer @base, and fixup the kernel-doc for the missing @cxlmd description. Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/162096971451.1865304.13540251513463515153.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-13 22:21:54 -07:00
union {
struct {
CXL_DEVICE_REGS();
};
struct cxl_device_regs device_regs;
};
};
struct cxl_reg_map {
bool valid;
unsigned long offset;
unsigned long size;
};
struct cxl_component_reg_map {
struct cxl_reg_map hdm_decoder;
};
struct cxl_device_reg_map {
struct cxl_reg_map status;
struct cxl_reg_map mbox;
struct cxl_reg_map memdev;
};
struct cxl_register_map {
u64 block_offset;
u8 reg_type;
u8 barno;
union {
struct cxl_component_reg_map component_map;
struct cxl_device_reg_map device_map;
};
};
void cxl_probe_component_regs(struct device *dev, void __iomem *base,
struct cxl_component_reg_map *map);
void cxl_probe_device_regs(struct device *dev, void __iomem *base,
struct cxl_device_reg_map *map);
int cxl_map_component_regs(struct pci_dev *pdev,
struct cxl_component_regs *regs,
struct cxl_register_map *map);
int cxl_map_device_regs(struct pci_dev *pdev,
struct cxl_device_regs *regs,
struct cxl_register_map *map);
#define CXL_RESOURCE_NONE ((resource_size_t) -1)
#define CXL_TARGET_STRLEN 20
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
/*
* cxl_decoder flags that define the type of memory / devices this
* decoder supports as well as configuration lock status See "CXL 2.0
* 8.2.5.12.7 CXL HDM Decoder 0 Control Register" for details.
*/
#define CXL_DECODER_F_RAM BIT(0)
#define CXL_DECODER_F_PMEM BIT(1)
#define CXL_DECODER_F_TYPE2 BIT(2)
#define CXL_DECODER_F_TYPE3 BIT(3)
#define CXL_DECODER_F_LOCK BIT(4)
#define CXL_DECODER_F_MASK GENMASK(4, 0)
enum cxl_decoder_type {
CXL_DECODER_ACCELERATOR = 2,
CXL_DECODER_EXPANDER = 3,
};
/*
* Current specification goes up to 8, double that seems a reasonable
* software max for the foreseeable future
*/
#define CXL_DECODER_MAX_INTERLEAVE 16
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
/**
* struct cxl_decoder - CXL address range decode configuration
* @dev: this decoder's device
* @id: kernel device name id
* @range: address range considered by this decoder
* @interleave_ways: number of cxl_dports in this decode
* @interleave_granularity: data stride per dport
* @target_type: accelerator vs expander (type2 vs type3) selector
* @flags: memory type capabilities and locking
* @target: active ordered target list in current decoder configuration
*/
struct cxl_decoder {
struct device dev;
int id;
struct range range;
int interleave_ways;
int interleave_granularity;
enum cxl_decoder_type target_type;
unsigned long flags;
struct cxl_dport *target[];
};
enum cxl_nvdimm_brige_state {
CXL_NVB_NEW,
CXL_NVB_DEAD,
CXL_NVB_ONLINE,
CXL_NVB_OFFLINE,
};
struct cxl_nvdimm_bridge {
int id;
struct device dev;
struct cxl_port *port;
struct nvdimm_bus *nvdimm_bus;
struct nvdimm_bus_descriptor nd_desc;
struct work_struct state_work;
enum cxl_nvdimm_brige_state state;
};
struct cxl_nvdimm {
struct device dev;
struct cxl_memdev *cxlmd;
struct nvdimm *nvdimm;
};
tools/testing/cxl: Introduce a mocked-up CXL port hierarchy Create an environment for CXL plumbing unit tests. Especially when it comes to an algorithm for HDM Decoder (Host-managed Device Memory Decoder) programming, the availability of an in-kernel-tree emulation environment for CXL configuration complexity and corner cases speeds development and deters regressions. The approach taken mirrors what was done for tools/testing/nvdimm/. I.e. an external module, cxl_test.ko built out of the tools/testing/cxl/ directory, provides mock implementations of kernel APIs and kernel objects to simulate a real world device hierarchy. One feedback for the tools/testing/nvdimm/ proposal was "why not do this in QEMU?". In fact, the CXL development community has developed a QEMU model for CXL [1]. However, there are a few blocking issues that keep QEMU from being a tight fit for topology + provisioning unit tests: 1/ The QEMU community has yet to show interest in merging any of this support that has had patches on the list since November 2020. So, testing CXL to date involves building custom QEMU with out-of-tree patches. 2/ CXL mechanisms like cross-host-bridge interleave do not have a clear path to be emulated by QEMU without major infrastructure work. This is easier to achieve with the alloc_mock_res() approach taken in this patch to shortcut-define emulated system physical address ranges with interleave behavior. The QEMU enabling has been critical to get the driver off the ground, and may still move forward, but it does not address the ongoing needs of a regression testing environment and test driven development. This patch adds an ACPI CXL Platform definition with emulated CXL multi-ported host-bridges. A follow on patch adds emulated memory expander devices. Acked-by: Ben Widawsky <ben.widawsky@intel.com> Reported-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20210202005948.241655-1-ben.widawsky@intel.com [1] Link: https://lore.kernel.org/r/163164680798.2831381.838684634806668012.stgit@dwillia2-desk3.amr.corp.intel.com Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-09-14 12:14:22 -07:00
struct cxl_walk_context {
struct device *dev;
struct pci_bus *root;
struct cxl_port *port;
int error;
int count;
};
/**
* struct cxl_port - logical collection of upstream port devices and
* downstream port devices to construct a CXL memory
* decode hierarchy.
* @dev: this port's device
* @uport: PCI or platform device implementing the upstream port capability
* @id: id for port device-name
* @dports: cxl_dport instances referenced by decoders
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
* @decoder_ida: allocator for decoder ids
* @component_reg_phys: component register capability base address (optional)
*/
struct cxl_port {
struct device dev;
struct device *uport;
int id;
struct list_head dports;
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
struct ida decoder_ida;
resource_size_t component_reg_phys;
};
/**
* struct cxl_dport - CXL downstream port
* @dport: PCI bridge or firmware device representing the downstream link
* @port_id: unique hardware identifier for dport in decoder target list
* @component_reg_phys: downstream port component registers
* @port: reference to cxl_port that contains this downstream port
* @list: node for a cxl_port's list of cxl_dport instances
*/
struct cxl_dport {
struct device *dport;
int port_id;
resource_size_t component_reg_phys;
struct cxl_port *port;
struct list_head list;
};
struct cxl_port *to_cxl_port(struct device *dev);
struct cxl_port *devm_cxl_add_port(struct device *host, struct device *uport,
resource_size_t component_reg_phys,
struct cxl_port *parent_port);
int cxl_add_dport(struct cxl_port *port, struct device *dport, int port_id,
resource_size_t component_reg_phys);
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
struct cxl_decoder *to_cxl_decoder(struct device *dev);
bool is_root_decoder(struct device *dev);
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
struct cxl_decoder *
devm_cxl_add_decoder(struct device *host, struct cxl_port *port, int nr_targets,
resource_size_t base, resource_size_t len,
int interleave_ways, int interleave_granularity,
enum cxl_decoder_type type, unsigned long flags,
int *target_map);
cxl/acpi: Introduce cxl_decoder objects A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09 09:43:29 -07:00
struct cxl_decoder *devm_cxl_add_passthrough_decoder(struct device *host,
struct cxl_port *port);
extern struct bus_type cxl_bus_type;
struct cxl_driver {
const char *name;
int (*probe)(struct device *dev);
void (*remove)(struct device *dev);
struct device_driver drv;
int id;
};
static inline struct cxl_driver *to_cxl_drv(struct device_driver *drv)
{
return container_of(drv, struct cxl_driver, drv);
}
int __cxl_driver_register(struct cxl_driver *cxl_drv, struct module *owner,
const char *modname);
#define cxl_driver_register(x) __cxl_driver_register(x, THIS_MODULE, KBUILD_MODNAME)
void cxl_driver_unregister(struct cxl_driver *cxl_drv);
#define CXL_DEVICE_NVDIMM_BRIDGE 1
#define CXL_DEVICE_NVDIMM 2
#define MODULE_ALIAS_CXL(type) MODULE_ALIAS("cxl:t" __stringify(type) "*")
#define CXL_MODALIAS_FMT "cxl:t%d"
struct cxl_nvdimm_bridge *to_cxl_nvdimm_bridge(struct device *dev);
struct cxl_nvdimm_bridge *devm_cxl_add_nvdimm_bridge(struct device *host,
struct cxl_port *port);
struct cxl_nvdimm *to_cxl_nvdimm(struct device *dev);
bool is_cxl_nvdimm(struct device *dev);
int devm_cxl_add_nvdimm(struct device *host, struct cxl_memdev *cxlmd);
struct cxl_nvdimm_bridge *cxl_find_nvdimm_bridge(void);
tools/testing/cxl: Introduce a mocked-up CXL port hierarchy Create an environment for CXL plumbing unit tests. Especially when it comes to an algorithm for HDM Decoder (Host-managed Device Memory Decoder) programming, the availability of an in-kernel-tree emulation environment for CXL configuration complexity and corner cases speeds development and deters regressions. The approach taken mirrors what was done for tools/testing/nvdimm/. I.e. an external module, cxl_test.ko built out of the tools/testing/cxl/ directory, provides mock implementations of kernel APIs and kernel objects to simulate a real world device hierarchy. One feedback for the tools/testing/nvdimm/ proposal was "why not do this in QEMU?". In fact, the CXL development community has developed a QEMU model for CXL [1]. However, there are a few blocking issues that keep QEMU from being a tight fit for topology + provisioning unit tests: 1/ The QEMU community has yet to show interest in merging any of this support that has had patches on the list since November 2020. So, testing CXL to date involves building custom QEMU with out-of-tree patches. 2/ CXL mechanisms like cross-host-bridge interleave do not have a clear path to be emulated by QEMU without major infrastructure work. This is easier to achieve with the alloc_mock_res() approach taken in this patch to shortcut-define emulated system physical address ranges with interleave behavior. The QEMU enabling has been critical to get the driver off the ground, and may still move forward, but it does not address the ongoing needs of a regression testing environment and test driven development. This patch adds an ACPI CXL Platform definition with emulated CXL multi-ported host-bridges. A follow on patch adds emulated memory expander devices. Acked-by: Ben Widawsky <ben.widawsky@intel.com> Reported-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20210202005948.241655-1-ben.widawsky@intel.com [1] Link: https://lore.kernel.org/r/163164680798.2831381.838684634806668012.stgit@dwillia2-desk3.amr.corp.intel.com Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-09-14 12:14:22 -07:00
/*
* Unit test builds overrides this to __weak, find the 'strong' version
* of these symbols in tools/testing/cxl/.
*/
#ifndef __mock
#define __mock static
#endif
cxl/mem: Find device capabilities Provide enough functionality to utilize the mailbox of a memory device. The mailbox is used to interact with the firmware running on the memory device. The flow is proven with one implemented command, "identify". Because the class code has already told the driver this is a memory device and the identify command is mandatory. CXL devices contain an array of capabilities that describe the interactions software can have with the device or firmware running on the device. A CXL compliant device must implement the device status and the mailbox capability. Additionally, a CXL compliant memory device must implement the memory device capability. Each of the capabilities can [will] provide an offset within the MMIO region for interacting with the CXL device. The capabilities tell the driver how to find and map the register space for CXL Memory Devices. The registers are required to utilize the CXL spec defined mailbox interface. The spec outlines two mailboxes, primary and secondary. The secondary mailbox is earmarked for system firmware, and not handled in this driver. Primary mailboxes are capable of generating an interrupt when submitting a background command. That implementation is saved for a later time. Reported-by: Colin Ian King <colin.king@canonical.com> (coverity) Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch) Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2) Link: https://www.computeexpresslink.org/download-the-specification Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-02-16 20:09:51 -08:00
#endif /* __CXL_H__ */