linux-next/net/ipv6/addrconf.c

7389 lines
179 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* IPv6 Address [auto]configuration
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*/
/*
* Changes:
*
* Janos Farkas : delete timer on ifdown
* <chexum@bankinf.banki.hu>
* Andi Kleen : kill double kfree on module
* unload.
* Maciej W. Rozycki : FDDI support
* sekiya@USAGI : Don't send too many RS
* packets.
* yoshfuji@USAGI : Fixed interval between DAD
* packets.
* YOSHIFUJI Hideaki @USAGI : improved accuracy of
* address validation timer.
* YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041)
* support.
* Yuji SEKIYA @USAGI : Don't assign a same IPv6
* address on a same interface.
* YOSHIFUJI Hideaki @USAGI : ARCnet support
* YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to
* seq_file.
* YOSHIFUJI Hideaki @USAGI : improved source address
* selection; consider scope,
* status etc.
*/
#define pr_fmt(fmt) "IPv6: " fmt
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <linux/in6.h>
#include <linux/netdevice.h>
#include <linux/if_addr.h>
#include <linux/if_arp.h>
#include <linux/if_arcnet.h>
#include <linux/if_infiniband.h>
#include <linux/route.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/string.h>
#include <linux/hash.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/6lowpan.h>
#include <net/firewire.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <net/ip.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/l3mdev.h>
#include <linux/if_tunnel.h>
#include <linux/rtnetlink.h>
#include <linux/netconf.h>
#include <linux/random.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/export.h>
ipv6: ioam: Data plane support for Pre-allocated Trace Implement support for processing the IOAM Pre-allocated Trace with IPv6, see [1] and [2]. Introduce a new IPv6 Hop-by-Hop TLV option, see IANA [3]. A new per-interface sysctl is introduced. The value is a boolean to accept (=1) or ignore (=0, by default) IPv6 IOAM options on ingress for an interface: - net.ipv6.conf.XXX.ioam6_enabled Two other sysctls are introduced to define IOAM IDs, represented by an integer. They are respectively per-namespace and per-interface: - net.ipv6.ioam6_id - net.ipv6.conf.XXX.ioam6_id The value of the first one represents the IOAM ID of the node itself (u32; max and default value = U32_MAX>>8, due to hop limit concatenation) while the other represents the IOAM ID of an interface (u16; max and default value = U16_MAX). Each "ioam6_id" sysctl has a "_wide" equivalent: - net.ipv6.ioam6_id_wide - net.ipv6.conf.XXX.ioam6_id_wide The value of the first one represents the wide IOAM ID of the node itself (u64; max and default value = U64_MAX>>8, due to hop limit concatenation) while the other represents the wide IOAM ID of an interface (u32; max and default value = U32_MAX). The use of short and wide equivalents is not exclusive, a deployment could choose to leverage both. For example, net.ipv6.conf.XXX.ioam6_id (short format) could be an identifier for a physical interface, whereas net.ipv6.conf.XXX.ioam6_id_wide (wide format) could be an identifier for a logical sub-interface. Documentation about new sysctls is provided at the end of this patchset. Two relativistic hash tables are used: one for IOAM namespaces, the other for IOAM schemas. A namespace can only have a single active schema and a schema can only be attached to a single namespace (1:1 relationship). [1] https://tools.ietf.org/html/draft-ietf-ippm-ioam-ipv6-options [2] https://tools.ietf.org/html/draft-ietf-ippm-ioam-data [3] https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2 Signed-off-by: Justin Iurman <justin.iurman@uliege.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 19:42:57 +00:00
#include <linux/ioam6.h>
#define INFINITY_LIFE_TIME 0xFFFFFFFF
#define IPV6_MAX_STRLEN \
sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")
static inline u32 cstamp_delta(unsigned long cstamp)
{
return (cstamp - INITIAL_JIFFIES) * 100UL / HZ;
}
static inline s32 rfc3315_s14_backoff_init(s32 irt)
{
/* multiply 'initial retransmission time' by 0.9 .. 1.1 */
u64 tmp = get_random_u32_inclusive(900000, 1100000) * (u64)irt;
do_div(tmp, 1000000);
return (s32)tmp;
}
static inline s32 rfc3315_s14_backoff_update(s32 rt, s32 mrt)
{
/* multiply 'retransmission timeout' by 1.9 .. 2.1 */
u64 tmp = get_random_u32_inclusive(1900000, 2100000) * (u64)rt;
do_div(tmp, 1000000);
if ((s32)tmp > mrt) {
/* multiply 'maximum retransmission time' by 0.9 .. 1.1 */
tmp = get_random_u32_inclusive(900000, 1100000) * (u64)mrt;
do_div(tmp, 1000000);
}
return (s32)tmp;
}
#ifdef CONFIG_SYSCTL
static int addrconf_sysctl_register(struct inet6_dev *idev);
static void addrconf_sysctl_unregister(struct inet6_dev *idev);
#else
static inline int addrconf_sysctl_register(struct inet6_dev *idev)
{
return 0;
}
static inline void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
}
#endif
static void ipv6_gen_rnd_iid(struct in6_addr *addr);
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev);
static int ipv6_count_addresses(const struct inet6_dev *idev);
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
static int ipv6_generate_stable_address(struct in6_addr *addr,
u8 dad_count,
const struct inet6_dev *idev);
#define IN6_ADDR_HSIZE_SHIFT 8
#define IN6_ADDR_HSIZE (1 << IN6_ADDR_HSIZE_SHIFT)
static void addrconf_verify(struct net *net);
static void addrconf_verify_rtnl(struct net *net);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static struct workqueue_struct *addrconf_wq;
static void addrconf_join_anycast(struct inet6_ifaddr *ifp);
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp);
static void addrconf_type_change(struct net_device *dev,
unsigned long event);
static int addrconf_ifdown(struct net_device *dev, bool unregister);
static struct fib6_info *addrconf_get_prefix_route(const struct in6_addr *pfx,
int plen,
const struct net_device *dev,
u32 flags, u32 noflags,
bool no_gw);
static void addrconf_dad_start(struct inet6_ifaddr *ifp);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_dad_work(struct work_struct *w);
static void addrconf_dad_completed(struct inet6_ifaddr *ifp, bool bump_id,
bool send_na);
static void addrconf_dad_run(struct inet6_dev *idev, bool restart);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
static void addrconf_rs_timer(struct timer_list *t);
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo);
static struct ipv6_devconf ipv6_devconf __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.mldv1_unsolicited_report_interval = 10 * HZ,
.mldv2_unsolicited_report_interval = HZ,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_max_interval = RTR_SOLICITATION_MAX_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
.ra_defrtr_metric = IP6_RT_PRIO_USER,
.accept_ra_from_local = 0,
.accept_ra_min_hop_limit= 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_min_plen = 0,
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 0,
.suppress_frag_ndisc = 1,
.accept_ra_mtu = 1,
.stable_secret = {
.initialized = false,
},
.use_oif_addrs_only = 0,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
.ignore_routes_with_linkdown = 0,
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
.keep_addr_on_down = 0,
.seg6_enabled = 0,
#ifdef CONFIG_IPV6_SEG6_HMAC
.seg6_require_hmac = 0,
#endif
.enhanced_dad = 1,
.addr_gen_mode = IN6_ADDR_GEN_MODE_EUI64,
.disable_policy = 0,
.rpl_seg_enabled = 0,
ipv6: ioam: Data plane support for Pre-allocated Trace Implement support for processing the IOAM Pre-allocated Trace with IPv6, see [1] and [2]. Introduce a new IPv6 Hop-by-Hop TLV option, see IANA [3]. A new per-interface sysctl is introduced. The value is a boolean to accept (=1) or ignore (=0, by default) IPv6 IOAM options on ingress for an interface: - net.ipv6.conf.XXX.ioam6_enabled Two other sysctls are introduced to define IOAM IDs, represented by an integer. They are respectively per-namespace and per-interface: - net.ipv6.ioam6_id - net.ipv6.conf.XXX.ioam6_id The value of the first one represents the IOAM ID of the node itself (u32; max and default value = U32_MAX>>8, due to hop limit concatenation) while the other represents the IOAM ID of an interface (u16; max and default value = U16_MAX). Each "ioam6_id" sysctl has a "_wide" equivalent: - net.ipv6.ioam6_id_wide - net.ipv6.conf.XXX.ioam6_id_wide The value of the first one represents the wide IOAM ID of the node itself (u64; max and default value = U64_MAX>>8, due to hop limit concatenation) while the other represents the wide IOAM ID of an interface (u32; max and default value = U32_MAX). The use of short and wide equivalents is not exclusive, a deployment could choose to leverage both. For example, net.ipv6.conf.XXX.ioam6_id (short format) could be an identifier for a physical interface, whereas net.ipv6.conf.XXX.ioam6_id_wide (wide format) could be an identifier for a logical sub-interface. Documentation about new sysctls is provided at the end of this patchset. Two relativistic hash tables are used: one for IOAM namespaces, the other for IOAM schemas. A namespace can only have a single active schema and a schema can only be attached to a single namespace (1:1 relationship). [1] https://tools.ietf.org/html/draft-ietf-ippm-ioam-ipv6-options [2] https://tools.ietf.org/html/draft-ietf-ippm-ioam-data [3] https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2 Signed-off-by: Justin Iurman <justin.iurman@uliege.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 19:42:57 +00:00
.ioam6_enabled = 0,
.ioam6_id = IOAM6_DEFAULT_IF_ID,
.ioam6_id_wide = IOAM6_DEFAULT_IF_ID_WIDE,
.ndisc_evict_nocarrier = 1,
};
static struct ipv6_devconf ipv6_devconf_dflt __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.mldv1_unsolicited_report_interval = 10 * HZ,
.mldv2_unsolicited_report_interval = HZ,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_max_interval = RTR_SOLICITATION_MAX_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
.ra_defrtr_metric = IP6_RT_PRIO_USER,
.accept_ra_from_local = 0,
.accept_ra_min_hop_limit= 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_min_plen = 0,
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 1,
.suppress_frag_ndisc = 1,
.accept_ra_mtu = 1,
.stable_secret = {
.initialized = false,
},
.use_oif_addrs_only = 0,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
.ignore_routes_with_linkdown = 0,
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
.keep_addr_on_down = 0,
.seg6_enabled = 0,
#ifdef CONFIG_IPV6_SEG6_HMAC
.seg6_require_hmac = 0,
#endif
.enhanced_dad = 1,
.addr_gen_mode = IN6_ADDR_GEN_MODE_EUI64,
.disable_policy = 0,
.rpl_seg_enabled = 0,
ipv6: ioam: Data plane support for Pre-allocated Trace Implement support for processing the IOAM Pre-allocated Trace with IPv6, see [1] and [2]. Introduce a new IPv6 Hop-by-Hop TLV option, see IANA [3]. A new per-interface sysctl is introduced. The value is a boolean to accept (=1) or ignore (=0, by default) IPv6 IOAM options on ingress for an interface: - net.ipv6.conf.XXX.ioam6_enabled Two other sysctls are introduced to define IOAM IDs, represented by an integer. They are respectively per-namespace and per-interface: - net.ipv6.ioam6_id - net.ipv6.conf.XXX.ioam6_id The value of the first one represents the IOAM ID of the node itself (u32; max and default value = U32_MAX>>8, due to hop limit concatenation) while the other represents the IOAM ID of an interface (u16; max and default value = U16_MAX). Each "ioam6_id" sysctl has a "_wide" equivalent: - net.ipv6.ioam6_id_wide - net.ipv6.conf.XXX.ioam6_id_wide The value of the first one represents the wide IOAM ID of the node itself (u64; max and default value = U64_MAX>>8, due to hop limit concatenation) while the other represents the wide IOAM ID of an interface (u32; max and default value = U32_MAX). The use of short and wide equivalents is not exclusive, a deployment could choose to leverage both. For example, net.ipv6.conf.XXX.ioam6_id (short format) could be an identifier for a physical interface, whereas net.ipv6.conf.XXX.ioam6_id_wide (wide format) could be an identifier for a logical sub-interface. Documentation about new sysctls is provided at the end of this patchset. Two relativistic hash tables are used: one for IOAM namespaces, the other for IOAM schemas. A namespace can only have a single active schema and a schema can only be attached to a single namespace (1:1 relationship). [1] https://tools.ietf.org/html/draft-ietf-ippm-ioam-ipv6-options [2] https://tools.ietf.org/html/draft-ietf-ippm-ioam-data [3] https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2 Signed-off-by: Justin Iurman <justin.iurman@uliege.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 19:42:57 +00:00
.ioam6_enabled = 0,
.ioam6_id = IOAM6_DEFAULT_IF_ID,
.ioam6_id_wide = IOAM6_DEFAULT_IF_ID_WIDE,
.ndisc_evict_nocarrier = 1,
};
/* Check if link is ready: is it up and is a valid qdisc available */
static inline bool addrconf_link_ready(const struct net_device *dev)
{
return netif_oper_up(dev) && !qdisc_tx_is_noop(dev);
}
static void addrconf_del_rs_timer(struct inet6_dev *idev)
{
if (del_timer(&idev->rs_timer))
__in6_dev_put(idev);
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_del_dad_work(struct inet6_ifaddr *ifp)
{
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (cancel_delayed_work(&ifp->dad_work))
__in6_ifa_put(ifp);
}
static void addrconf_mod_rs_timer(struct inet6_dev *idev,
unsigned long when)
{
if (!timer_pending(&idev->rs_timer))
in6_dev_hold(idev);
mod_timer(&idev->rs_timer, jiffies + when);
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_mod_dad_work(struct inet6_ifaddr *ifp,
unsigned long delay)
{
in6_ifa_hold(ifp);
if (mod_delayed_work(addrconf_wq, &ifp->dad_work, delay))
in6_ifa_put(ifp);
}
static int snmp6_alloc_dev(struct inet6_dev *idev)
{
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-07 22:51:58 +00:00
int i;
memcg: accounting for objects allocated for new netdevice Creating a new netdevice allocates at least ~50Kb of memory for various kernel objects, but only ~5Kb of them are accounted to memcg. As a result, creating an unlimited number of netdevice inside a memcg-limited container does not fall within memcg restrictions, consumes a significant part of the host's memory, can cause global OOM and lead to random kills of host processes. The main consumers of non-accounted memory are: ~10Kb 80+ kernfs nodes ~6Kb ipv6_add_dev() allocations 6Kb __register_sysctl_table() allocations 4Kb neigh_sysctl_register() allocations 4Kb __devinet_sysctl_register() allocations 4Kb __addrconf_sysctl_register() allocations Accounting of these objects allows to increase the share of memcg-related memory up to 60-70% (~38Kb accounted vs ~54Kb total for dummy netdevice on typical VM with default Fedora 35 kernel) and this should be enough to somehow protect the host from misuse inside container. Other related objects are quite small and may not be taken into account to minimize the expected performance degradation. It should be separately mentonied ~300 bytes of percpu allocation of struct ipstats_mib in snmp6_alloc_dev(), on huge multi-cpu nodes it can become the main consumer of memory. This patch does not enables kernfs accounting as it affects other parts of the kernel and should be discussed separately. However, even without kernfs, this patch significantly improves the current situation and allows to take into account more than half of all netdevice allocations. Signed-off-by: Vasily Averin <vvs@openvz.org> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Link: https://lore.kernel.org/r/354a0a5f-9ec3-a25c-3215-304eab2157bc@openvz.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-02 12:15:51 +00:00
idev->stats.ipv6 = alloc_percpu_gfp(struct ipstats_mib, GFP_KERNEL_ACCOUNT);
if (!idev->stats.ipv6)
goto err_ip;
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-07 22:51:58 +00:00
for_each_possible_cpu(i) {
struct ipstats_mib *addrconf_stats;
addrconf_stats = per_cpu_ptr(idev->stats.ipv6, i);
net: Explicitly initialize u64_stats_sync structures for lockdep In order to enable lockdep on seqcount/seqlock structures, we must explicitly initialize any locks. The u64_stats_sync structure, uses a seqcount, and thus we need to introduce a u64_stats_init() function and use it to initialize the structure. This unfortunately adds a lot of fairly trivial initialization code to a number of drivers. But the benefit of ensuring correctness makes this worth while. Because these changes are required for lockdep to be enabled, and the changes are quite trivial, I've not yet split this patch out into 30-some separate patches, as I figured it would be better to get the various maintainers thoughts on how to best merge this change along with the seqcount lockdep enablement. Feedback would be appreciated! Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Julian Anastasov <ja@ssi.bg> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: James Morris <jmorris@namei.org> Cc: Jesse Gross <jesse@nicira.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mirko Lindner <mlindner@marvell.com> Cc: Patrick McHardy <kaber@trash.net> Cc: Roger Luethi <rl@hellgate.ch> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Simon Horman <horms@verge.net.au> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Cc: Wensong Zhang <wensong@linux-vs.org> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-2-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-07 22:51:58 +00:00
u64_stats_init(&addrconf_stats->syncp);
}
idev->stats.icmpv6dev = kzalloc(sizeof(struct icmpv6_mib_device),
GFP_KERNEL);
if (!idev->stats.icmpv6dev)
goto err_icmp;
idev->stats.icmpv6msgdev = kzalloc(sizeof(struct icmpv6msg_mib_device),
memcg: accounting for objects allocated for new netdevice Creating a new netdevice allocates at least ~50Kb of memory for various kernel objects, but only ~5Kb of them are accounted to memcg. As a result, creating an unlimited number of netdevice inside a memcg-limited container does not fall within memcg restrictions, consumes a significant part of the host's memory, can cause global OOM and lead to random kills of host processes. The main consumers of non-accounted memory are: ~10Kb 80+ kernfs nodes ~6Kb ipv6_add_dev() allocations 6Kb __register_sysctl_table() allocations 4Kb neigh_sysctl_register() allocations 4Kb __devinet_sysctl_register() allocations 4Kb __addrconf_sysctl_register() allocations Accounting of these objects allows to increase the share of memcg-related memory up to 60-70% (~38Kb accounted vs ~54Kb total for dummy netdevice on typical VM with default Fedora 35 kernel) and this should be enough to somehow protect the host from misuse inside container. Other related objects are quite small and may not be taken into account to minimize the expected performance degradation. It should be separately mentonied ~300 bytes of percpu allocation of struct ipstats_mib in snmp6_alloc_dev(), on huge multi-cpu nodes it can become the main consumer of memory. This patch does not enables kernfs accounting as it affects other parts of the kernel and should be discussed separately. However, even without kernfs, this patch significantly improves the current situation and allows to take into account more than half of all netdevice allocations. Signed-off-by: Vasily Averin <vvs@openvz.org> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Link: https://lore.kernel.org/r/354a0a5f-9ec3-a25c-3215-304eab2157bc@openvz.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-02 12:15:51 +00:00
GFP_KERNEL_ACCOUNT);
if (!idev->stats.icmpv6msgdev)
goto err_icmpmsg;
return 0;
err_icmpmsg:
kfree(idev->stats.icmpv6dev);
err_icmp:
free_percpu(idev->stats.ipv6);
err_ip:
return -ENOMEM;
}
static struct inet6_dev *ipv6_add_dev(struct net_device *dev)
{
struct inet6_dev *ndev;
int err = -ENOMEM;
ASSERT_RTNL();
if (dev->mtu < IPV6_MIN_MTU && dev != blackhole_netdev)
return ERR_PTR(-EINVAL);
memcg: accounting for objects allocated for new netdevice Creating a new netdevice allocates at least ~50Kb of memory for various kernel objects, but only ~5Kb of them are accounted to memcg. As a result, creating an unlimited number of netdevice inside a memcg-limited container does not fall within memcg restrictions, consumes a significant part of the host's memory, can cause global OOM and lead to random kills of host processes. The main consumers of non-accounted memory are: ~10Kb 80+ kernfs nodes ~6Kb ipv6_add_dev() allocations 6Kb __register_sysctl_table() allocations 4Kb neigh_sysctl_register() allocations 4Kb __devinet_sysctl_register() allocations 4Kb __addrconf_sysctl_register() allocations Accounting of these objects allows to increase the share of memcg-related memory up to 60-70% (~38Kb accounted vs ~54Kb total for dummy netdevice on typical VM with default Fedora 35 kernel) and this should be enough to somehow protect the host from misuse inside container. Other related objects are quite small and may not be taken into account to minimize the expected performance degradation. It should be separately mentonied ~300 bytes of percpu allocation of struct ipstats_mib in snmp6_alloc_dev(), on huge multi-cpu nodes it can become the main consumer of memory. This patch does not enables kernfs accounting as it affects other parts of the kernel and should be discussed separately. However, even without kernfs, this patch significantly improves the current situation and allows to take into account more than half of all netdevice allocations. Signed-off-by: Vasily Averin <vvs@openvz.org> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Link: https://lore.kernel.org/r/354a0a5f-9ec3-a25c-3215-304eab2157bc@openvz.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-02 12:15:51 +00:00
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL_ACCOUNT);
if (!ndev)
return ERR_PTR(err);
rwlock_init(&ndev->lock);
ndev->dev = dev;
INIT_LIST_HEAD(&ndev->addr_list);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
timer_setup(&ndev->rs_timer, addrconf_rs_timer, 0);
memcpy(&ndev->cnf, dev_net(dev)->ipv6.devconf_dflt, sizeof(ndev->cnf));
if (ndev->cnf.stable_secret.initialized)
ndev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
ndev->cnf.mtu6 = dev->mtu;
ipv6: add IFLA_INET6_RA_MTU to expose mtu value The kernel provides a "/proc/sys/net/ipv6/conf/<iface>/mtu" file, which can temporarily record the mtu value of the last received RA message when the RA mtu value is lower than the interface mtu, but this proc has following limitations: (1) when the interface mtu (/sys/class/net/<iface>/mtu) is updeated, mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) will be updated to the value of interface mtu; (2) mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) only affect ipv6 connection, and not affect ipv4. Therefore, when the mtu option is carried in the RA message, there will be a problem that the user sometimes cannot obtain RA mtu value correctly by reading mtu6. After this patch set, if a RA message carries the mtu option, you can send a netlink msg which nlmsg_type is RTM_GETLINK, and then by parsing the attribute of IFLA_INET6_RA_MTU to get the mtu value carried in the RA message received on the inet6 device. In addition, you can also get a link notification when ra_mtu is updated so it doesn't have to poll. In this way, if the MTU values that the device receives from the network in the PCO IPv4 and the RA IPv6 procedures are different, the user can obtain the correct ipv6 ra_mtu value and compare the value of ra_mtu and ipv4 mtu, then the device can use the lower MTU value for both IPv4 and IPv6. Signed-off-by: Rocco Yue <rocco.yue@mediatek.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210827150412.9267-1-rocco.yue@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-27 15:04:12 +00:00
ndev->ra_mtu = 0;
ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl);
if (!ndev->nd_parms) {
kfree(ndev);
return ERR_PTR(err);
}
if (ndev->cnf.forwarding)
dev_disable_lro(dev);
/* We refer to the device */
netdev_hold(dev, &ndev->dev_tracker, GFP_KERNEL);
if (snmp6_alloc_dev(ndev) < 0) {
netdev_dbg(dev, "%s: cannot allocate memory for statistics\n",
__func__);
neigh_parms_release(&nd_tbl, ndev->nd_parms);
netdev_put(dev, &ndev->dev_tracker);
kfree(ndev);
return ERR_PTR(err);
}
if (dev != blackhole_netdev) {
if (snmp6_register_dev(ndev) < 0) {
netdev_dbg(dev, "%s: cannot create /proc/net/dev_snmp6/%s\n",
__func__, dev->name);
goto err_release;
}
}
/* One reference from device. */
refcount_set(&ndev->refcnt, 1);
if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
ndev->cnf.accept_dad = -1;
#if IS_ENABLED(CONFIG_IPV6_SIT)
if (dev->type == ARPHRD_SIT && (dev->priv_flags & IFF_ISATAP)) {
pr_info("%s: Disabled Multicast RS\n", dev->name);
ndev->cnf.rtr_solicits = 0;
}
#endif
INIT_LIST_HEAD(&ndev->tempaddr_list);
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
ndev->desync_factor = U32_MAX;
if ((dev->flags&IFF_LOOPBACK) ||
dev->type == ARPHRD_TUNNEL ||
dev->type == ARPHRD_TUNNEL6 ||
dev->type == ARPHRD_SIT ||
dev->type == ARPHRD_NONE) {
ndev->cnf.use_tempaddr = -1;
}
ndev->token = in6addr_any;
if (netif_running(dev) && addrconf_link_ready(dev))
ndev->if_flags |= IF_READY;
ipv6_mc_init_dev(ndev);
ndev->tstamp = jiffies;
if (dev != blackhole_netdev) {
err = addrconf_sysctl_register(ndev);
if (err) {
ipv6_mc_destroy_dev(ndev);
snmp6_unregister_dev(ndev);
goto err_release;
}
}
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, ndev);
if (dev != blackhole_netdev) {
/* Join interface-local all-node multicast group */
ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allnodes);
/* Join all-node multicast group */
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allnodes);
/* Join all-router multicast group if forwarding is set */
if (ndev->cnf.forwarding && (dev->flags & IFF_MULTICAST))
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
}
return ndev;
err_release:
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return ERR_PTR(err);
}
static struct inet6_dev *ipv6_find_idev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = __in6_dev_get(dev);
if (!idev) {
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
return idev;
}
if (dev->flags&IFF_UP)
ipv6_mc_up(idev);
return idev;
}
static int inet6_netconf_msgsize_devconf(int type)
{
int size = NLMSG_ALIGN(sizeof(struct netconfmsg))
+ nla_total_size(4); /* NETCONFA_IFINDEX */
bool all = false;
if (type == NETCONFA_ALL)
all = true;
if (all || type == NETCONFA_FORWARDING)
size += nla_total_size(4);
#ifdef CONFIG_IPV6_MROUTE
if (all || type == NETCONFA_MC_FORWARDING)
size += nla_total_size(4);
#endif
if (all || type == NETCONFA_PROXY_NEIGH)
size += nla_total_size(4);
if (all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN)
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
size += nla_total_size(4);
return size;
}
static int inet6_netconf_fill_devconf(struct sk_buff *skb, int ifindex,
struct ipv6_devconf *devconf, u32 portid,
u32 seq, int event, unsigned int flags,
int type)
{
struct nlmsghdr *nlh;
struct netconfmsg *ncm;
bool all = false;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct netconfmsg),
flags);
if (!nlh)
return -EMSGSIZE;
if (type == NETCONFA_ALL)
all = true;
ncm = nlmsg_data(nlh);
ncm->ncm_family = AF_INET6;
if (nla_put_s32(skb, NETCONFA_IFINDEX, ifindex) < 0)
goto nla_put_failure;
if (!devconf)
goto out;
if ((all || type == NETCONFA_FORWARDING) &&
nla_put_s32(skb, NETCONFA_FORWARDING, devconf->forwarding) < 0)
goto nla_put_failure;
#ifdef CONFIG_IPV6_MROUTE
if ((all || type == NETCONFA_MC_FORWARDING) &&
nla_put_s32(skb, NETCONFA_MC_FORWARDING,
atomic_read(&devconf->mc_forwarding)) < 0)
goto nla_put_failure;
#endif
if ((all || type == NETCONFA_PROXY_NEIGH) &&
nla_put_s32(skb, NETCONFA_PROXY_NEIGH, devconf->proxy_ndp) < 0)
goto nla_put_failure;
if ((all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN) &&
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
nla_put_s32(skb, NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
devconf->ignore_routes_with_linkdown) < 0)
goto nla_put_failure;
out:
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
void inet6_netconf_notify_devconf(struct net *net, int event, int type,
int ifindex, struct ipv6_devconf *devconf)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet6_netconf_msgsize_devconf(type), GFP_KERNEL);
if (!skb)
goto errout;
err = inet6_netconf_fill_devconf(skb, ifindex, devconf, 0, 0,
event, 0, type);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_NETCONF, NULL, GFP_KERNEL);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_IPV6_NETCONF, err);
}
static const struct nla_policy devconf_ipv6_policy[NETCONFA_MAX+1] = {
[NETCONFA_IFINDEX] = { .len = sizeof(int) },
[NETCONFA_FORWARDING] = { .len = sizeof(int) },
[NETCONFA_PROXY_NEIGH] = { .len = sizeof(int) },
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
[NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN] = { .len = sizeof(int) },
};
static int inet6_netconf_valid_get_req(struct sk_buff *skb,
const struct nlmsghdr *nlh,
struct nlattr **tb,
struct netlink_ext_ack *extack)
{
int i, err;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(struct netconfmsg))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid header for netconf get request");
return -EINVAL;
}
if (!netlink_strict_get_check(skb))
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
return nlmsg_parse_deprecated(nlh, sizeof(struct netconfmsg),
tb, NETCONFA_MAX,
devconf_ipv6_policy, extack);
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct netconfmsg),
tb, NETCONFA_MAX,
devconf_ipv6_policy, extack);
if (err)
return err;
for (i = 0; i <= NETCONFA_MAX; i++) {
if (!tb[i])
continue;
switch (i) {
case NETCONFA_IFINDEX:
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in netconf get request");
return -EINVAL;
}
}
return 0;
}
static int inet6_netconf_get_devconf(struct sk_buff *in_skb,
struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(in_skb->sk);
struct nlattr *tb[NETCONFA_MAX+1];
struct inet6_dev *in6_dev = NULL;
struct net_device *dev = NULL;
struct sk_buff *skb;
struct ipv6_devconf *devconf;
int ifindex;
int err;
err = inet6_netconf_valid_get_req(in_skb, nlh, tb, extack);
if (err < 0)
return err;
if (!tb[NETCONFA_IFINDEX])
return -EINVAL;
err = -EINVAL;
ifindex = nla_get_s32(tb[NETCONFA_IFINDEX]);
switch (ifindex) {
case NETCONFA_IFINDEX_ALL:
devconf = net->ipv6.devconf_all;
break;
case NETCONFA_IFINDEX_DEFAULT:
devconf = net->ipv6.devconf_dflt;
break;
default:
dev = dev_get_by_index(net, ifindex);
if (!dev)
return -EINVAL;
in6_dev = in6_dev_get(dev);
if (!in6_dev)
goto errout;
devconf = &in6_dev->cnf;
break;
}
err = -ENOBUFS;
skb = nlmsg_new(inet6_netconf_msgsize_devconf(NETCONFA_ALL), GFP_KERNEL);
if (!skb)
goto errout;
err = inet6_netconf_fill_devconf(skb, ifindex, devconf,
NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, RTM_NEWNETCONF, 0,
NETCONFA_ALL);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout:
if (in6_dev)
in6_dev_put(in6_dev);
dev_put(dev);
return err;
}
static int inet6_netconf_dump_devconf(struct sk_buff *skb,
struct netlink_callback *cb)
{
const struct nlmsghdr *nlh = cb->nlh;
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx, s_idx;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
if (cb->strict_check) {
struct netlink_ext_ack *extack = cb->extack;
struct netconfmsg *ncm;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ncm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid header for netconf dump request");
return -EINVAL;
}
if (nlmsg_attrlen(nlh, sizeof(*ncm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid data after header in netconf dump request");
return -EINVAL;
}
}
s_h = cb->args[0];
s_idx = idx = cb->args[1];
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
rcu_read_lock();
cb->seq = atomic_read(&net->ipv6.dev_addr_genid) ^
net->dev_base_seq;
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (inet6_netconf_fill_devconf(skb, dev->ifindex,
&idev->cnf,
NETLINK_CB(cb->skb).portid,
nlh->nlmsg_seq,
RTM_NEWNETCONF,
NLM_F_MULTI,
NETCONFA_ALL) < 0) {
rcu_read_unlock();
goto done;
}
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
cont:
idx++;
}
rcu_read_unlock();
}
if (h == NETDEV_HASHENTRIES) {
if (inet6_netconf_fill_devconf(skb, NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all,
NETLINK_CB(cb->skb).portid,
nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
NETCONFA_ALL) < 0)
goto done;
else
h++;
}
if (h == NETDEV_HASHENTRIES + 1) {
if (inet6_netconf_fill_devconf(skb, NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt,
NETLINK_CB(cb->skb).portid,
nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
NETCONFA_ALL) < 0)
goto done;
else
h++;
}
done:
cb->args[0] = h;
cb->args[1] = idx;
return skb->len;
}
#ifdef CONFIG_SYSCTL
static void dev_forward_change(struct inet6_dev *idev)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
LIST_HEAD(tmp_addr_list);
if (!idev)
return;
dev = idev->dev;
if (idev->cnf.forwarding)
dev_disable_lro(dev);
if (dev->flags & IFF_MULTICAST) {
if (idev->cnf.forwarding) {
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allrouters);
ipv6_dev_mc_inc(dev, &in6addr_sitelocal_allrouters);
} else {
ipv6_dev_mc_dec(dev, &in6addr_linklocal_allrouters);
ipv6_dev_mc_dec(dev, &in6addr_interfacelocal_allrouters);
ipv6_dev_mc_dec(dev, &in6addr_sitelocal_allrouters);
}
}
read_lock_bh(&idev->lock);
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (ifa->flags&IFA_F_TENTATIVE)
continue;
list_add_tail(&ifa->if_list_aux, &tmp_addr_list);
}
read_unlock_bh(&idev->lock);
while (!list_empty(&tmp_addr_list)) {
ifa = list_first_entry(&tmp_addr_list,
struct inet6_ifaddr, if_list_aux);
list_del(&ifa->if_list_aux);
if (idev->cnf.forwarding)
addrconf_join_anycast(ifa);
else
addrconf_leave_anycast(ifa);
}
inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
NETCONFA_FORWARDING,
dev->ifindex, &idev->cnf);
}
static void addrconf_forward_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
ipv6: addrconf: Avoid calling netdevice notifiers with RCU read-side lock Cong Wang reports that lockdep detected suspicious RCU usage while enabling IPV6 forwarding: [ 1123.310275] =============================== [ 1123.442202] [ INFO: suspicious RCU usage. ] [ 1123.558207] 3.6.0-rc1+ #109 Not tainted [ 1123.665204] ------------------------------- [ 1123.768254] include/linux/rcupdate.h:430 Illegal context switch in RCU read-side critical section! [ 1123.992320] [ 1123.992320] other info that might help us debug this: [ 1123.992320] [ 1124.307382] [ 1124.307382] rcu_scheduler_active = 1, debug_locks = 0 [ 1124.522220] 2 locks held by sysctl/5710: [ 1124.648364] #0: (rtnl_mutex){+.+.+.}, at: [<ffffffff81768498>] rtnl_trylock+0x15/0x17 [ 1124.882211] #1: (rcu_read_lock){.+.+.+}, at: [<ffffffff81871df8>] rcu_lock_acquire+0x0/0x29 [ 1125.085209] [ 1125.085209] stack backtrace: [ 1125.332213] Pid: 5710, comm: sysctl Not tainted 3.6.0-rc1+ #109 [ 1125.441291] Call Trace: [ 1125.545281] [<ffffffff8109d915>] lockdep_rcu_suspicious+0x109/0x112 [ 1125.667212] [<ffffffff8107c240>] rcu_preempt_sleep_check+0x45/0x47 [ 1125.781838] [<ffffffff8107c260>] __might_sleep+0x1e/0x19b [...] [ 1127.445223] [<ffffffff81757ac5>] call_netdevice_notifiers+0x4a/0x4f [...] [ 1127.772188] [<ffffffff8175e125>] dev_disable_lro+0x32/0x6b [ 1127.885174] [<ffffffff81872d26>] dev_forward_change+0x30/0xcb [ 1128.013214] [<ffffffff818738c4>] addrconf_forward_change+0x85/0xc5 [...] addrconf_forward_change() uses RCU iteration over the netdev list, which is unnecessary since it already holds the RTNL lock. We also cannot reasonably require netdevice notifier functions not to sleep. Reported-by: Cong Wang <amwang@redhat.com> Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-14 08:54:51 +00:00
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.forwarding) ^ (!newf);
idev->cnf.forwarding = newf;
if (changed)
dev_forward_change(idev);
}
}
}
static int addrconf_fixup_forwarding(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->forwarding) {
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->forwarding) {
int old_dflt = net->ipv6.devconf_dflt->forwarding;
net->ipv6.devconf_dflt->forwarding = newf;
if ((!newf) ^ (!old_dflt))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
addrconf_forward_change(net, newf);
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
} else if ((!newf) ^ (!old))
dev_forward_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
if (newf)
rt6_purge_dflt_routers(net);
return 1;
}
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
static void addrconf_linkdown_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.ignore_routes_with_linkdown) ^ (!newf);
idev->cnf.ignore_routes_with_linkdown = newf;
if (changed)
inet6_netconf_notify_devconf(dev_net(dev),
RTM_NEWNETCONF,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
dev->ifindex,
&idev->cnf);
}
}
}
static int addrconf_fixup_linkdown(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->ignore_routes_with_linkdown) {
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net,
RTM_NEWNETCONF,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->ignore_routes_with_linkdown) {
net->ipv6.devconf_dflt->ignore_routes_with_linkdown = newf;
addrconf_linkdown_change(net, newf);
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net,
RTM_NEWNETCONF,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
}
rtnl_unlock();
return 1;
}
#endif
/* Nobody refers to this ifaddr, destroy it */
void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp)
{
WARN_ON(!hlist_unhashed(&ifp->addr_lst));
#ifdef NET_REFCNT_DEBUG
pr_debug("%s\n", __func__);
#endif
in6_dev_put(ifp->idev);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (cancel_delayed_work(&ifp->dad_work))
pr_notice("delayed DAD work was pending while freeing ifa=%p\n",
ifp);
if (ifp->state != INET6_IFADDR_STATE_DEAD) {
pr_warn("Freeing alive inet6 address %p\n", ifp);
return;
}
kfree_rcu(ifp, rcu);
}
static void
ipv6_link_dev_addr(struct inet6_dev *idev, struct inet6_ifaddr *ifp)
{
struct list_head *p;
int ifp_scope = ipv6_addr_src_scope(&ifp->addr);
/*
* Each device address list is sorted in order of scope -
* global before linklocal.
*/
list_for_each(p, &idev->addr_list) {
struct inet6_ifaddr *ifa
= list_entry(p, struct inet6_ifaddr, if_list);
if (ifp_scope >= ipv6_addr_src_scope(&ifa->addr))
break;
}
list_add_tail_rcu(&ifp->if_list, p);
}
static u32 inet6_addr_hash(const struct net *net, const struct in6_addr *addr)
{
u32 val = ipv6_addr_hash(addr) ^ net_hash_mix(net);
return hash_32(val, IN6_ADDR_HSIZE_SHIFT);
}
static bool ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr,
struct net_device *dev, unsigned int hash)
{
struct inet6_ifaddr *ifp;
hlist_for_each_entry(ifp, &net->ipv6.inet6_addr_lst[hash], addr_lst) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (!dev || ifp->idev->dev == dev)
return true;
}
}
return false;
}
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
static int ipv6_add_addr_hash(struct net_device *dev, struct inet6_ifaddr *ifa)
{
struct net *net = dev_net(dev);
unsigned int hash = inet6_addr_hash(net, &ifa->addr);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
int err = 0;
spin_lock(&net->ipv6.addrconf_hash_lock);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
/* Ignore adding duplicate addresses on an interface */
if (ipv6_chk_same_addr(net, &ifa->addr, dev, hash)) {
netdev_dbg(dev, "ipv6_add_addr: already assigned\n");
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
err = -EEXIST;
} else {
hlist_add_head_rcu(&ifa->addr_lst, &net->ipv6.inet6_addr_lst[hash]);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
}
spin_unlock(&net->ipv6.addrconf_hash_lock);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
return err;
}
/* On success it returns ifp with increased reference count */
static struct inet6_ifaddr *
ipv6_add_addr(struct inet6_dev *idev, struct ifa6_config *cfg,
bool can_block, struct netlink_ext_ack *extack)
{
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
gfp_t gfp_flags = can_block ? GFP_KERNEL : GFP_ATOMIC;
int addr_type = ipv6_addr_type(cfg->pfx);
struct net *net = dev_net(idev->dev);
struct inet6_ifaddr *ifa = NULL;
struct fib6_info *f6i = NULL;
int err = 0;
if (addr_type == IPV6_ADDR_ANY ||
(addr_type & IPV6_ADDR_MULTICAST &&
!(cfg->ifa_flags & IFA_F_MCAUTOJOIN)) ||
(!(idev->dev->flags & IFF_LOOPBACK) &&
!netif_is_l3_master(idev->dev) &&
addr_type & IPV6_ADDR_LOOPBACK))
return ERR_PTR(-EADDRNOTAVAIL);
if (idev->dead) {
err = -ENODEV; /*XXX*/
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
goto out;
}
if (idev->cnf.disable_ipv6) {
err = -EACCES;
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
goto out;
}
/* validator notifier needs to be blocking;
* do not call in atomic context
*/
if (can_block) {
struct in6_validator_info i6vi = {
.i6vi_addr = *cfg->pfx,
.i6vi_dev = idev,
.extack = extack,
};
err = inet6addr_validator_notifier_call_chain(NETDEV_UP, &i6vi);
err = notifier_to_errno(err);
if (err < 0)
goto out;
}
memcg: enable accounting for IP address and routing-related objects An netadmin inside container can use 'ip a a' and 'ip r a' to assign a large number of ipv4/ipv6 addresses and routing entries and force kernel to allocate megabytes of unaccounted memory for long-lived per-netdevice related kernel objects: 'struct in_ifaddr', 'struct inet6_ifaddr', 'struct fib6_node', 'struct rt6_info', 'struct fib_rules' and ip_fib caches. These objects can be manually removed, though usually they lives in memory till destroy of its net namespace. It makes sense to account for them to restrict the host's memory consumption from inside the memcg-limited container. One of such objects is the 'struct fib6_node' mostly allocated in net/ipv6/route.c::__ip6_ins_rt() inside the lock_bh()/unlock_bh() section: write_lock_bh(&table->tb6_lock); err = fib6_add(&table->tb6_root, rt, info, mxc); write_unlock_bh(&table->tb6_lock); In this case it is not enough to simply add SLAB_ACCOUNT to corresponding kmem cache. The proper memory cgroup still cannot be found due to the incorrect 'in_interrupt()' check used in memcg_kmem_bypass(). Obsoleted in_interrupt() does not describe real execution context properly. >From include/linux/preempt.h: The following macros are deprecated and should not be used in new code: in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled To verify the current execution context new macro should be used instead: in_task() - We're in task context Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-19 10:44:31 +00:00
ifa = kzalloc(sizeof(*ifa), gfp_flags | __GFP_ACCOUNT);
if (!ifa) {
err = -ENOBUFS;
goto out;
}
f6i = addrconf_f6i_alloc(net, idev, cfg->pfx, false, gfp_flags);
if (IS_ERR(f6i)) {
err = PTR_ERR(f6i);
f6i = NULL;
goto out;
}
neigh_parms_data_state_setall(idev->nd_parms);
ifa->addr = *cfg->pfx;
if (cfg->peer_pfx)
ifa->peer_addr = *cfg->peer_pfx;
spin_lock_init(&ifa->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
INIT_DELAYED_WORK(&ifa->dad_work, addrconf_dad_work);
INIT_HLIST_NODE(&ifa->addr_lst);
ifa->scope = cfg->scope;
ifa->prefix_len = cfg->plen;
ifa->rt_priority = cfg->rt_priority;
ifa->flags = cfg->ifa_flags;
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
ifa->ifa_proto = cfg->ifa_proto;
/* No need to add the TENTATIVE flag for addresses with NODAD */
if (!(cfg->ifa_flags & IFA_F_NODAD))
ifa->flags |= IFA_F_TENTATIVE;
ifa->valid_lft = cfg->valid_lft;
ifa->prefered_lft = cfg->preferred_lft;
ifa->cstamp = ifa->tstamp = jiffies;
ifa->tokenized = false;
ifa->rt = f6i;
ifa->idev = idev;
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
in6_dev_hold(idev);
/* For caller */
refcount_set(&ifa->refcnt, 1);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
rcu_read_lock_bh();
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
err = ipv6_add_addr_hash(idev->dev, ifa);
if (err < 0) {
rcu_read_unlock_bh();
goto out;
}
write_lock(&idev->lock);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
/* Add to inet6_dev unicast addr list. */
ipv6_link_dev_addr(idev, ifa);
if (ifa->flags&IFA_F_TEMPORARY) {
list_add(&ifa->tmp_list, &idev->tempaddr_list);
in6_ifa_hold(ifa);
}
in6_ifa_hold(ifa);
write_unlock(&idev->lock);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
rcu_read_unlock_bh();
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
inet6addr_notifier_call_chain(NETDEV_UP, ifa);
out:
if (unlikely(err < 0)) {
fib6_info_release(f6i);
ipv6: addrconf: cleanup locking in ipv6_add_addr ipv6_add_addr is called in process context with rtnl lock held (e.g., manual config of an address) or during softirq processing (e.g., autoconf and address from a router advertisement). Currently, ipv6_add_addr calls rcu_read_lock_bh shortly after entry and does not call unlock until exit, minus the call around the address validator notifier. Similarly, addrconf_hash_lock is taken after the validator notifier and held until exit. This forces the allocation of inet6_ifaddr to always be atomic. Refactor ipv6_add_addr as follows: 1. add an input boolean to discriminate the call path (process context or softirq). This new flag controls whether the alloc can be done with GFP_KERNEL or GFP_ATOMIC. 2. Move the rcu_read_lock_bh and unlock calls only around functions that do rcu updates. 3. Remove the in6_dev_hold and put added by 3ad7d2468f79f ("Ipvlan should return an error when an address is already in use."). This was done presumably because rcu_read_unlock_bh needs to be called before calling the validator. Since rcu_read_lock is not needed before the validator runs revert the hold and put added by 3ad7d2468f79f and only do the hold when setting ifp->idev. 4. move duplicate address check and insertion of new address in the global address hash into a helper. The helper is called after an ifa is allocated and filled in. This allows the ifa for manually configured addresses to be done with GFP_KERNEL and reduces the overall amount of time with rcu_read_lock held and hash table spinlock held. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 16:56:52 +00:00
if (ifa) {
if (ifa->idev)
in6_dev_put(ifa->idev);
kfree(ifa);
}
ifa = ERR_PTR(err);
}
return ifa;
}
enum cleanup_prefix_rt_t {
CLEANUP_PREFIX_RT_NOP, /* no cleanup action for prefix route */
CLEANUP_PREFIX_RT_DEL, /* delete the prefix route */
CLEANUP_PREFIX_RT_EXPIRE, /* update the lifetime of the prefix route */
};
/*
* Check, whether the prefix for ifp would still need a prefix route
* after deleting ifp. The function returns one of the CLEANUP_PREFIX_RT_*
* constants.
*
* 1) we don't purge prefix if address was not permanent.
* prefix is managed by its own lifetime.
* 2) we also don't purge, if the address was IFA_F_NOPREFIXROUTE.
* 3) if there are no addresses, delete prefix.
* 4) if there are still other permanent address(es),
* corresponding prefix is still permanent.
* 5) if there are still other addresses with IFA_F_NOPREFIXROUTE,
* don't purge the prefix, assume user space is managing it.
* 6) otherwise, update prefix lifetime to the
* longest valid lifetime among the corresponding
* addresses on the device.
* Note: subsequent RA will update lifetime.
**/
static enum cleanup_prefix_rt_t
check_cleanup_prefix_route(struct inet6_ifaddr *ifp, unsigned long *expires)
{
struct inet6_ifaddr *ifa;
struct inet6_dev *idev = ifp->idev;
unsigned long lifetime;
enum cleanup_prefix_rt_t action = CLEANUP_PREFIX_RT_DEL;
*expires = jiffies;
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (ifa == ifp)
continue;
if (ifa->prefix_len != ifp->prefix_len ||
!ipv6_prefix_equal(&ifa->addr, &ifp->addr,
ifp->prefix_len))
continue;
if (ifa->flags & (IFA_F_PERMANENT | IFA_F_NOPREFIXROUTE))
return CLEANUP_PREFIX_RT_NOP;
action = CLEANUP_PREFIX_RT_EXPIRE;
spin_lock(&ifa->lock);
lifetime = addrconf_timeout_fixup(ifa->valid_lft, HZ);
/*
* Note: Because this address is
* not permanent, lifetime <
* LONG_MAX / HZ here.
*/
if (time_before(*expires, ifa->tstamp + lifetime * HZ))
*expires = ifa->tstamp + lifetime * HZ;
spin_unlock(&ifa->lock);
}
return action;
}
static void
cleanup_prefix_route(struct inet6_ifaddr *ifp, unsigned long expires,
bool del_rt, bool del_peer)
{
struct fib6_info *f6i;
f6i = addrconf_get_prefix_route(del_peer ? &ifp->peer_addr : &ifp->addr,
ifp->prefix_len,
ifp->idev->dev, 0, RTF_DEFAULT, true);
if (f6i) {
if (del_rt)
ip6_del_rt(dev_net(ifp->idev->dev), f6i, false);
else {
if (!(f6i->fib6_flags & RTF_EXPIRES))
fib6_set_expires(f6i, expires);
fib6_info_release(f6i);
}
}
}
/* This function wants to get referenced ifp and releases it before return */
static void ipv6_del_addr(struct inet6_ifaddr *ifp)
{
enum cleanup_prefix_rt_t action = CLEANUP_PREFIX_RT_NOP;
struct net *net = dev_net(ifp->idev->dev);
unsigned long expires;
int state;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
ASSERT_RTNL();
spin_lock_bh(&ifp->lock);
state = ifp->state;
ifp->state = INET6_IFADDR_STATE_DEAD;
spin_unlock_bh(&ifp->lock);
if (state == INET6_IFADDR_STATE_DEAD)
goto out;
spin_lock_bh(&net->ipv6.addrconf_hash_lock);
hlist_del_init_rcu(&ifp->addr_lst);
spin_unlock_bh(&net->ipv6.addrconf_hash_lock);
write_lock_bh(&ifp->idev->lock);
if (ifp->flags&IFA_F_TEMPORARY) {
list_del(&ifp->tmp_list);
if (ifp->ifpub) {
in6_ifa_put(ifp->ifpub);
ifp->ifpub = NULL;
}
__in6_ifa_put(ifp);
}
if (ifp->flags & IFA_F_PERMANENT && !(ifp->flags & IFA_F_NOPREFIXROUTE))
action = check_cleanup_prefix_route(ifp, &expires);
list_del_rcu(&ifp->if_list);
__in6_ifa_put(ifp);
write_unlock_bh(&ifp->idev->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_del_dad_work(ifp);
ipv6_ifa_notify(RTM_DELADDR, ifp);
inet6addr_notifier_call_chain(NETDEV_DOWN, ifp);
if (action != CLEANUP_PREFIX_RT_NOP) {
cleanup_prefix_route(ifp, expires,
action == CLEANUP_PREFIX_RT_DEL, false);
}
/* clean up prefsrc entries */
rt6_remove_prefsrc(ifp);
out:
in6_ifa_put(ifp);
}
static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp, bool block)
{
struct inet6_dev *idev = ifp->idev;
unsigned long tmp_tstamp, age;
unsigned long regen_advance;
unsigned long now = jiffies;
s32 cnf_temp_preferred_lft;
struct inet6_ifaddr *ift;
struct ifa6_config cfg;
long max_desync_factor;
struct in6_addr addr;
int ret = 0;
write_lock_bh(&idev->lock);
retry:
in6_dev_hold(idev);
if (idev->cnf.use_tempaddr <= 0) {
write_unlock_bh(&idev->lock);
pr_info("%s: use_tempaddr is disabled\n", __func__);
in6_dev_put(idev);
ret = -1;
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->regen_count++ >= idev->cnf.regen_max_retry) {
idev->cnf.use_tempaddr = -1; /*XXX*/
spin_unlock_bh(&ifp->lock);
write_unlock_bh(&idev->lock);
pr_warn("%s: regeneration time exceeded - disabled temporary address support\n",
__func__);
in6_dev_put(idev);
ret = -1;
goto out;
}
in6_ifa_hold(ifp);
memcpy(addr.s6_addr, ifp->addr.s6_addr, 8);
ipv6_gen_rnd_iid(&addr);
age = (now - ifp->tstamp) / HZ;
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
regen_advance = idev->cnf.regen_max_retry *
idev->cnf.dad_transmits *
max(NEIGH_VAR(idev->nd_parms, RETRANS_TIME), HZ/100) / HZ;
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
/* recalculate max_desync_factor each time and update
* idev->desync_factor if it's larger
*/
cnf_temp_preferred_lft = READ_ONCE(idev->cnf.temp_prefered_lft);
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
max_desync_factor = min_t(__u32,
idev->cnf.max_desync_factor,
cnf_temp_preferred_lft - regen_advance);
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
if (unlikely(idev->desync_factor > max_desync_factor)) {
if (max_desync_factor > 0) {
get_random_bytes(&idev->desync_factor,
sizeof(idev->desync_factor));
idev->desync_factor %= max_desync_factor;
} else {
idev->desync_factor = 0;
}
}
net/ipv6: Ensure cfg is properly initialized in ipv6_create_tempaddr Valdis reported a BUG in ipv6_add_addr: [ 1820.832682] BUG: unable to handle kernel NULL pointer dereference at 0000000000000209 [ 1820.832728] RIP: 0010:ipv6_add_addr+0x280/0xd10 [ 1820.832732] Code: 49 8b 1f 0f 84 6a 0a 00 00 48 85 db 0f 84 4e 0a 00 00 48 8b 03 48 8b 53 08 49 89 45 00 49 8b 47 10 49 89 55 08 48 85 c0 74 15 <48> 8b 50 08 48 8b 00 49 89 95 b8 01 00 00 49 89 85 b0 01 00 00 4c [ 1820.832847] RSP: 0018:ffffaa07c2fd7880 EFLAGS: 00010202 [ 1820.832853] RAX: 0000000000000201 RBX: ffffaa07c2fd79b0 RCX: 0000000000000000 [ 1820.832858] RDX: a4cfbfba2cbfa64c RSI: 0000000000000000 RDI: ffffffff8a8e9fa0 [ 1820.832862] RBP: ffffaa07c2fd7920 R08: 000000000000017a R09: ffffffff8a555300 [ 1820.832866] R10: 0000000000000000 R11: 0000000000000000 R12: ffff888d18e71c00 [ 1820.832871] R13: ffff888d0a9b1200 R14: 0000000000000000 R15: ffffaa07c2fd7980 [ 1820.832876] FS: 00007faa51bdb800(0000) GS:ffff888d1d400000(0000) knlGS:0000000000000000 [ 1820.832880] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1820.832885] CR2: 0000000000000209 CR3: 000000021e8f8001 CR4: 00000000001606e0 [ 1820.832888] Call Trace: [ 1820.832898] ? __local_bh_enable_ip+0x119/0x260 [ 1820.832904] ? ipv6_create_tempaddr+0x259/0x5a0 [ 1820.832912] ? __local_bh_enable_ip+0x139/0x260 [ 1820.832921] ipv6_create_tempaddr+0x2da/0x5a0 [ 1820.832926] ? ipv6_create_tempaddr+0x2da/0x5a0 [ 1820.832941] manage_tempaddrs+0x1a5/0x240 [ 1820.832951] inet6_addr_del+0x20b/0x3b0 [ 1820.832959] ? nla_parse+0xce/0x1e0 [ 1820.832968] inet6_rtm_deladdr+0xd9/0x210 [ 1820.832981] rtnetlink_rcv_msg+0x1d4/0x5f0 Looking at the code I found 1 element (peer_pfx) of the newly introduced ifa6_config struct that is not initialized. Use a memset rather than hard coding an init for each struct element. Reported-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Fixes: e6464b8c63619 ("net/ipv6: Convert ipv6_add_addr to struct ifa6_config") Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-11 14:12:12 +00:00
memset(&cfg, 0, sizeof(cfg));
cfg.valid_lft = min_t(__u32, ifp->valid_lft,
idev->cnf.temp_valid_lft + age);
cfg.preferred_lft = cnf_temp_preferred_lft + age - idev->desync_factor;
cfg.preferred_lft = min_t(__u32, ifp->prefered_lft, cfg.preferred_lft);
cfg.plen = ifp->prefix_len;
tmp_tstamp = ifp->tstamp;
spin_unlock_bh(&ifp->lock);
write_unlock_bh(&idev->lock);
/* A temporary address is created only if this calculated Preferred
* Lifetime is greater than REGEN_ADVANCE time units. In particular,
* an implementation must not create a temporary address with a zero
* Preferred Lifetime.
* Use age calculation as in addrconf_verify to avoid unnecessary
* temporary addresses being generated.
*/
age = (now - tmp_tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
if (cfg.preferred_lft <= regen_advance + age) {
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
cfg.ifa_flags = IFA_F_TEMPORARY;
/* set in addrconf_prefix_rcv() */
if (ifp->flags & IFA_F_OPTIMISTIC)
cfg.ifa_flags |= IFA_F_OPTIMISTIC;
cfg.pfx = &addr;
cfg.scope = ipv6_addr_scope(cfg.pfx);
ift = ipv6_add_addr(idev, &cfg, block, NULL);
ipv6: remove max_addresses check from ipv6_create_tempaddr Because of the max_addresses check attackers were able to disable privacy extensions on an interface by creating enough autoconfigured addresses: <http://seclists.org/oss-sec/2012/q4/292> But the check is not actually needed: max_addresses protects the kernel to install too many ipv6 addresses on an interface and guards addrconf_prefix_rcv to install further addresses as soon as this limit is reached. We only generate temporary addresses in direct response of a new address showing up. As soon as we filled up the maximum number of addresses of an interface, we stop installing more addresses and thus also stop generating more temp addresses. Even if the attacker tries to generate a lot of temporary addresses by announcing a prefix and removing it again (lifetime == 0) we won't install more temp addresses, because the temporary addresses do count to the maximum number of addresses, thus we would stop installing new autoconfigured addresses when the limit is reached. This patch fixes CVE-2013-0343 (but other layer-2 attacks are still possible). Thanks to Ding Tianhong to bring this topic up again. Cc: Ding Tianhong <dingtianhong@huawei.com> Cc: George Kargiotakis <kargig@void.gr> Cc: P J P <ppandit@redhat.com> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Ding Tianhong <dingtianhong@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-16 11:02:27 +00:00
if (IS_ERR(ift)) {
in6_ifa_put(ifp);
in6_dev_put(idev);
pr_info("%s: retry temporary address regeneration\n", __func__);
write_lock_bh(&idev->lock);
goto retry;
}
spin_lock_bh(&ift->lock);
ift->ifpub = ifp;
ift->cstamp = now;
ift->tstamp = tmp_tstamp;
spin_unlock_bh(&ift->lock);
addrconf_dad_start(ift);
in6_ifa_put(ift);
in6_dev_put(idev);
out:
return ret;
}
/*
* Choose an appropriate source address (RFC3484)
*/
enum {
IPV6_SADDR_RULE_INIT = 0,
IPV6_SADDR_RULE_LOCAL,
IPV6_SADDR_RULE_SCOPE,
IPV6_SADDR_RULE_PREFERRED,
#ifdef CONFIG_IPV6_MIP6
IPV6_SADDR_RULE_HOA,
#endif
IPV6_SADDR_RULE_OIF,
IPV6_SADDR_RULE_LABEL,
IPV6_SADDR_RULE_PRIVACY,
IPV6_SADDR_RULE_ORCHID,
IPV6_SADDR_RULE_PREFIX,
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
IPV6_SADDR_RULE_NOT_OPTIMISTIC,
#endif
IPV6_SADDR_RULE_MAX
};
struct ipv6_saddr_score {
int rule;
int addr_type;
struct inet6_ifaddr *ifa;
DECLARE_BITMAP(scorebits, IPV6_SADDR_RULE_MAX);
int scopedist;
int matchlen;
};
struct ipv6_saddr_dst {
const struct in6_addr *addr;
int ifindex;
int scope;
int label;
unsigned int prefs;
};
static inline int ipv6_saddr_preferred(int type)
{
if (type & (IPV6_ADDR_MAPPED|IPV6_ADDR_COMPATv4|IPV6_ADDR_LOOPBACK))
return 1;
return 0;
}
static bool ipv6_use_optimistic_addr(struct net *net,
struct inet6_dev *idev)
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
{
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (!idev)
return false;
if (!net->ipv6.devconf_all->optimistic_dad && !idev->cnf.optimistic_dad)
return false;
if (!net->ipv6.devconf_all->use_optimistic && !idev->cnf.use_optimistic)
return false;
return true;
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
#else
return false;
#endif
}
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
static bool ipv6_allow_optimistic_dad(struct net *net,
struct inet6_dev *idev)
{
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (!idev)
return false;
if (!net->ipv6.devconf_all->optimistic_dad && !idev->cnf.optimistic_dad)
return false;
return true;
#else
return false;
#endif
}
static int ipv6_get_saddr_eval(struct net *net,
struct ipv6_saddr_score *score,
struct ipv6_saddr_dst *dst,
int i)
{
int ret;
if (i <= score->rule) {
switch (i) {
case IPV6_SADDR_RULE_SCOPE:
ret = score->scopedist;
break;
case IPV6_SADDR_RULE_PREFIX:
ret = score->matchlen;
break;
default:
ret = !!test_bit(i, score->scorebits);
}
goto out;
}
switch (i) {
case IPV6_SADDR_RULE_INIT:
/* Rule 0: remember if hiscore is not ready yet */
ret = !!score->ifa;
break;
case IPV6_SADDR_RULE_LOCAL:
/* Rule 1: Prefer same address */
ret = ipv6_addr_equal(&score->ifa->addr, dst->addr);
break;
case IPV6_SADDR_RULE_SCOPE:
/* Rule 2: Prefer appropriate scope
*
* ret
* ^
* -1 | d 15
* ---+--+-+---> scope
* |
* | d is scope of the destination.
* B-d | \
* | \ <- smaller scope is better if
* B-15 | \ if scope is enough for destination.
* | ret = B - scope (-1 <= scope >= d <= 15).
* d-C-1 | /
* |/ <- greater is better
* -C / if scope is not enough for destination.
* /| ret = scope - C (-1 <= d < scope <= 15).
*
* d - C - 1 < B -15 (for all -1 <= d <= 15).
* C > d + 14 - B >= 15 + 14 - B = 29 - B.
* Assume B = 0 and we get C > 29.
*/
ret = __ipv6_addr_src_scope(score->addr_type);
if (ret >= dst->scope)
ret = -ret;
else
ret -= 128; /* 30 is enough */
score->scopedist = ret;
break;
case IPV6_SADDR_RULE_PREFERRED:
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
{
/* Rule 3: Avoid deprecated and optimistic addresses */
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
u8 avoid = IFA_F_DEPRECATED;
if (!ipv6_use_optimistic_addr(net, score->ifa->idev))
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
avoid |= IFA_F_OPTIMISTIC;
ret = ipv6_saddr_preferred(score->addr_type) ||
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
!(score->ifa->flags & avoid);
break;
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
}
#ifdef CONFIG_IPV6_MIP6
case IPV6_SADDR_RULE_HOA:
{
/* Rule 4: Prefer home address */
int prefhome = !(dst->prefs & IPV6_PREFER_SRC_COA);
ret = !(score->ifa->flags & IFA_F_HOMEADDRESS) ^ prefhome;
break;
}
#endif
case IPV6_SADDR_RULE_OIF:
/* Rule 5: Prefer outgoing interface */
ret = (!dst->ifindex ||
dst->ifindex == score->ifa->idev->dev->ifindex);
break;
case IPV6_SADDR_RULE_LABEL:
/* Rule 6: Prefer matching label */
ret = ipv6_addr_label(net,
&score->ifa->addr, score->addr_type,
score->ifa->idev->dev->ifindex) == dst->label;
break;
case IPV6_SADDR_RULE_PRIVACY:
{
/* Rule 7: Prefer public address
* Note: prefer temporary address if use_tempaddr >= 2
*/
int preftmp = dst->prefs & (IPV6_PREFER_SRC_PUBLIC|IPV6_PREFER_SRC_TMP) ?
!!(dst->prefs & IPV6_PREFER_SRC_TMP) :
score->ifa->idev->cnf.use_tempaddr >= 2;
ret = (!(score->ifa->flags & IFA_F_TEMPORARY)) ^ preftmp;
break;
}
case IPV6_SADDR_RULE_ORCHID:
/* Rule 8-: Prefer ORCHID vs ORCHID or
* non-ORCHID vs non-ORCHID
*/
ret = !(ipv6_addr_orchid(&score->ifa->addr) ^
ipv6_addr_orchid(dst->addr));
break;
case IPV6_SADDR_RULE_PREFIX:
/* Rule 8: Use longest matching prefix */
ret = ipv6_addr_diff(&score->ifa->addr, dst->addr);
if (ret > score->ifa->prefix_len)
ret = score->ifa->prefix_len;
score->matchlen = ret;
break;
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
case IPV6_SADDR_RULE_NOT_OPTIMISTIC:
/* Optimistic addresses still have lower precedence than other
* preferred addresses.
*/
ret = !(score->ifa->flags & IFA_F_OPTIMISTIC);
break;
#endif
default:
ret = 0;
}
if (ret)
__set_bit(i, score->scorebits);
score->rule = i;
out:
return ret;
}
static int __ipv6_dev_get_saddr(struct net *net,
struct ipv6_saddr_dst *dst,
struct inet6_dev *idev,
struct ipv6_saddr_score *scores,
int hiscore_idx)
{
struct ipv6_saddr_score *score = &scores[1 - hiscore_idx], *hiscore = &scores[hiscore_idx];
list_for_each_entry_rcu(score->ifa, &idev->addr_list, if_list) {
int i;
/*
* - Tentative Address (RFC2462 section 5.4)
* - A tentative address is not considered
* "assigned to an interface" in the traditional
* sense, unless it is also flagged as optimistic.
* - Candidate Source Address (section 4)
* - In any case, anycast addresses, multicast
* addresses, and the unspecified address MUST
* NOT be included in a candidate set.
*/
if ((score->ifa->flags & IFA_F_TENTATIVE) &&
(!(score->ifa->flags & IFA_F_OPTIMISTIC)))
continue;
score->addr_type = __ipv6_addr_type(&score->ifa->addr);
if (unlikely(score->addr_type == IPV6_ADDR_ANY ||
score->addr_type & IPV6_ADDR_MULTICAST)) {
net_dbg_ratelimited("ADDRCONF: unspecified / multicast address assigned as unicast address on %s",
idev->dev->name);
continue;
}
score->rule = -1;
bitmap_zero(score->scorebits, IPV6_SADDR_RULE_MAX);
for (i = 0; i < IPV6_SADDR_RULE_MAX; i++) {
int minihiscore, miniscore;
minihiscore = ipv6_get_saddr_eval(net, hiscore, dst, i);
miniscore = ipv6_get_saddr_eval(net, score, dst, i);
if (minihiscore > miniscore) {
if (i == IPV6_SADDR_RULE_SCOPE &&
score->scopedist > 0) {
/*
* special case:
* each remaining entry
* has too small (not enough)
* scope, because ifa entries
* are sorted by their scope
* values.
*/
goto out;
}
break;
} else if (minihiscore < miniscore) {
swap(hiscore, score);
hiscore_idx = 1 - hiscore_idx;
/* restore our iterator */
score->ifa = hiscore->ifa;
break;
}
}
}
out:
return hiscore_idx;
}
static int ipv6_get_saddr_master(struct net *net,
const struct net_device *dst_dev,
const struct net_device *master,
struct ipv6_saddr_dst *dst,
struct ipv6_saddr_score *scores,
int hiscore_idx)
{
struct inet6_dev *idev;
idev = __in6_dev_get(dst_dev);
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, dst, idev,
scores, hiscore_idx);
idev = __in6_dev_get(master);
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, dst, idev,
scores, hiscore_idx);
return hiscore_idx;
}
int ipv6_dev_get_saddr(struct net *net, const struct net_device *dst_dev,
const struct in6_addr *daddr, unsigned int prefs,
struct in6_addr *saddr)
{
struct ipv6_saddr_score scores[2], *hiscore;
struct ipv6_saddr_dst dst;
struct inet6_dev *idev;
struct net_device *dev;
int dst_type;
bool use_oif_addr = false;
int hiscore_idx = 0;
int ret = 0;
dst_type = __ipv6_addr_type(daddr);
dst.addr = daddr;
dst.ifindex = dst_dev ? dst_dev->ifindex : 0;
dst.scope = __ipv6_addr_src_scope(dst_type);
dst.label = ipv6_addr_label(net, daddr, dst_type, dst.ifindex);
dst.prefs = prefs;
scores[hiscore_idx].rule = -1;
scores[hiscore_idx].ifa = NULL;
rcu_read_lock();
/* Candidate Source Address (section 4)
* - multicast and link-local destination address,
* the set of candidate source address MUST only
* include addresses assigned to interfaces
* belonging to the same link as the outgoing
* interface.
* (- For site-local destination addresses, the
* set of candidate source addresses MUST only
* include addresses assigned to interfaces
* belonging to the same site as the outgoing
* interface.)
* - "It is RECOMMENDED that the candidate source addresses
* be the set of unicast addresses assigned to the
* interface that will be used to send to the destination
* (the 'outgoing' interface)." (RFC 6724)
*/
if (dst_dev) {
idev = __in6_dev_get(dst_dev);
if ((dst_type & IPV6_ADDR_MULTICAST) ||
dst.scope <= IPV6_ADDR_SCOPE_LINKLOCAL ||
(idev && idev->cnf.use_oif_addrs_only)) {
use_oif_addr = true;
}
}
if (use_oif_addr) {
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, &dst, idev, scores, hiscore_idx);
} else {
const struct net_device *master;
int master_idx = 0;
/* if dst_dev exists and is enslaved to an L3 device, then
* prefer addresses from dst_dev and then the master over
* any other enslaved devices in the L3 domain.
*/
master = l3mdev_master_dev_rcu(dst_dev);
if (master) {
master_idx = master->ifindex;
hiscore_idx = ipv6_get_saddr_master(net, dst_dev,
master, &dst,
scores, hiscore_idx);
if (scores[hiscore_idx].ifa)
goto out;
}
for_each_netdev_rcu(net, dev) {
/* only consider addresses on devices in the
* same L3 domain
*/
if (l3mdev_master_ifindex_rcu(dev) != master_idx)
continue;
idev = __in6_dev_get(dev);
if (!idev)
continue;
hiscore_idx = __ipv6_dev_get_saddr(net, &dst, idev, scores, hiscore_idx);
}
}
out:
hiscore = &scores[hiscore_idx];
if (!hiscore->ifa)
ret = -EADDRNOTAVAIL;
else
*saddr = hiscore->ifa->addr;
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(ipv6_dev_get_saddr);
ipv6: mcast: use rcu-safe version of ipv6_get_lladdr() Some time ago 8965779d2c0e ("ipv6,mcast: always hold idev->lock before mca_lock") switched ipv6_get_lladdr() to __ipv6_get_lladdr(), which is rcu-unsafe version. That was OK, because idev->lock was held for these codepaths. In 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") these external locks were removed, so we probably need to restore the original rcu-safe call. Otherwise, we occasionally get a machine crashed/stalled with the following in dmesg: [ 3405.966610][T230589] general protection fault, probably for non-canonical address 0xdead00000000008c: 0000 [#1] SMP NOPTI [ 3405.982083][T230589] CPU: 44 PID: 230589 Comm: kworker/44:3 Tainted: G O 5.15.19-cloudflare-2022.2.1 #1 [ 3405.998061][T230589] Hardware name: SUPA-COOL-SERV [ 3406.009552][T230589] Workqueue: mld mld_ifc_work [ 3406.017224][T230589] RIP: 0010:__ipv6_get_lladdr+0x34/0x60 [ 3406.025780][T230589] Code: 57 10 48 83 c7 08 48 89 e5 48 39 d7 74 3e 48 8d 82 38 ff ff ff eb 13 48 8b 90 d0 00 00 00 48 8d 82 38 ff ff ff 48 39 d7 74 22 <66> 83 78 32 20 77 1b 75 e4 89 ca 23 50 2c 75 dd 48 8b 50 08 48 8b [ 3406.055748][T230589] RSP: 0018:ffff94e4b3fc3d10 EFLAGS: 00010202 [ 3406.065617][T230589] RAX: dead00000000005a RBX: ffff94e4b3fc3d30 RCX: 0000000000000040 [ 3406.077477][T230589] RDX: dead000000000122 RSI: ffff94e4b3fc3d30 RDI: ffff8c3a31431008 [ 3406.089389][T230589] RBP: ffff94e4b3fc3d10 R08: 0000000000000000 R09: 0000000000000000 [ 3406.101445][T230589] R10: ffff8c3a31430000 R11: 000000000000000b R12: ffff8c2c37887100 [ 3406.113553][T230589] R13: ffff8c3a39537000 R14: 00000000000005dc R15: ffff8c3a31431000 [ 3406.125730][T230589] FS: 0000000000000000(0000) GS:ffff8c3b9fc80000(0000) knlGS:0000000000000000 [ 3406.138992][T230589] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3406.149895][T230589] CR2: 00007f0dfea1db60 CR3: 000000387b5f2000 CR4: 0000000000350ee0 [ 3406.162421][T230589] Call Trace: [ 3406.170235][T230589] <TASK> [ 3406.177736][T230589] mld_newpack+0xfe/0x1a0 [ 3406.186686][T230589] add_grhead+0x87/0xa0 [ 3406.195498][T230589] add_grec+0x485/0x4e0 [ 3406.204310][T230589] ? newidle_balance+0x126/0x3f0 [ 3406.214024][T230589] mld_ifc_work+0x15d/0x450 [ 3406.223279][T230589] process_one_work+0x1e6/0x380 [ 3406.232982][T230589] worker_thread+0x50/0x3a0 [ 3406.242371][T230589] ? rescuer_thread+0x360/0x360 [ 3406.252175][T230589] kthread+0x127/0x150 [ 3406.261197][T230589] ? set_kthread_struct+0x40/0x40 [ 3406.271287][T230589] ret_from_fork+0x22/0x30 [ 3406.280812][T230589] </TASK> [ 3406.288937][T230589] Modules linked in: ... [last unloaded: kheaders] [ 3406.476714][T230589] ---[ end trace 3525a7655f2f3b9e ]--- Fixes: 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") Reported-by: David Pinilla Caparros <dpini@cloudflare.com> Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-11 17:30:42 +00:00
static int __ipv6_get_lladdr(struct inet6_dev *idev, struct in6_addr *addr,
u32 banned_flags)
{
struct inet6_ifaddr *ifp;
int err = -EADDRNOTAVAIL;
list_for_each_entry_reverse(ifp, &idev->addr_list, if_list) {
if (ifp->scope > IFA_LINK)
break;
if (ifp->scope == IFA_LINK &&
!(ifp->flags & banned_flags)) {
*addr = ifp->addr;
err = 0;
break;
}
}
return err;
}
int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr,
u32 banned_flags)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
read_lock_bh(&idev->lock);
err = __ipv6_get_lladdr(idev, addr, banned_flags);
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return err;
}
static int ipv6_count_addresses(const struct inet6_dev *idev)
{
const struct inet6_ifaddr *ifp;
int cnt = 0;
rcu_read_lock();
list_for_each_entry_rcu(ifp, &idev->addr_list, if_list)
cnt++;
rcu_read_unlock();
return cnt;
}
int ipv6_chk_addr(struct net *net, const struct in6_addr *addr,
netfilter: add nf_ipv6_ops hook to fix xt_addrtype with IPv6 Quoting https://bugzilla.netfilter.org/show_bug.cgi?id=812: [ ip6tables -m addrtype ] When I tried to use in the nat/PREROUTING it messes up the routing cache even if the rule didn't matched at all. [..] If I remove the --limit-iface-in from the non-working scenario, so just use the -m addrtype --dst-type LOCAL it works! This happens when LOCAL type matching is requested with --limit-iface-in, and the default ipv6 route is via the interface the packet we test arrived on. Because xt_addrtype uses ip6_route_output, the ipv6 routing implementation creates an unwanted cached entry, and the packet won't make it to the real/expected destination. Silently ignoring --limit-iface-in makes the routing work but it breaks rule matching (--dst-type LOCAL with limit-iface-in is supposed to only match if the dst address is configured on the incoming interface; without --limit-iface-in it will match if the address is reachable via lo). The test should call ipv6_chk_addr() instead. However, this would add a link-time dependency on ipv6. There are two possible solutions: 1) Revert the commit that moved ipt_addrtype to xt_addrtype, and put ipv6 specific code into ip6t_addrtype. 2) add new "nf_ipv6_ops" struct to register pointers to ipv6 functions. While the former might seem preferable, Pablo pointed out that there are more xt modules with link-time dependeny issues regarding ipv6, so lets go for 2). Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2013-05-17 03:56:10 +00:00
const struct net_device *dev, int strict)
{
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
return ipv6_chk_addr_and_flags(net, addr, dev, !dev,
strict, IFA_F_TENTATIVE);
}
EXPORT_SYMBOL(ipv6_chk_addr);
/* device argument is used to find the L3 domain of interest. If
* skip_dev_check is set, then the ifp device is not checked against
* the passed in dev argument. So the 2 cases for addresses checks are:
* 1. does the address exist in the L3 domain that dev is part of
* (skip_dev_check = true), or
*
* 2. does the address exist on the specific device
* (skip_dev_check = false)
*/
static struct net_device *
__ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr,
const struct net_device *dev, bool skip_dev_check,
int strict, u32 banned_flags)
{
unsigned int hash = inet6_addr_hash(net, addr);
struct net_device *l3mdev, *ndev;
struct inet6_ifaddr *ifp;
u32 ifp_flags;
rcu_read_lock();
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
l3mdev = l3mdev_master_dev_rcu(dev);
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
if (skip_dev_check)
dev = NULL;
hlist_for_each_entry_rcu(ifp, &net->ipv6.inet6_addr_lst[hash], addr_lst) {
ndev = ifp->idev->dev;
if (l3mdev_master_dev_rcu(ndev) != l3mdev)
continue;
/* Decouple optimistic from tentative for evaluation here.
* Ban optimistic addresses explicitly, when required.
*/
ifp_flags = (ifp->flags&IFA_F_OPTIMISTIC)
? (ifp->flags&~IFA_F_TENTATIVE)
: ifp->flags;
if (ipv6_addr_equal(&ifp->addr, addr) &&
!(ifp_flags&banned_flags) &&
(!dev || ndev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict))) {
rcu_read_unlock();
return ndev;
}
}
rcu_read_unlock();
return NULL;
}
int ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr,
const struct net_device *dev, bool skip_dev_check,
int strict, u32 banned_flags)
{
return __ipv6_chk_addr_and_flags(net, addr, dev, skip_dev_check,
strict, banned_flags) ? 1 : 0;
}
EXPORT_SYMBOL(ipv6_chk_addr_and_flags);
/* Compares an address/prefix_len with addresses on device @dev.
* If one is found it returns true.
*/
bool ipv6_chk_custom_prefix(const struct in6_addr *addr,
const unsigned int prefix_len, struct net_device *dev)
{
const struct inet6_ifaddr *ifa;
const struct inet6_dev *idev;
bool ret = false;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
list_for_each_entry_rcu(ifa, &idev->addr_list, if_list) {
ret = ipv6_prefix_equal(addr, &ifa->addr, prefix_len);
if (ret)
break;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(ipv6_chk_custom_prefix);
int ipv6_chk_prefix(const struct in6_addr *addr, struct net_device *dev)
{
const struct inet6_ifaddr *ifa;
const struct inet6_dev *idev;
int onlink;
onlink = 0;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
list_for_each_entry_rcu(ifa, &idev->addr_list, if_list) {
onlink = ipv6_prefix_equal(addr, &ifa->addr,
ifa->prefix_len);
if (onlink)
break;
}
}
rcu_read_unlock();
return onlink;
}
EXPORT_SYMBOL(ipv6_chk_prefix);
/**
* ipv6_dev_find - find the first device with a given source address.
* @net: the net namespace
* @addr: the source address
net: ipv6: For kerneldoc warnings with W=1 net/ipv6/addrconf.c:2005: warning: Function parameter or member 'dev' not described in 'ipv6_dev_find' net/ipv6/ip6_vti.c:138: warning: Function parameter or member 'ip6n' not described in 'vti6_tnl_bucket' net/ipv6/ip6_tunnel.c:218: warning: Function parameter or member 'ip6n' not described in 'ip6_tnl_bucket' net/ipv6/ip6_tunnel.c:238: warning: Function parameter or member 'ip6n' not described in 'ip6_tnl_link' net/ipv6/ip6_tunnel.c:254: warning: Function parameter or member 'ip6n' not described in 'ip6_tnl_unlink' net/ipv6/ip6_tunnel.c:427: warning: Function parameter or member 'raw' not described in 'ip6_tnl_parse_tlv_enc_lim' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'skb' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'ipproto' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'opt' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'type' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'code' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'msg' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'info' not described in 'ip6_tnl_err' net/ipv6/ip6_tunnel.c:499: warning: Function parameter or member 'offset' not described in 'ip6_tnl_err' ip6_tnl_err() is an internal function, so remove the kerneldoc. For the others, add the missing parameters. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Andrew Lunn <andrew@lunn.ch> Link: https://lore.kernel.org/r/20201031183044.1082193-1-andrew@lunn.ch Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-31 18:30:44 +00:00
* @dev: used to find the L3 domain of interest
*
* The caller should be protected by RCU, or RTNL.
*/
struct net_device *ipv6_dev_find(struct net *net, const struct in6_addr *addr,
struct net_device *dev)
{
return __ipv6_chk_addr_and_flags(net, addr, dev, !dev, 1,
IFA_F_TENTATIVE);
}
EXPORT_SYMBOL(ipv6_dev_find);
struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr,
struct net_device *dev, int strict)
{
unsigned int hash = inet6_addr_hash(net, addr);
struct inet6_ifaddr *ifp, *result = NULL;
rcu_read_lock();
hlist_for_each_entry_rcu(ifp, &net->ipv6.inet6_addr_lst[hash], addr_lst) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (!dev || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) {
result = ifp;
in6_ifa_hold(ifp);
break;
}
}
}
rcu_read_unlock();
return result;
}
/* Gets referenced address, destroys ifaddr */
static void addrconf_dad_stop(struct inet6_ifaddr *ifp, int dad_failed)
{
if (dad_failed)
ifp->flags |= IFA_F_DADFAILED;
if (ifp->flags&IFA_F_TEMPORARY) {
struct inet6_ifaddr *ifpub;
spin_lock_bh(&ifp->lock);
ifpub = ifp->ifpub;
if (ifpub) {
in6_ifa_hold(ifpub);
spin_unlock_bh(&ifp->lock);
ipv6_create_tempaddr(ifpub, true);
in6_ifa_put(ifpub);
} else {
spin_unlock_bh(&ifp->lock);
}
ipv6_del_addr(ifp);
} else if (ifp->flags&IFA_F_PERMANENT || !dad_failed) {
spin_lock_bh(&ifp->lock);
addrconf_del_dad_work(ifp);
ifp->flags |= IFA_F_TENTATIVE;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
if (dad_failed)
ifp->flags &= ~IFA_F_OPTIMISTIC;
spin_unlock_bh(&ifp->lock);
if (dad_failed)
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
} else {
ipv6_del_addr(ifp);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
}
}
static int addrconf_dad_end(struct inet6_ifaddr *ifp)
{
int err = -ENOENT;
spin_lock_bh(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DAD) {
ifp->state = INET6_IFADDR_STATE_POSTDAD;
err = 0;
}
spin_unlock_bh(&ifp->lock);
return err;
}
void addrconf_dad_failure(struct sk_buff *skb, struct inet6_ifaddr *ifp)
{
struct inet6_dev *idev = ifp->idev;
struct net *net = dev_net(idev->dev);
if (addrconf_dad_end(ifp)) {
in6_ifa_put(ifp);
return;
}
net_info_ratelimited("%s: IPv6 duplicate address %pI6c used by %pM detected!\n",
ifp->idev->dev->name, &ifp->addr, eth_hdr(skb)->h_source);
spin_lock_bh(&ifp->lock);
if (ifp->flags & IFA_F_STABLE_PRIVACY) {
struct in6_addr new_addr;
struct inet6_ifaddr *ifp2;
int retries = ifp->stable_privacy_retry + 1;
struct ifa6_config cfg = {
.pfx = &new_addr,
.plen = ifp->prefix_len,
.ifa_flags = ifp->flags,
.valid_lft = ifp->valid_lft,
.preferred_lft = ifp->prefered_lft,
.scope = ifp->scope,
};
if (retries > net->ipv6.sysctl.idgen_retries) {
net_info_ratelimited("%s: privacy stable address generation failed because of DAD conflicts!\n",
ifp->idev->dev->name);
goto errdad;
}
new_addr = ifp->addr;
if (ipv6_generate_stable_address(&new_addr, retries,
idev))
goto errdad;
spin_unlock_bh(&ifp->lock);
if (idev->cnf.max_addresses &&
ipv6_count_addresses(idev) >=
idev->cnf.max_addresses)
goto lock_errdad;
net_info_ratelimited("%s: generating new stable privacy address because of DAD conflict\n",
ifp->idev->dev->name);
ifp2 = ipv6_add_addr(idev, &cfg, false, NULL);
if (IS_ERR(ifp2))
goto lock_errdad;
spin_lock_bh(&ifp2->lock);
ifp2->stable_privacy_retry = retries;
ifp2->state = INET6_IFADDR_STATE_PREDAD;
spin_unlock_bh(&ifp2->lock);
addrconf_mod_dad_work(ifp2, net->ipv6.sysctl.idgen_delay);
in6_ifa_put(ifp2);
lock_errdad:
spin_lock_bh(&ifp->lock);
}
errdad:
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
/* transition from _POSTDAD to _ERRDAD */
ifp->state = INET6_IFADDR_STATE_ERRDAD;
spin_unlock_bh(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_mod_dad_work(ifp, 0);
in6_ifa_put(ifp);
}
/* Join to solicited addr multicast group.
* caller must hold RTNL */
void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr)
{
struct in6_addr maddr;
if (dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
ipv6_dev_mc_inc(dev, &maddr);
}
/* caller must hold RTNL */
void addrconf_leave_solict(struct inet6_dev *idev, const struct in6_addr *addr)
{
struct in6_addr maddr;
if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
__ipv6_dev_mc_dec(idev, &maddr);
}
/* caller must hold RTNL */
static void addrconf_join_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (ifp->prefix_len >= 127) /* RFC 6164 */
return;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_inc(ifp->idev, &addr);
}
/* caller must hold RTNL */
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (ifp->prefix_len >= 127) /* RFC 6164 */
return;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_dec(ifp->idev, &addr);
}
static int addrconf_ifid_6lowpan(u8 *eui, struct net_device *dev)
{
switch (dev->addr_len) {
case ETH_ALEN:
memcpy(eui, dev->dev_addr, 3);
eui[3] = 0xFF;
eui[4] = 0xFE;
memcpy(eui + 5, dev->dev_addr + 3, 3);
break;
case EUI64_ADDR_LEN:
memcpy(eui, dev->dev_addr, EUI64_ADDR_LEN);
eui[0] ^= 2;
break;
default:
return -1;
}
return 0;
}
static int addrconf_ifid_ieee1394(u8 *eui, struct net_device *dev)
{
const union fwnet_hwaddr *ha;
if (dev->addr_len != FWNET_ALEN)
return -1;
ha = (const union fwnet_hwaddr *)dev->dev_addr;
memcpy(eui, &ha->uc.uniq_id, sizeof(ha->uc.uniq_id));
eui[0] ^= 2;
return 0;
}
static int addrconf_ifid_arcnet(u8 *eui, struct net_device *dev)
{
/* XXX: inherit EUI-64 from other interface -- yoshfuji */
if (dev->addr_len != ARCNET_ALEN)
return -1;
memset(eui, 0, 7);
eui[7] = *(u8 *)dev->dev_addr;
return 0;
}
static int addrconf_ifid_infiniband(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != INFINIBAND_ALEN)
return -1;
memcpy(eui, dev->dev_addr + 12, 8);
eui[0] |= 2;
return 0;
}
static int __ipv6_isatap_ifid(u8 *eui, __be32 addr)
{
if (addr == 0)
return -1;
eui[0] = (ipv4_is_zeronet(addr) || ipv4_is_private_10(addr) ||
ipv4_is_loopback(addr) || ipv4_is_linklocal_169(addr) ||
ipv4_is_private_172(addr) || ipv4_is_test_192(addr) ||
ipv4_is_anycast_6to4(addr) || ipv4_is_private_192(addr) ||
ipv4_is_test_198(addr) || ipv4_is_multicast(addr) ||
ipv4_is_lbcast(addr)) ? 0x00 : 0x02;
eui[1] = 0;
eui[2] = 0x5E;
eui[3] = 0xFE;
memcpy(eui + 4, &addr, 4);
return 0;
}
static int addrconf_ifid_sit(u8 *eui, struct net_device *dev)
{
if (dev->priv_flags & IFF_ISATAP)
return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr);
return -1;
}
static int addrconf_ifid_gre(u8 *eui, struct net_device *dev)
{
return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr);
}
static int addrconf_ifid_ip6tnl(u8 *eui, struct net_device *dev)
{
memcpy(eui, dev->perm_addr, 3);
memcpy(eui + 5, dev->perm_addr + 3, 3);
eui[3] = 0xFF;
eui[4] = 0xFE;
eui[0] ^= 2;
return 0;
}
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_ETHER:
case ARPHRD_FDDI:
return addrconf_ifid_eui48(eui, dev);
case ARPHRD_ARCNET:
return addrconf_ifid_arcnet(eui, dev);
case ARPHRD_INFINIBAND:
return addrconf_ifid_infiniband(eui, dev);
case ARPHRD_SIT:
return addrconf_ifid_sit(eui, dev);
case ARPHRD_IPGRE:
case ARPHRD_TUNNEL:
return addrconf_ifid_gre(eui, dev);
case ARPHRD_6LOWPAN:
return addrconf_ifid_6lowpan(eui, dev);
case ARPHRD_IEEE1394:
return addrconf_ifid_ieee1394(eui, dev);
case ARPHRD_TUNNEL6:
case ARPHRD_IP6GRE:
case ARPHRD_RAWIP:
return addrconf_ifid_ip6tnl(eui, dev);
}
return -1;
}
static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev)
{
int err = -1;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry_reverse(ifp, &idev->addr_list, if_list) {
if (ifp->scope > IFA_LINK)
break;
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
memcpy(eui, ifp->addr.s6_addr+8, 8);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
return err;
}
/* Generation of a randomized Interface Identifier
* draft-ietf-6man-rfc4941bis, Section 3.3.1
*/
static void ipv6_gen_rnd_iid(struct in6_addr *addr)
{
regen:
get_random_bytes(&addr->s6_addr[8], 8);
/* <draft-ietf-6man-rfc4941bis-08.txt>, Section 3.3.1:
* check if generated address is not inappropriate:
*
* - Reserved IPv6 Interface Identifiers
* - XXX: already assigned to an address on the device
*/
/* Subnet-router anycast: 0000:0000:0000:0000 */
if (!(addr->s6_addr32[2] | addr->s6_addr32[3]))
goto regen;
/* IANA Ethernet block: 0200:5EFF:FE00:0000-0200:5EFF:FE00:5212
* Proxy Mobile IPv6: 0200:5EFF:FE00:5213
* IANA Ethernet block: 0200:5EFF:FE00:5214-0200:5EFF:FEFF:FFFF
*/
if (ntohl(addr->s6_addr32[2]) == 0x02005eff &&
(ntohl(addr->s6_addr32[3]) & 0Xff000000) == 0xfe000000)
goto regen;
/* Reserved subnet anycast addresses */
if (ntohl(addr->s6_addr32[2]) == 0xfdffffff &&
ntohl(addr->s6_addr32[3]) >= 0Xffffff80)
goto regen;
}
/*
* Add prefix route.
*/
static void
addrconf_prefix_route(struct in6_addr *pfx, int plen, u32 metric,
struct net_device *dev, unsigned long expires,
u32 flags, gfp_t gfp_flags)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_PREFIX,
.fc_metric = metric ? : IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_expires = expires,
.fc_dst_len = plen,
.fc_flags = RTF_UP | flags,
.fc_nlinfo.nl_net = dev_net(dev),
.fc_protocol = RTPROT_KERNEL,
.fc_type = RTN_UNICAST,
};
cfg.fc_dst = *pfx;
/* Prevent useless cloning on PtP SIT.
This thing is done here expecting that the whole
class of non-broadcast devices need not cloning.
*/
#if IS_ENABLED(CONFIG_IPV6_SIT)
if (dev->type == ARPHRD_SIT && (dev->flags & IFF_POINTOPOINT))
cfg.fc_flags |= RTF_NONEXTHOP;
#endif
ip6_route_add(&cfg, gfp_flags, NULL);
}
static struct fib6_info *addrconf_get_prefix_route(const struct in6_addr *pfx,
int plen,
const struct net_device *dev,
u32 flags, u32 noflags,
bool no_gw)
{
struct fib6_node *fn;
struct fib6_info *rt = NULL;
struct fib6_table *table;
u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_PREFIX;
table = fib6_get_table(dev_net(dev), tb_id);
if (!table)
return NULL;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
fn = fib6_locate(&table->tb6_root, pfx, plen, NULL, 0, true);
if (!fn)
goto out;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
for_each_fib6_node_rt_rcu(fn) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* prefix routes only use builtin fib6_nh */
if (rt->nh)
continue;
if (rt->fib6_nh->fib_nh_dev->ifindex != dev->ifindex)
continue;
if (no_gw && rt->fib6_nh->fib_nh_gw_family)
continue;
if ((rt->fib6_flags & flags) != flags)
continue;
if ((rt->fib6_flags & noflags) != 0)
continue;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (!fib6_info_hold_safe(rt))
continue;
break;
}
out:
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
return rt;
}
/* Create "default" multicast route to the interface */
static void addrconf_add_mroute(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_LOCAL,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 8,
.fc_flags = RTF_UP,
.fc_type = RTN_MULTICAST,
.fc_nlinfo.nl_net = dev_net(dev),
.fc_protocol = RTPROT_KERNEL,
};
ipv6_addr_set(&cfg.fc_dst, htonl(0xFF000000), 0, 0, 0);
ip6_route_add(&cfg, GFP_KERNEL, NULL);
}
static struct inet6_dev *addrconf_add_dev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (IS_ERR(idev))
return idev;
if (idev->cnf.disable_ipv6)
return ERR_PTR(-EACCES);
/* Add default multicast route */
if (!(dev->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev))
addrconf_add_mroute(dev);
return idev;
}
static void manage_tempaddrs(struct inet6_dev *idev,
struct inet6_ifaddr *ifp,
__u32 valid_lft, __u32 prefered_lft,
bool create, unsigned long now)
{
u32 flags;
struct inet6_ifaddr *ift;
read_lock_bh(&idev->lock);
/* update all temporary addresses in the list */
list_for_each_entry(ift, &idev->tempaddr_list, tmp_list) {
int age, max_valid, max_prefered;
if (ifp != ift->ifpub)
continue;
/* RFC 4941 section 3.3:
* If a received option will extend the lifetime of a public
* address, the lifetimes of temporary addresses should
* be extended, subject to the overall constraint that no
* temporary addresses should ever remain "valid" or "preferred"
* for a time longer than (TEMP_VALID_LIFETIME) or
* (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR), respectively.
*/
age = (now - ift->cstamp) / HZ;
max_valid = idev->cnf.temp_valid_lft - age;
if (max_valid < 0)
max_valid = 0;
max_prefered = idev->cnf.temp_prefered_lft -
IPv6: fix DESYNC_FACTOR The IPv6 temporary address generation uses a variable called DESYNC_FACTOR to prevent hosts updating the addresses at the same time. Quoting RFC 4941: ... The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time ... DESYNC_FACTOR is defined as: DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). First, I believe the RFC has a typo in it and meant to say: "and must never be greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE)" The reason is that at various places in the RFC, DESYNC_FACTOR is used in a calculation like (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR) or (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR). It needs to be smaller than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE) for the result of these calculations to be larger than zero. It's never used in a calculation together with TEMP_VALID_LIFETIME. I already submitted an errata to the rfc-editor: https://www.rfc-editor.org/errata_search.php?rfc=4941 The Linux implementation of DESYNC_FACTOR is very wrong: max_desync_factor is used in places DESYNC_FACTOR should be used. max_desync_factor is initialized to the RFC-recommended value for MAX_DESYNC_FACTOR (600) but the whole point is to get a _random_ value. And nothing ensures that the value used is not greater than (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE), which leads to underflows. The effect can easily be observed when setting the temp_prefered_lft sysctl e.g. to 60. The preferred lifetime of the temporary addresses will be bogus. TEMP_PREFERRED_LIFETIME and REGEN_ADVANCE are not constants and can be influenced by these three sysctls: regen_max_retry, dad_transmits and temp_prefered_lft. Thus, the upper bound for desync_factor needs to be re-calculated each time a new address is generated and if desync_factor is larger than the new upper bound, a new random value needs to be re-generated. And since we already have max_desync_factor configurable per interface, we also need to calculate and store desync_factor per interface. Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-13 16:52:15 +00:00
idev->desync_factor - age;
if (max_prefered < 0)
max_prefered = 0;
if (valid_lft > max_valid)
valid_lft = max_valid;
if (prefered_lft > max_prefered)
prefered_lft = max_prefered;
spin_lock(&ift->lock);
flags = ift->flags;
ift->valid_lft = valid_lft;
ift->prefered_lft = prefered_lft;
ift->tstamp = now;
if (prefered_lft > 0)
ift->flags &= ~IFA_F_DEPRECATED;
spin_unlock(&ift->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ift);
}
if ((create || list_empty(&idev->tempaddr_list)) &&
idev->cnf.use_tempaddr > 0) {
/* When a new public address is created as described
* in [ADDRCONF], also create a new temporary address.
* Also create a temporary address if it's enabled but
* no temporary address currently exists.
*/
read_unlock_bh(&idev->lock);
ipv6_create_tempaddr(ifp, false);
} else {
read_unlock_bh(&idev->lock);
}
}
static bool is_addr_mode_generate_stable(struct inet6_dev *idev)
{
return idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_STABLE_PRIVACY ||
idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_RANDOM;
}
int addrconf_prefix_rcv_add_addr(struct net *net, struct net_device *dev,
const struct prefix_info *pinfo,
struct inet6_dev *in6_dev,
const struct in6_addr *addr, int addr_type,
u32 addr_flags, bool sllao, bool tokenized,
__u32 valid_lft, u32 prefered_lft)
{
struct inet6_ifaddr *ifp = ipv6_get_ifaddr(net, addr, dev, 1);
int create = 0, update_lft = 0;
if (!ifp && valid_lft) {
int max_addresses = in6_dev->cnf.max_addresses;
struct ifa6_config cfg = {
.pfx = addr,
.plen = pinfo->prefix_len,
.ifa_flags = addr_flags,
.valid_lft = valid_lft,
.preferred_lft = prefered_lft,
.scope = addr_type & IPV6_ADDR_SCOPE_MASK,
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
.ifa_proto = IFAPROT_KERNEL_RA
};
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if ((net->ipv6.devconf_all->optimistic_dad ||
in6_dev->cnf.optimistic_dad) &&
!net->ipv6.devconf_all->forwarding && sllao)
cfg.ifa_flags |= IFA_F_OPTIMISTIC;
#endif
/* Do not allow to create too much of autoconfigured
* addresses; this would be too easy way to crash kernel.
*/
if (!max_addresses ||
ipv6_count_addresses(in6_dev) < max_addresses)
ifp = ipv6_add_addr(in6_dev, &cfg, false, NULL);
if (IS_ERR_OR_NULL(ifp))
return -1;
create = 1;
spin_lock_bh(&ifp->lock);
ifp->flags |= IFA_F_MANAGETEMPADDR;
ifp->cstamp = jiffies;
ifp->tokenized = tokenized;
spin_unlock_bh(&ifp->lock);
addrconf_dad_start(ifp);
}
if (ifp) {
u32 flags;
unsigned long now;
u32 stored_lft;
/* update lifetime (RFC2462 5.5.3 e) */
spin_lock_bh(&ifp->lock);
now = jiffies;
if (ifp->valid_lft > (now - ifp->tstamp) / HZ)
stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ;
else
stored_lft = 0;
if (!create && stored_lft) {
const u32 minimum_lft = min_t(u32,
stored_lft, MIN_VALID_LIFETIME);
valid_lft = max(valid_lft, minimum_lft);
/* RFC4862 Section 5.5.3e:
* "Note that the preferred lifetime of the
* corresponding address is always reset to
* the Preferred Lifetime in the received
* Prefix Information option, regardless of
* whether the valid lifetime is also reset or
* ignored."
*
* So we should always update prefered_lft here.
*/
update_lft = 1;
}
if (update_lft) {
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = now;
flags = ifp->flags;
ifp->flags &= ~IFA_F_DEPRECATED;
spin_unlock_bh(&ifp->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
} else
spin_unlock_bh(&ifp->lock);
manage_tempaddrs(in6_dev, ifp, valid_lft, prefered_lft,
create, now);
in6_ifa_put(ifp);
addrconf_verify(net);
}
return 0;
}
EXPORT_SYMBOL_GPL(addrconf_prefix_rcv_add_addr);
void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len, bool sllao)
{
struct prefix_info *pinfo;
__u32 valid_lft;
__u32 prefered_lft;
int addr_type, err;
u32 addr_flags = 0;
struct inet6_dev *in6_dev;
struct net *net = dev_net(dev);
pinfo = (struct prefix_info *) opt;
if (len < sizeof(struct prefix_info)) {
netdev_dbg(dev, "addrconf: prefix option too short\n");
return;
}
/*
* Validation checks ([ADDRCONF], page 19)
*/
addr_type = ipv6_addr_type(&pinfo->prefix);
if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL))
return;
valid_lft = ntohl(pinfo->valid);
prefered_lft = ntohl(pinfo->prefered);
if (prefered_lft > valid_lft) {
net_warn_ratelimited("addrconf: prefix option has invalid lifetime\n");
return;
}
in6_dev = in6_dev_get(dev);
if (!in6_dev) {
net_dbg_ratelimited("addrconf: device %s not configured\n",
dev->name);
return;
}
/*
* Two things going on here:
* 1) Add routes for on-link prefixes
* 2) Configure prefixes with the auto flag set
*/
if (pinfo->onlink) {
struct fib6_info *rt;
unsigned long rt_expires;
/* Avoid arithmetic overflow. Really, we could
* save rt_expires in seconds, likely valid_lft,
* but it would require division in fib gc, that it
* not good.
*/
if (HZ > USER_HZ)
rt_expires = addrconf_timeout_fixup(valid_lft, HZ);
else
rt_expires = addrconf_timeout_fixup(valid_lft, USER_HZ);
if (addrconf_finite_timeout(rt_expires))
rt_expires *= HZ;
rt = addrconf_get_prefix_route(&pinfo->prefix,
pinfo->prefix_len,
dev,
RTF_ADDRCONF | RTF_PREFIX_RT,
RTF_DEFAULT, true);
if (rt) {
/* Autoconf prefix route */
if (valid_lft == 0) {
ip6_del_rt(net, rt, false);
rt = NULL;
} else if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
fib6_set_expires(rt, jiffies + rt_expires);
} else {
fib6_clean_expires(rt);
}
} else if (valid_lft) {
clock_t expires = 0;
int flags = RTF_ADDRCONF | RTF_PREFIX_RT;
if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
flags |= RTF_EXPIRES;
expires = jiffies_to_clock_t(rt_expires);
}
addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len,
0, dev, expires, flags,
GFP_ATOMIC);
}
fib6_info_release(rt);
}
/* Try to figure out our local address for this prefix */
if (pinfo->autoconf && in6_dev->cnf.autoconf) {
struct in6_addr addr;
bool tokenized = false, dev_addr_generated = false;
if (pinfo->prefix_len == 64) {
memcpy(&addr, &pinfo->prefix, 8);
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
if (!ipv6_addr_any(&in6_dev->token)) {
read_lock_bh(&in6_dev->lock);
memcpy(addr.s6_addr + 8,
in6_dev->token.s6_addr + 8, 8);
read_unlock_bh(&in6_dev->lock);
tokenized = true;
} else if (is_addr_mode_generate_stable(in6_dev) &&
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
!ipv6_generate_stable_address(&addr, 0,
in6_dev)) {
addr_flags |= IFA_F_STABLE_PRIVACY;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
goto ok;
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
} else if (ipv6_generate_eui64(addr.s6_addr + 8, dev) &&
ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) {
goto put;
} else {
dev_addr_generated = true;
}
goto ok;
}
net_dbg_ratelimited("IPv6 addrconf: prefix with wrong length %d\n",
pinfo->prefix_len);
goto put;
ok:
err = addrconf_prefix_rcv_add_addr(net, dev, pinfo, in6_dev,
&addr, addr_type,
addr_flags, sllao,
tokenized, valid_lft,
prefered_lft);
if (err)
goto put;
/* Ignore error case here because previous prefix add addr was
* successful which will be notified.
*/
ndisc_ops_prefix_rcv_add_addr(net, dev, pinfo, in6_dev, &addr,
addr_type, addr_flags, sllao,
tokenized, valid_lft,
prefered_lft,
dev_addr_generated);
}
inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo);
put:
in6_dev_put(in6_dev);
}
static int addrconf_set_sit_dstaddr(struct net *net, struct net_device *dev,
struct in6_ifreq *ireq)
{
struct ip_tunnel_parm p = { };
int err;
if (!(ipv6_addr_type(&ireq->ifr6_addr) & IPV6_ADDR_COMPATv4))
return -EADDRNOTAVAIL;
p.iph.daddr = ireq->ifr6_addr.s6_addr32[3];
p.iph.version = 4;
p.iph.ihl = 5;
p.iph.protocol = IPPROTO_IPV6;
p.iph.ttl = 64;
if (!dev->netdev_ops->ndo_tunnel_ctl)
return -EOPNOTSUPP;
err = dev->netdev_ops->ndo_tunnel_ctl(dev, &p, SIOCADDTUNNEL);
if (err)
return err;
dev = __dev_get_by_name(net, p.name);
if (!dev)
return -ENOBUFS;
return dev_open(dev, NULL);
}
/*
* Set destination address.
* Special case for SIT interfaces where we create a new "virtual"
* device.
*/
int addrconf_set_dstaddr(struct net *net, void __user *arg)
{
struct net_device *dev;
struct in6_ifreq ireq;
int err = -ENODEV;
if (!IS_ENABLED(CONFIG_IPV6_SIT))
return -ENODEV;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
dev = __dev_get_by_index(net, ireq.ifr6_ifindex);
if (dev && dev->type == ARPHRD_SIT)
err = addrconf_set_sit_dstaddr(net, dev, &ireq);
rtnl_unlock();
return err;
}
static int ipv6_mc_config(struct sock *sk, bool join,
const struct in6_addr *addr, int ifindex)
{
int ret;
ASSERT_RTNL();
lock_sock(sk);
if (join)
ret = ipv6_sock_mc_join(sk, ifindex, addr);
else
ret = ipv6_sock_mc_drop(sk, ifindex, addr);
release_sock(sk);
return ret;
}
/*
* Manual configuration of address on an interface
*/
static int inet6_addr_add(struct net *net, int ifindex,
struct ifa6_config *cfg,
struct netlink_ext_ack *extack)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
unsigned long timeout;
clock_t expires;
u32 flags;
ASSERT_RTNL();
if (cfg->plen > 128)
return -EINVAL;
/* check the lifetime */
if (!cfg->valid_lft || cfg->preferred_lft > cfg->valid_lft)
return -EINVAL;
if (cfg->ifa_flags & IFA_F_MANAGETEMPADDR && cfg->plen != 64)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
idev = addrconf_add_dev(dev);
if (IS_ERR(idev))
return PTR_ERR(idev);
if (cfg->ifa_flags & IFA_F_MCAUTOJOIN) {
int ret = ipv6_mc_config(net->ipv6.mc_autojoin_sk,
true, cfg->pfx, ifindex);
if (ret < 0)
return ret;
}
cfg->scope = ipv6_addr_scope(cfg->pfx);
timeout = addrconf_timeout_fixup(cfg->valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
cfg->valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
cfg->ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(cfg->preferred_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
cfg->ifa_flags |= IFA_F_DEPRECATED;
cfg->preferred_lft = timeout;
}
ifp = ipv6_add_addr(idev, cfg, true, extack);
if (!IS_ERR(ifp)) {
if (!(cfg->ifa_flags & IFA_F_NOPREFIXROUTE)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len,
ifp->rt_priority, dev, expires,
flags, GFP_KERNEL);
}
/* Send a netlink notification if DAD is enabled and
* optimistic flag is not set
*/
if (!(ifp->flags & (IFA_F_OPTIMISTIC | IFA_F_NODAD)))
ipv6_ifa_notify(0, ifp);
/*
* Note that section 3.1 of RFC 4429 indicates
* that the Optimistic flag should not be set for
* manually configured addresses
*/
addrconf_dad_start(ifp);
if (cfg->ifa_flags & IFA_F_MANAGETEMPADDR)
manage_tempaddrs(idev, ifp, cfg->valid_lft,
cfg->preferred_lft, true, jiffies);
in6_ifa_put(ifp);
addrconf_verify_rtnl(net);
return 0;
} else if (cfg->ifa_flags & IFA_F_MCAUTOJOIN) {
ipv6_mc_config(net->ipv6.mc_autojoin_sk, false,
cfg->pfx, ifindex);
}
return PTR_ERR(ifp);
}
static int inet6_addr_del(struct net *net, int ifindex, u32 ifa_flags,
const struct in6_addr *pfx, unsigned int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
if (plen > 128)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
idev = __in6_dev_get(dev);
if (!idev)
return -ENXIO;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
if (ifp->prefix_len == plen &&
ipv6_addr_equal(pfx, &ifp->addr)) {
in6_ifa_hold(ifp);
read_unlock_bh(&idev->lock);
if (!(ifp->flags & IFA_F_TEMPORARY) &&
(ifa_flags & IFA_F_MANAGETEMPADDR))
manage_tempaddrs(idev, ifp, 0, 0, false,
jiffies);
ipv6_del_addr(ifp);
addrconf_verify_rtnl(net);
if (ipv6_addr_is_multicast(pfx)) {
ipv6_mc_config(net->ipv6.mc_autojoin_sk,
false, pfx, dev->ifindex);
}
return 0;
}
}
read_unlock_bh(&idev->lock);
return -EADDRNOTAVAIL;
}
int addrconf_add_ifaddr(struct net *net, void __user *arg)
{
struct ifa6_config cfg = {
.ifa_flags = IFA_F_PERMANENT,
.preferred_lft = INFINITY_LIFE_TIME,
.valid_lft = INFINITY_LIFE_TIME,
};
struct in6_ifreq ireq;
int err;
net: Allow userns root to control ipv6 Allow an unpriviled user who has created a user namespace, and then created a network namespace to effectively use the new network namespace, by reducing capable(CAP_NET_ADMIN) and capable(CAP_NET_RAW) calls to be ns_capable(net->user_ns, CAP_NET_ADMIN), or capable(net->user_ns, CAP_NET_RAW) calls. Settings that merely control a single network device are allowed. Either the network device is a logical network device where restrictions make no difference or the network device is hardware NIC that has been explicity moved from the initial network namespace. In general policy and network stack state changes are allowed while resource control is left unchanged. Allow the SIOCSIFADDR ioctl to add ipv6 addresses. Allow the SIOCDIFADDR ioctl to delete ipv6 addresses. Allow the SIOCADDRT ioctl to add ipv6 routes. Allow the SIOCDELRT ioctl to delete ipv6 routes. Allow creation of ipv6 raw sockets. Allow setting the IPV6_JOIN_ANYCAST socket option. Allow setting the IPV6_FL_A_RENEW parameter of the IPV6_FLOWLABEL_MGR socket option. Allow setting the IPV6_TRANSPARENT socket option. Allow setting the IPV6_HOPOPTS socket option. Allow setting the IPV6_RTHDRDSTOPTS socket option. Allow setting the IPV6_DSTOPTS socket option. Allow setting the IPV6_IPSEC_POLICY socket option. Allow setting the IPV6_XFRM_POLICY socket option. Allow sending packets with the IPV6_2292HOPOPTS control message. Allow sending packets with the IPV6_2292DSTOPTS control message. Allow sending packets with the IPV6_RTHDRDSTOPTS control message. Allow setting the multicast routing socket options on non multicast routing sockets. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL, and SIOCDELTUNNEL ioctls for setting up, changing and deleting tunnels over ipv6. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL, SIOCDELTUNNEL ioctls for setting up, changing and deleting ipv6 over ipv4 tunnels. Allow the SIOCADDPRL, SIOCDELPRL, SIOCCHGPRL ioctls for adding, deleting, and changing the potential router list for ISATAP tunnels. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-16 03:03:06 +00:00
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
cfg.pfx = &ireq.ifr6_addr;
cfg.plen = ireq.ifr6_prefixlen;
rtnl_lock();
err = inet6_addr_add(net, ireq.ifr6_ifindex, &cfg, NULL);
rtnl_unlock();
return err;
}
int addrconf_del_ifaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
int err;
net: Allow userns root to control ipv6 Allow an unpriviled user who has created a user namespace, and then created a network namespace to effectively use the new network namespace, by reducing capable(CAP_NET_ADMIN) and capable(CAP_NET_RAW) calls to be ns_capable(net->user_ns, CAP_NET_ADMIN), or capable(net->user_ns, CAP_NET_RAW) calls. Settings that merely control a single network device are allowed. Either the network device is a logical network device where restrictions make no difference or the network device is hardware NIC that has been explicity moved from the initial network namespace. In general policy and network stack state changes are allowed while resource control is left unchanged. Allow the SIOCSIFADDR ioctl to add ipv6 addresses. Allow the SIOCDIFADDR ioctl to delete ipv6 addresses. Allow the SIOCADDRT ioctl to add ipv6 routes. Allow the SIOCDELRT ioctl to delete ipv6 routes. Allow creation of ipv6 raw sockets. Allow setting the IPV6_JOIN_ANYCAST socket option. Allow setting the IPV6_FL_A_RENEW parameter of the IPV6_FLOWLABEL_MGR socket option. Allow setting the IPV6_TRANSPARENT socket option. Allow setting the IPV6_HOPOPTS socket option. Allow setting the IPV6_RTHDRDSTOPTS socket option. Allow setting the IPV6_DSTOPTS socket option. Allow setting the IPV6_IPSEC_POLICY socket option. Allow setting the IPV6_XFRM_POLICY socket option. Allow sending packets with the IPV6_2292HOPOPTS control message. Allow sending packets with the IPV6_2292DSTOPTS control message. Allow sending packets with the IPV6_RTHDRDSTOPTS control message. Allow setting the multicast routing socket options on non multicast routing sockets. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL, and SIOCDELTUNNEL ioctls for setting up, changing and deleting tunnels over ipv6. Allow the SIOCADDTUNNEL, SIOCCHGTUNNEL, SIOCDELTUNNEL ioctls for setting up, changing and deleting ipv6 over ipv4 tunnels. Allow the SIOCADDPRL, SIOCDELPRL, SIOCCHGPRL ioctls for adding, deleting, and changing the potential router list for ISATAP tunnels. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-16 03:03:06 +00:00
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_del(net, ireq.ifr6_ifindex, 0, &ireq.ifr6_addr,
ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
static void add_addr(struct inet6_dev *idev, const struct in6_addr *addr,
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
int plen, int scope, u8 proto)
{
struct inet6_ifaddr *ifp;
struct ifa6_config cfg = {
.pfx = addr,
.plen = plen,
.ifa_flags = IFA_F_PERMANENT,
.valid_lft = INFINITY_LIFE_TIME,
.preferred_lft = INFINITY_LIFE_TIME,
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
.scope = scope,
.ifa_proto = proto
};
ifp = ipv6_add_addr(idev, &cfg, true, NULL);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
rt_genid_bump_ipv6(dev_net(idev->dev));
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
#if IS_ENABLED(CONFIG_IPV6_SIT) || IS_ENABLED(CONFIG_NET_IPGRE) || IS_ENABLED(CONFIG_IPV6_GRE)
static void add_v4_addrs(struct inet6_dev *idev)
{
struct in6_addr addr;
struct net_device *dev;
struct net *net = dev_net(idev->dev);
int scope, plen, offset = 0;
u32 pflags = 0;
ASSERT_RTNL();
memset(&addr, 0, sizeof(struct in6_addr));
/* in case of IP6GRE the dev_addr is an IPv6 and therefore we use only the last 4 bytes */
if (idev->dev->addr_len == sizeof(struct in6_addr))
offset = sizeof(struct in6_addr) - 4;
memcpy(&addr.s6_addr32[3], idev->dev->dev_addr + offset, 4);
if (!(idev->dev->flags & IFF_POINTOPOINT) && idev->dev->type == ARPHRD_SIT) {
scope = IPV6_ADDR_COMPATv4;
plen = 96;
pflags |= RTF_NONEXTHOP;
} else {
if (idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_NONE)
return;
addr.s6_addr32[0] = htonl(0xfe800000);
scope = IFA_LINK;
plen = 64;
}
if (addr.s6_addr32[3]) {
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
add_addr(idev, &addr, plen, scope, IFAPROT_UNSPEC);
addrconf_prefix_route(&addr, plen, 0, idev->dev, 0, pflags,
GFP_KERNEL);
return;
}
for_each_netdev(net, dev) {
struct in_device *in_dev = __in_dev_get_rtnl(dev);
if (in_dev && (dev->flags & IFF_UP)) {
struct in_ifaddr *ifa;
int flag = scope;
in_dev_for_each_ifa_rtnl(ifa, in_dev) {
addr.s6_addr32[3] = ifa->ifa_local;
if (ifa->ifa_scope == RT_SCOPE_LINK)
continue;
if (ifa->ifa_scope >= RT_SCOPE_HOST) {
if (idev->dev->flags&IFF_POINTOPOINT)
continue;
flag |= IFA_HOST;
}
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
add_addr(idev, &addr, plen, flag,
IFAPROT_UNSPEC);
addrconf_prefix_route(&addr, plen, 0, idev->dev,
0, pflags, GFP_KERNEL);
}
}
}
}
#endif
static void init_loopback(struct net_device *dev)
{
struct inet6_dev *idev;
/* ::1 */
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (IS_ERR(idev)) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
add_addr(idev, &in6addr_loopback, 128, IFA_HOST, IFAPROT_KERNEL_LO);
}
void addrconf_add_linklocal(struct inet6_dev *idev,
const struct in6_addr *addr, u32 flags)
{
struct ifa6_config cfg = {
.pfx = addr,
.plen = 64,
.ifa_flags = flags | IFA_F_PERMANENT,
.valid_lft = INFINITY_LIFE_TIME,
.preferred_lft = INFINITY_LIFE_TIME,
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
.scope = IFA_LINK,
.ifa_proto = IFAPROT_KERNEL_LL
};
struct inet6_ifaddr *ifp;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if ((dev_net(idev->dev)->ipv6.devconf_all->optimistic_dad ||
idev->cnf.optimistic_dad) &&
!dev_net(idev->dev)->ipv6.devconf_all->forwarding)
cfg.ifa_flags |= IFA_F_OPTIMISTIC;
#endif
ifp = ipv6_add_addr(idev, &cfg, true, NULL);
if (!IS_ERR(ifp)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, 0, idev->dev,
0, 0, GFP_ATOMIC);
addrconf_dad_start(ifp);
in6_ifa_put(ifp);
}
}
EXPORT_SYMBOL_GPL(addrconf_add_linklocal);
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
static bool ipv6_reserved_interfaceid(struct in6_addr address)
{
if ((address.s6_addr32[2] | address.s6_addr32[3]) == 0)
return true;
if (address.s6_addr32[2] == htonl(0x02005eff) &&
((address.s6_addr32[3] & htonl(0xfe000000)) == htonl(0xfe000000)))
return true;
if (address.s6_addr32[2] == htonl(0xfdffffff) &&
((address.s6_addr32[3] & htonl(0xffffff80)) == htonl(0xffffff80)))
return true;
return false;
}
static int ipv6_generate_stable_address(struct in6_addr *address,
u8 dad_count,
const struct inet6_dev *idev)
{
static DEFINE_SPINLOCK(lock);
static __u32 digest[SHA1_DIGEST_WORDS];
static __u32 workspace[SHA1_WORKSPACE_WORDS];
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
static union {
char __data[SHA1_BLOCK_SIZE];
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
struct {
struct in6_addr secret;
__be32 prefix[2];
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
unsigned char hwaddr[MAX_ADDR_LEN];
u8 dad_count;
} __packed;
} data;
struct in6_addr secret;
struct in6_addr temp;
struct net *net = dev_net(idev->dev);
BUILD_BUG_ON(sizeof(data.__data) != sizeof(data));
if (idev->cnf.stable_secret.initialized)
secret = idev->cnf.stable_secret.secret;
else if (net->ipv6.devconf_dflt->stable_secret.initialized)
secret = net->ipv6.devconf_dflt->stable_secret.secret;
else
return -1;
retry:
spin_lock_bh(&lock);
sha1_init(digest);
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
memset(&data, 0, sizeof(data));
memset(workspace, 0, sizeof(workspace));
memcpy(data.hwaddr, idev->dev->perm_addr, idev->dev->addr_len);
data.prefix[0] = address->s6_addr32[0];
data.prefix[1] = address->s6_addr32[1];
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
data.secret = secret;
data.dad_count = dad_count;
sha1_transform(digest, data.__data, workspace);
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
temp = *address;
temp.s6_addr32[2] = (__force __be32)digest[0];
temp.s6_addr32[3] = (__force __be32)digest[1];
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
spin_unlock_bh(&lock);
if (ipv6_reserved_interfaceid(temp)) {
dad_count++;
if (dad_count > dev_net(idev->dev)->ipv6.sysctl.idgen_retries)
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
return -1;
goto retry;
}
*address = temp;
return 0;
}
static void ipv6_gen_mode_random_init(struct inet6_dev *idev)
{
struct ipv6_stable_secret *s = &idev->cnf.stable_secret;
if (s->initialized)
return;
s = &idev->cnf.stable_secret;
get_random_bytes(&s->secret, sizeof(s->secret));
s->initialized = true;
}
static void addrconf_addr_gen(struct inet6_dev *idev, bool prefix_route)
{
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
struct in6_addr addr;
/* no link local addresses on L3 master devices */
if (netif_is_l3_master(idev->dev))
return;
ipv6: don't auto-add link-local address to lag ports Bonding slave and team port devices should not have link-local addresses automatically added to them, as it can interfere with openvswitch being able to properly add tc ingress. Basic reproducer, courtesy of Marcelo: $ ip link add name bond0 type bond $ ip link set dev ens2f0np0 master bond0 $ ip link set dev ens2f1np2 master bond0 $ ip link set dev bond0 up $ ip a s 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: ens2f0np0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff 5: ens2f1np2: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond0 state DOWN group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff 11: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link valid_lft forever preferred_lft forever (above trimmed to relevant entries, obviously) $ sysctl net.ipv6.conf.ens2f0np0.addr_gen_mode=0 net.ipv6.conf.ens2f0np0.addr_gen_mode = 0 $ sysctl net.ipv6.conf.ens2f1np2.addr_gen_mode=0 net.ipv6.conf.ens2f1np2.addr_gen_mode = 0 $ ip a l ens2f0np0 2: ens2f0np0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link tentative valid_lft forever preferred_lft forever $ ip a l ens2f1np2 5: ens2f1np2: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond0 state DOWN group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link tentative valid_lft forever preferred_lft forever Looks like addrconf_sysctl_addr_gen_mode() bypasses the original "is this a slave interface?" check added by commit c2edacf80e15, and results in an address getting added, while w/the proposed patch added, no address gets added. This simply adds the same gating check to another code path, and thus should prevent the same devices from erroneously obtaining an ipv6 link-local address. Fixes: d35a00b8e33d ("net/ipv6: allow sysctl to change link-local address generation mode") Reported-by: Moshe Levi <moshele@mellanox.com> CC: Stephen Hemminger <stephen@networkplumber.org> CC: Marcelo Ricardo Leitner <mleitner@redhat.com> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30 15:22:19 +00:00
/* no link local addresses on devices flagged as slaves */
if (idev->dev->priv_flags & IFF_NO_ADDRCONF)
ipv6: don't auto-add link-local address to lag ports Bonding slave and team port devices should not have link-local addresses automatically added to them, as it can interfere with openvswitch being able to properly add tc ingress. Basic reproducer, courtesy of Marcelo: $ ip link add name bond0 type bond $ ip link set dev ens2f0np0 master bond0 $ ip link set dev ens2f1np2 master bond0 $ ip link set dev bond0 up $ ip a s 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: ens2f0np0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff 5: ens2f1np2: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond0 state DOWN group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff 11: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link valid_lft forever preferred_lft forever (above trimmed to relevant entries, obviously) $ sysctl net.ipv6.conf.ens2f0np0.addr_gen_mode=0 net.ipv6.conf.ens2f0np0.addr_gen_mode = 0 $ sysctl net.ipv6.conf.ens2f1np2.addr_gen_mode=0 net.ipv6.conf.ens2f1np2.addr_gen_mode = 0 $ ip a l ens2f0np0 2: ens2f0np0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link tentative valid_lft forever preferred_lft forever $ ip a l ens2f1np2 5: ens2f1np2: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc mq master bond0 state DOWN group default qlen 1000 link/ether 00:0f:53:2f:ea:40 brd ff:ff:ff:ff:ff:ff inet6 fe80::20f:53ff:fe2f:ea40/64 scope link tentative valid_lft forever preferred_lft forever Looks like addrconf_sysctl_addr_gen_mode() bypasses the original "is this a slave interface?" check added by commit c2edacf80e15, and results in an address getting added, while w/the proposed patch added, no address gets added. This simply adds the same gating check to another code path, and thus should prevent the same devices from erroneously obtaining an ipv6 link-local address. Fixes: d35a00b8e33d ("net/ipv6: allow sysctl to change link-local address generation mode") Reported-by: Moshe Levi <moshele@mellanox.com> CC: Stephen Hemminger <stephen@networkplumber.org> CC: Marcelo Ricardo Leitner <mleitner@redhat.com> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30 15:22:19 +00:00
return;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
switch (idev->cnf.addr_gen_mode) {
case IN6_ADDR_GEN_MODE_RANDOM:
ipv6_gen_mode_random_init(idev);
fallthrough;
case IN6_ADDR_GEN_MODE_STABLE_PRIVACY:
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
if (!ipv6_generate_stable_address(&addr, 0, idev))
addrconf_add_linklocal(idev, &addr,
IFA_F_STABLE_PRIVACY);
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
else if (prefix_route)
addrconf_prefix_route(&addr, 64, 0, idev->dev,
0, 0, GFP_KERNEL);
break;
case IN6_ADDR_GEN_MODE_EUI64:
/* addrconf_add_linklocal also adds a prefix_route and we
* only need to care about prefix routes if ipv6_generate_eui64
* couldn't generate one.
*/
if (ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) == 0)
addrconf_add_linklocal(idev, &addr, 0);
else if (prefix_route)
addrconf_prefix_route(&addr, 64, 0, idev->dev,
0, 0, GFP_KERNEL);
break;
case IN6_ADDR_GEN_MODE_NONE:
default:
/* will not add any link local address */
break;
}
}
static void addrconf_dev_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((dev->type != ARPHRD_ETHER) &&
(dev->type != ARPHRD_FDDI) &&
(dev->type != ARPHRD_ARCNET) &&
(dev->type != ARPHRD_INFINIBAND) &&
(dev->type != ARPHRD_IEEE1394) &&
(dev->type != ARPHRD_TUNNEL6) &&
(dev->type != ARPHRD_6LOWPAN) &&
(dev->type != ARPHRD_TUNNEL) &&
(dev->type != ARPHRD_NONE) &&
(dev->type != ARPHRD_RAWIP)) {
/* Alas, we support only Ethernet autoconfiguration. */
ipv6/addrconf: call ipv6_mc_up() for non-Ethernet interface Rafał found an issue that for non-Ethernet interface, if we down and up frequently, the memory will be consumed slowly. The reason is we add allnodes/allrouters addressed in multicast list in ipv6_add_dev(). When link down, we call ipv6_mc_down(), store all multicast addresses via mld_add_delrec(). But when link up, we don't call ipv6_mc_up() for non-Ethernet interface to remove the addresses. This makes idev->mc_tomb getting bigger and bigger. The call stack looks like: addrconf_notify(NETDEV_REGISTER) ipv6_add_dev ipv6_dev_mc_inc(ff01::1) ipv6_dev_mc_inc(ff02::1) ipv6_dev_mc_inc(ff02::2) addrconf_notify(NETDEV_UP) addrconf_dev_config /* Alas, we support only Ethernet autoconfiguration. */ return; addrconf_notify(NETDEV_DOWN) addrconf_ifdown ipv6_mc_down igmp6_group_dropped(ff02::2) mld_add_delrec(ff02::2) igmp6_group_dropped(ff02::1) igmp6_group_dropped(ff01::1) After investigating, I can't found a rule to disable multicast on non-Ethernet interface. In RFC2460, the link could be Ethernet, PPP, ATM, tunnels, etc. In IPv4, it doesn't check the dev type when calls ip_mc_up() in inetdev_event(). Even for IPv6, we don't check the dev type and call ipv6_add_dev(), ipv6_dev_mc_inc() after register device. So I think it's OK to fix this memory consumer by calling ipv6_mc_up() for non-Ethernet interface. v2: Also check IFF_MULTICAST flag to make sure the interface supports multicast Reported-by: Rafał Miłecki <zajec5@gmail.com> Tested-by: Rafał Miłecki <zajec5@gmail.com> Fixes: 74235a25c673 ("[IPV6] addrconf: Fix IPv6 on tuntap tunnels") Fixes: 1666d49e1d41 ("mld: do not remove mld souce list info when set link down") Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 07:27:37 +00:00
idev = __in6_dev_get(dev);
if (!IS_ERR_OR_NULL(idev) && dev->flags & IFF_UP &&
dev->flags & IFF_MULTICAST)
ipv6_mc_up(idev);
return;
}
idev = addrconf_add_dev(dev);
if (IS_ERR(idev))
return;
/* this device type has no EUI support */
if (dev->type == ARPHRD_NONE &&
idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_EUI64)
idev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_RANDOM;
addrconf_addr_gen(idev, false);
}
#if IS_ENABLED(CONFIG_IPV6_SIT)
static void addrconf_sit_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
/*
* Configure the tunnel with one of our IPv4
* addresses... we should configure all of
* our v4 addrs in the tunnel
*/
idev = ipv6_find_idev(dev);
if (IS_ERR(idev)) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
if (dev->priv_flags & IFF_ISATAP) {
addrconf_addr_gen(idev, false);
return;
}
add_v4_addrs(idev);
if (dev->flags&IFF_POINTOPOINT)
addrconf_add_mroute(dev);
}
#endif
#if IS_ENABLED(CONFIG_NET_IPGRE) || IS_ENABLED(CONFIG_IPV6_GRE)
static void addrconf_gre_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (IS_ERR(idev)) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
if (dev->type == ARPHRD_ETHER) {
addrconf_addr_gen(idev, true);
return;
}
add_v4_addrs(idev);
if (dev->flags & IFF_POINTOPOINT)
addrconf_add_mroute(dev);
}
#endif
ip/ip6_gre: Fix changing addr gen mode not generating IPv6 link local address For our point-to-point GRE tunnels, they have IN6_ADDR_GEN_MODE_NONE when they are created then we set IN6_ADDR_GEN_MODE_EUI64 when they come up to generate the IPv6 link local address for the interface. Recently we found that they were no longer generating IPv6 addresses. This issue would also have affected SIT tunnels. Commit e5dd729460ca changed the code path so that GRE tunnels generate an IPv6 address based on the tunnel source address. It also changed the code path so GRE tunnels don't call addrconf_addr_gen in addrconf_dev_config which is called by addrconf_sysctl_addr_gen_mode when the IN6_ADDR_GEN_MODE is changed. This patch aims to fix this issue by moving the code in addrconf_notify which calls the addr gen for GRE and SIT into a separate function and calling it in the places that expect the IPv6 address to be generated. The previous addrconf_dev_config is renamed to addrconf_eth_config since it only expected eth type interfaces and follows the addrconf_gre/sit_config format. A part of this changes means that the loopback address will be attempted to be configured when changing addr_gen_mode for lo. This should not be a problem because the address should exist anyway and if does already exist then no error is produced. Fixes: e5dd729460ca ("ip/ip6_gre: use the same logic as SIT interfaces when computing v6LL address") Signed-off-by: Thomas Winter <Thomas.Winter@alliedtelesis.co.nz> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-31 03:46:45 +00:00
static void addrconf_init_auto_addrs(struct net_device *dev)
{
switch (dev->type) {
#if IS_ENABLED(CONFIG_IPV6_SIT)
case ARPHRD_SIT:
addrconf_sit_config(dev);
break;
#endif
#if IS_ENABLED(CONFIG_NET_IPGRE) || IS_ENABLED(CONFIG_IPV6_GRE)
case ARPHRD_IP6GRE:
case ARPHRD_IPGRE:
addrconf_gre_config(dev);
break;
#endif
case ARPHRD_LOOPBACK:
init_loopback(dev);
break;
default:
addrconf_dev_config(dev);
break;
}
}
static int fixup_permanent_addr(struct net *net,
struct inet6_dev *idev,
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
struct inet6_ifaddr *ifp)
{
/* !fib6_node means the host route was removed from the
net: ipv6: regenerate host route if moved to gc list Taking down the loopback device wreaks havoc on IPv6 routing. By extension, taking down a VRF device wreaks havoc on its table. Dmitry and Andrey both reported heap out-of-bounds reports in the IPv6 FIB code while running syzkaller fuzzer. The root cause is a dead dst that is on the garbage list gets reinserted into the IPv6 FIB. While on the gc (or perhaps when it gets added to the gc list) the dst->next is set to an IPv4 dst. A subsequent walk of the ipv6 tables causes the out-of-bounds access. Andrey's reproducer was the key to getting to the bottom of this. With IPv6, host routes for an address have the dst->dev set to the loopback device. When the 'lo' device is taken down, rt6_ifdown initiates a walk of the fib evicting routes with the 'lo' device which means all host routes are removed. That process moves the dst which is attached to an inet6_ifaddr to the gc list and marks it as dead. The recent change to keep global IPv6 addresses added a new function, fixup_permanent_addr, that is called on admin up. That function restarts dad for an inet6_ifaddr and when it completes the host route attached to it is inserted into the fib. Since the route was marked dead and moved to the gc list, re-inserting the route causes the reported out-of-bounds accesses. If the device with the address is taken down or the address is removed, the WARN_ON in fib6_del is triggered. All of those faults are fixed by regenerating the host route if the existing one has been moved to the gc list, something that can be determined by checking if the rt6i_ref counter is 0. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 16:17:29 +00:00
* FIB, for example, if 'lo' device is taken down. In that
* case regenerate the host route.
*/
if (!ifp->rt || !ifp->rt->fib6_node) {
struct fib6_info *f6i, *prev;
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
f6i = addrconf_f6i_alloc(net, idev, &ifp->addr, false,
GFP_ATOMIC);
if (IS_ERR(f6i))
return PTR_ERR(f6i);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
net: ipv6: regenerate host route if moved to gc list Taking down the loopback device wreaks havoc on IPv6 routing. By extension, taking down a VRF device wreaks havoc on its table. Dmitry and Andrey both reported heap out-of-bounds reports in the IPv6 FIB code while running syzkaller fuzzer. The root cause is a dead dst that is on the garbage list gets reinserted into the IPv6 FIB. While on the gc (or perhaps when it gets added to the gc list) the dst->next is set to an IPv4 dst. A subsequent walk of the ipv6 tables causes the out-of-bounds access. Andrey's reproducer was the key to getting to the bottom of this. With IPv6, host routes for an address have the dst->dev set to the loopback device. When the 'lo' device is taken down, rt6_ifdown initiates a walk of the fib evicting routes with the 'lo' device which means all host routes are removed. That process moves the dst which is attached to an inet6_ifaddr to the gc list and marks it as dead. The recent change to keep global IPv6 addresses added a new function, fixup_permanent_addr, that is called on admin up. That function restarts dad for an inet6_ifaddr and when it completes the host route attached to it is inserted into the fib. Since the route was marked dead and moved to the gc list, re-inserting the route causes the reported out-of-bounds accesses. If the device with the address is taken down or the address is removed, the WARN_ON in fib6_del is triggered. All of those faults are fixed by regenerating the host route if the existing one has been moved to the gc list, something that can be determined by checking if the rt6i_ref counter is 0. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 16:17:29 +00:00
/* ifp->rt can be accessed outside of rtnl */
spin_lock(&ifp->lock);
prev = ifp->rt;
ifp->rt = f6i;
net: ipv6: regenerate host route if moved to gc list Taking down the loopback device wreaks havoc on IPv6 routing. By extension, taking down a VRF device wreaks havoc on its table. Dmitry and Andrey both reported heap out-of-bounds reports in the IPv6 FIB code while running syzkaller fuzzer. The root cause is a dead dst that is on the garbage list gets reinserted into the IPv6 FIB. While on the gc (or perhaps when it gets added to the gc list) the dst->next is set to an IPv4 dst. A subsequent walk of the ipv6 tables causes the out-of-bounds access. Andrey's reproducer was the key to getting to the bottom of this. With IPv6, host routes for an address have the dst->dev set to the loopback device. When the 'lo' device is taken down, rt6_ifdown initiates a walk of the fib evicting routes with the 'lo' device which means all host routes are removed. That process moves the dst which is attached to an inet6_ifaddr to the gc list and marks it as dead. The recent change to keep global IPv6 addresses added a new function, fixup_permanent_addr, that is called on admin up. That function restarts dad for an inet6_ifaddr and when it completes the host route attached to it is inserted into the fib. Since the route was marked dead and moved to the gc list, re-inserting the route causes the reported out-of-bounds accesses. If the device with the address is taken down or the address is removed, the WARN_ON in fib6_del is triggered. All of those faults are fixed by regenerating the host route if the existing one has been moved to the gc list, something that can be determined by checking if the rt6i_ref counter is 0. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-25 16:17:29 +00:00
spin_unlock(&ifp->lock);
fib6_info_release(prev);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
}
if (!(ifp->flags & IFA_F_NOPREFIXROUTE)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len,
ifp->rt_priority, idev->dev, 0, 0,
GFP_ATOMIC);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
}
net: ipv6: Do not duplicate DAD on link up Andrey reported a warning triggered by the rcu code: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 5911 at lib/debugobjects.c:289 debug_print_object+0x175/0x210 ODEBUG: activate active (active state 1) object type: rcu_head hint: (null) Modules linked in: CPU: 1 PID: 5911 Comm: a.out Not tainted 4.11.0-rc8+ #271 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 dump_stack+0x192/0x22d lib/dump_stack.c:52 __warn+0x19f/0x1e0 kernel/panic.c:549 warn_slowpath_fmt+0xe0/0x120 kernel/panic.c:564 debug_print_object+0x175/0x210 lib/debugobjects.c:286 debug_object_activate+0x574/0x7e0 lib/debugobjects.c:442 debug_rcu_head_queue kernel/rcu/rcu.h:75 __call_rcu.constprop.76+0xff/0x9c0 kernel/rcu/tree.c:3229 call_rcu_sched+0x12/0x20 kernel/rcu/tree.c:3288 rt6_rcu_free net/ipv6/ip6_fib.c:158 rt6_release+0x1ea/0x290 net/ipv6/ip6_fib.c:188 fib6_del_route net/ipv6/ip6_fib.c:1461 fib6_del+0xa42/0xdc0 net/ipv6/ip6_fib.c:1500 __ip6_del_rt+0x100/0x160 net/ipv6/route.c:2174 ip6_del_rt+0x140/0x1b0 net/ipv6/route.c:2187 __ipv6_ifa_notify+0x269/0x780 net/ipv6/addrconf.c:5520 addrconf_ifdown+0xe60/0x1a20 net/ipv6/addrconf.c:3672 ... Andrey's reproducer program runs in a very tight loop, calling 'unshare -n' and then spawning 2 sets of 14 threads running random ioctl calls. The relevant networking sequence: 1. New network namespace created via unshare -n - ip6tnl0 device is created in down state 2. address added to ip6tnl0 - equivalent to ip -6 addr add dev ip6tnl0 fd00::bb/1 - DAD is started on the address and when it completes the host route is inserted into the FIB 3. ip6tnl0 is brought up - the new fixup_permanent_addr function restarts DAD on the address 4. exit namespace - teardown / cleanup sequence starts - once in a blue moon, lo teardown appears to happen BEFORE teardown of ip6tunl0 + down on 'lo' removes the host route from the FIB since the dst->dev for the route is loobback + host route added to rcu callback list * rcu callback has not run yet, so rt is NOT on the gc list so it has NOT been marked obsolete 5. in parallel to 4. worker_thread runs addrconf_dad_completed - DAD on the address on ip6tnl0 completes - calls ipv6_ifa_notify which inserts the host route All of that happens very quickly. The result is that a host route that has been deleted from the IPv6 FIB and added to the RCU list is re-inserted into the FIB. The exit namespace eventually gets to cleaning up ip6tnl0 which removes the host route from the FIB again, calls the rcu function for cleanup -- and triggers the double rcu trace. The root cause is duplicate DAD on the address -- steps 2 and 3. Arguably, DAD should not be started in step 2. The interface is in the down state, so it can not really send out requests for the address which makes starting DAD pointless. Since the second DAD was introduced by a recent change, seems appropriate to use it for the Fixes tag and have the fixup function only start DAD for addresses in the PREDAD state which occurs in addrconf_ifdown if the address is retained. Big thanks to Andrey for isolating a reliable reproducer for this problem. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsahern@gmail.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-02 21:43:44 +00:00
if (ifp->state == INET6_IFADDR_STATE_PREDAD)
addrconf_dad_start(ifp);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
return 0;
}
static void addrconf_permanent_addr(struct net *net, struct net_device *dev)
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
{
struct inet6_ifaddr *ifp, *tmp;
struct inet6_dev *idev;
idev = __in6_dev_get(dev);
if (!idev)
return;
write_lock_bh(&idev->lock);
list_for_each_entry_safe(ifp, tmp, &idev->addr_list, if_list) {
if ((ifp->flags & IFA_F_PERMANENT) &&
fixup_permanent_addr(net, idev, ifp) < 0) {
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
write_unlock_bh(&idev->lock);
ipv6: addrconf: increment ifp refcount before ipv6_del_addr() In the (unlikely) event fixup_permanent_addr() returns a failure, addrconf_permanent_addr() calls ipv6_del_addr() without the mandatory call to in6_ifa_hold(), leading to a refcount error, spotted by syzkaller : WARNING: CPU: 1 PID: 3142 at lib/refcount.c:227 refcount_dec+0x4c/0x50 lib/refcount.c:227 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 3142 Comm: ip Not tainted 4.14.0-rc4-next-20171009+ #33 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 panic+0x1e4/0x41c kernel/panic.c:181 __warn+0x1c4/0x1e0 kernel/panic.c:544 report_bug+0x211/0x2d0 lib/bug.c:183 fixup_bug+0x40/0x90 arch/x86/kernel/traps.c:178 do_trap_no_signal arch/x86/kernel/traps.c:212 [inline] do_trap+0x260/0x390 arch/x86/kernel/traps.c:261 do_error_trap+0x120/0x390 arch/x86/kernel/traps.c:298 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:311 invalid_op+0x18/0x20 arch/x86/entry/entry_64.S:905 RIP: 0010:refcount_dec+0x4c/0x50 lib/refcount.c:227 RSP: 0018:ffff8801ca49e680 EFLAGS: 00010286 RAX: 000000000000002c RBX: ffff8801d07cfcdc RCX: 0000000000000000 RDX: 000000000000002c RSI: 1ffff10039493c90 RDI: ffffed0039493cc4 RBP: ffff8801ca49e688 R08: ffff8801ca49dd70 R09: 0000000000000000 R10: ffff8801ca49df58 R11: 0000000000000000 R12: 1ffff10039493cd9 R13: ffff8801ca49e6e8 R14: ffff8801ca49e7e8 R15: ffff8801d07cfcdc __in6_ifa_put include/net/addrconf.h:369 [inline] ipv6_del_addr+0x42b/0xb60 net/ipv6/addrconf.c:1208 addrconf_permanent_addr net/ipv6/addrconf.c:3327 [inline] addrconf_notify+0x1c66/0x2190 net/ipv6/addrconf.c:3393 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x60 net/core/dev.c:1697 call_netdevice_notifiers net/core/dev.c:1715 [inline] __dev_notify_flags+0x15d/0x430 net/core/dev.c:6843 dev_change_flags+0xf5/0x140 net/core/dev.c:6879 do_setlink+0xa1b/0x38e0 net/core/rtnetlink.c:2113 rtnl_newlink+0xf0d/0x1a40 net/core/rtnetlink.c:2661 rtnetlink_rcv_msg+0x733/0x1090 net/core/rtnetlink.c:4301 netlink_rcv_skb+0x216/0x440 net/netlink/af_netlink.c:2408 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4313 netlink_unicast_kernel net/netlink/af_netlink.c:1273 [inline] netlink_unicast+0x4e8/0x6f0 net/netlink/af_netlink.c:1299 netlink_sendmsg+0xa4a/0xe70 net/netlink/af_netlink.c:1862 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 ___sys_sendmsg+0x75b/0x8a0 net/socket.c:2049 __sys_sendmsg+0xe5/0x210 net/socket.c:2083 SYSC_sendmsg net/socket.c:2094 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2090 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x7fa9174d3320 RSP: 002b:00007ffe302ae9e8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007ffe302b2ae0 RCX: 00007fa9174d3320 RDX: 0000000000000000 RSI: 00007ffe302aea20 RDI: 0000000000000016 RBP: 0000000000000082 R08: 0000000000000000 R09: 000000000000000f R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffe302b32a0 R13: 0000000000000000 R14: 00007ffe302b2ab8 R15: 00007ffe302b32b8 Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Ahern <dsahern@gmail.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-31 05:47:09 +00:00
in6_ifa_hold(ifp);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
ipv6_del_addr(ifp);
write_lock_bh(&idev->lock);
net_info_ratelimited("%s: Failed to add prefix route for address %pI6c; dropping\n",
idev->dev->name, &ifp->addr);
}
}
write_unlock_bh(&idev->lock);
}
static int addrconf_notify(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_change_info *change_info;
struct netdev_notifier_changeupper_info *info;
struct inet6_dev *idev = __in6_dev_get(dev);
struct net *net = dev_net(dev);
int run_pending = 0;
int err;
switch (event) {
case NETDEV_REGISTER:
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
return notifier_from_errno(PTR_ERR(idev));
}
break;
case NETDEV_CHANGEMTU:
/* if MTU under IPV6_MIN_MTU stop IPv6 on this interface. */
if (dev->mtu < IPV6_MIN_MTU) {
addrconf_ifdown(dev, dev != net->loopback_dev);
break;
}
if (idev) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
break;
}
/* allocate new idev */
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
break;
/* device is still not ready */
if (!(idev->if_flags & IF_READY))
break;
run_pending = 1;
fallthrough;
case NETDEV_UP:
case NETDEV_CHANGE:
if (idev && idev->cnf.disable_ipv6)
break;
if (dev->priv_flags & IFF_NO_ADDRCONF) {
if (event == NETDEV_UP && !IS_ERR_OR_NULL(idev) &&
dev->flags & IFF_UP && dev->flags & IFF_MULTICAST)
ipv6_mc_up(idev);
break;
}
if (event == NETDEV_UP) {
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
/* restore routes for permanent addresses */
addrconf_permanent_addr(net, dev);
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
if (!addrconf_link_ready(dev)) {
/* device is not ready yet. */
pr_debug("ADDRCONF(NETDEV_UP): %s: link is not ready\n",
dev->name);
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU)
idev = ipv6_add_dev(dev);
if (!IS_ERR_OR_NULL(idev)) {
idev->if_flags |= IF_READY;
ipv6: fix run pending DAD when interface becomes ready With some net devices types, an IPv6 address configured while the interface was down can stay 'tentative' forever, even after the interface is set up. In some case, pending IPv6 DADs are not executed when the device becomes ready. I observed this while doing some tests with kvm. If I assign an IPv6 address to my interface eth0 (kvm driver rtl8139) when it is still down then the address is flagged tentative (IFA_F_TENTATIVE). Then, I set eth0 up, and to my surprise, the address stays 'tentative', no DAD is executed and the address can't be pinged. I also observed the same behaviour, without kvm, with virtual interfaces types macvlan and veth. Some easy steps to reproduce the issue with macvlan: 1. ip link add link eth0 type macvlan 2. ip -6 addr add 2003::ab32/64 dev macvlan0 3. ip addr show dev macvlan0 ... inet6 2003::ab32/64 scope global tentative ... 4. ip link set macvlan0 up 5. ip addr show dev macvlan0 ... inet6 2003::ab32/64 scope global tentative ... Address is still tentative I think there's a bug in net/ipv6/addrconf.c, addrconf_notify(): addrconf_dad_run() is not always run when the interface is flagged IF_READY. Currently it is only run when receiving NETDEV_CHANGE event. Looks like some (virtual) devices doesn't send this event when becoming up. For both NETDEV_UP and NETDEV_CHANGE events, when the interface becomes ready, run_pending should be set to 1. Patch below. 'run_pending = 1' could be moved below the if/else block but it makes the code less readable. Signed-off-by: Benjamin Thery <benjamin.thery@bull.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-05 09:43:57 +00:00
run_pending = 1;
}
} else if (event == NETDEV_CHANGE) {
if (!addrconf_link_ready(dev)) {
/* device is still not ready. */
rt6_sync_down_dev(dev, event);
break;
}
if (!IS_ERR_OR_NULL(idev)) {
if (idev->if_flags & IF_READY) {
/* device is already configured -
* but resend MLD reports, we might
* have roamed and need to update
* multicast snooping switches
*/
ipv6_mc_up(idev);
change_info = ptr;
if (change_info->flags_changed & IFF_NOARP)
addrconf_dad_run(idev, true);
rt6_sync_up(dev, RTNH_F_LINKDOWN);
break;
}
idev->if_flags |= IF_READY;
}
pr_info("ADDRCONF(NETDEV_CHANGE): %s: link becomes ready\n",
dev->name);
run_pending = 1;
}
ip/ip6_gre: Fix changing addr gen mode not generating IPv6 link local address For our point-to-point GRE tunnels, they have IN6_ADDR_GEN_MODE_NONE when they are created then we set IN6_ADDR_GEN_MODE_EUI64 when they come up to generate the IPv6 link local address for the interface. Recently we found that they were no longer generating IPv6 addresses. This issue would also have affected SIT tunnels. Commit e5dd729460ca changed the code path so that GRE tunnels generate an IPv6 address based on the tunnel source address. It also changed the code path so GRE tunnels don't call addrconf_addr_gen in addrconf_dev_config which is called by addrconf_sysctl_addr_gen_mode when the IN6_ADDR_GEN_MODE is changed. This patch aims to fix this issue by moving the code in addrconf_notify which calls the addr gen for GRE and SIT into a separate function and calling it in the places that expect the IPv6 address to be generated. The previous addrconf_dev_config is renamed to addrconf_eth_config since it only expected eth type interfaces and follows the addrconf_gre/sit_config format. A part of this changes means that the loopback address will be attempted to be configured when changing addr_gen_mode for lo. This should not be a problem because the address should exist anyway and if does already exist then no error is produced. Fixes: e5dd729460ca ("ip/ip6_gre: use the same logic as SIT interfaces when computing v6LL address") Signed-off-by: Thomas Winter <Thomas.Winter@alliedtelesis.co.nz> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-31 03:46:45 +00:00
addrconf_init_auto_addrs(dev);
if (!IS_ERR_OR_NULL(idev)) {
if (run_pending)
addrconf_dad_run(idev, false);
/* Device has an address by now */
rt6_sync_up(dev, RTNH_F_DEAD);
/*
* If the MTU changed during the interface down,
* when the interface up, the changed MTU must be
* reflected in the idev as well as routers.
*/
if (idev->cnf.mtu6 != dev->mtu &&
dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
}
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/*
* If the changed mtu during down is lower than
* IPV6_MIN_MTU stop IPv6 on this interface.
*/
if (dev->mtu < IPV6_MIN_MTU)
addrconf_ifdown(dev, dev != net->loopback_dev);
}
break;
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
/*
* Remove all addresses from this interface.
*/
addrconf_ifdown(dev, event != NETDEV_DOWN);
break;
case NETDEV_CHANGENAME:
if (idev) {
snmp6_unregister_dev(idev);
addrconf_sysctl_unregister(idev);
err = addrconf_sysctl_register(idev);
if (err)
return notifier_from_errno(err);
err = snmp6_register_dev(idev);
if (err) {
addrconf_sysctl_unregister(idev);
return notifier_from_errno(err);
}
}
break;
case NETDEV_PRE_TYPE_CHANGE:
case NETDEV_POST_TYPE_CHANGE:
if (idev)
addrconf_type_change(dev, event);
break;
case NETDEV_CHANGEUPPER:
info = ptr;
/* flush all routes if dev is linked to or unlinked from
* an L3 master device (e.g., VRF)
*/
if (info->upper_dev && netif_is_l3_master(info->upper_dev))
addrconf_ifdown(dev, false);
}
return NOTIFY_OK;
}
/*
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
.notifier_call = addrconf_notify,
.priority = ADDRCONF_NOTIFY_PRIORITY,
};
static void addrconf_type_change(struct net_device *dev, unsigned long event)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = __in6_dev_get(dev);
if (event == NETDEV_POST_TYPE_CHANGE)
ipv6_mc_remap(idev);
else if (event == NETDEV_PRE_TYPE_CHANGE)
ipv6_mc_unmap(idev);
}
static bool addr_is_local(const struct in6_addr *addr)
{
return ipv6_addr_type(addr) &
(IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK);
}
static int addrconf_ifdown(struct net_device *dev, bool unregister)
{
unsigned long event = unregister ? NETDEV_UNREGISTER : NETDEV_DOWN;
struct net *net = dev_net(dev);
struct inet6_dev *idev;
struct inet6_ifaddr *ifa;
LIST_HEAD(tmp_addr_list);
bool keep_addr = false;
net: ipv6: ensure we call ipv6_mc_down() at most once There are two reasons for addrconf_notify() to be called with NETDEV_DOWN: either the network device is actually going down, or IPv6 was disabled on the interface. If either of them stays down while the other is toggled, we repeatedly call the code for NETDEV_DOWN, including ipv6_mc_down(), while never calling the corresponding ipv6_mc_up() in between. This will cause a new entry in idev->mc_tomb to be allocated for each multicast group the interface is subscribed to, which in turn leaks one struct ifmcaddr6 per nontrivial multicast group the interface is subscribed to. The following reproducer will leak at least $n objects: ip addr add ff2e::4242/32 dev eth0 autojoin sysctl -w net.ipv6.conf.eth0.disable_ipv6=1 for i in $(seq 1 $n); do ip link set up eth0; ip link set down eth0 done Joining groups with IPV6_ADD_MEMBERSHIP (unprivileged) or setting the sysctl net.ipv6.conf.eth0.forwarding to 1 (=> subscribing to ff02::2) can also be used to create a nontrivial idev->mc_list, which will the leak objects with the right up-down-sequence. Based on both sources for NETDEV_DOWN events the interface IPv6 state should be considered: - not ready if the network interface is not ready OR IPv6 is disabled for it - ready if the network interface is ready AND IPv6 is enabled for it The functions ipv6_mc_up() and ipv6_down() should only be run when this state changes. Implement this by remembering when the IPv6 state is ready, and only run ipv6_mc_down() if it actually changed from ready to not ready. The other direction (not ready -> ready) already works correctly, as: - the interface notification triggered codepath for NETDEV_UP / NETDEV_CHANGE returns early if ipv6 is disabled, and - the disable_ipv6=0 triggered codepath skips fully initializing the interface as long as addrconf_link_ready(dev) returns false - calling ipv6_mc_up() repeatedly does not leak anything Fixes: 3ce62a84d53c ("ipv6: exit early in addrconf_notify() if IPv6 is disabled") Signed-off-by: Johannes Nixdorf <j.nixdorf@avm.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-24 09:06:49 +00:00
bool was_ready;
2011-01-24 07:27:15 +00:00
int state, i;
ASSERT_RTNL();
rt6_disable_ip(dev, event);
idev = __in6_dev_get(dev);
if (!idev)
return -ENODEV;
/*
* Step 1: remove reference to ipv6 device from parent device.
* Do not dev_put!
*/
if (unregister) {
idev->dead = 1;
/* protected by rtnl_lock */
RCU_INIT_POINTER(dev->ip6_ptr, NULL);
/* Step 1.5: remove snmp6 entry */
snmp6_unregister_dev(idev);
}
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
/* combine the user config with event to determine if permanent
* addresses are to be removed from address hash table
*/
if (!unregister && !idev->cnf.disable_ipv6) {
/* aggregate the system setting and interface setting */
int _keep_addr = net->ipv6.devconf_all->keep_addr_on_down;
if (!_keep_addr)
_keep_addr = idev->cnf.keep_addr_on_down;
keep_addr = (_keep_addr > 0);
}
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
2011-01-24 07:27:15 +00:00
/* Step 2: clear hash table */
for (i = 0; i < IN6_ADDR_HSIZE; i++) {
struct hlist_head *h = &net->ipv6.inet6_addr_lst[i];
2011-01-24 07:27:15 +00:00
spin_lock_bh(&net->ipv6.addrconf_hash_lock);
restart:
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry_rcu(ifa, h, addr_lst) {
2011-01-24 07:27:15 +00:00
if (ifa->idev == idev) {
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_del_dad_work(ifa);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
/* combined flag + permanent flag decide if
* address is retained on a down event
*/
if (!keep_addr ||
!(ifa->flags & IFA_F_PERMANENT) ||
addr_is_local(&ifa->addr)) {
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
hlist_del_init_rcu(&ifa->addr_lst);
goto restart;
}
2011-01-24 07:27:15 +00:00
}
}
spin_unlock_bh(&net->ipv6.addrconf_hash_lock);
2011-01-24 07:27:15 +00:00
}
write_lock_bh(&idev->lock);
addrconf_del_rs_timer(idev);
net: ipv6: ensure we call ipv6_mc_down() at most once There are two reasons for addrconf_notify() to be called with NETDEV_DOWN: either the network device is actually going down, or IPv6 was disabled on the interface. If either of them stays down while the other is toggled, we repeatedly call the code for NETDEV_DOWN, including ipv6_mc_down(), while never calling the corresponding ipv6_mc_up() in between. This will cause a new entry in idev->mc_tomb to be allocated for each multicast group the interface is subscribed to, which in turn leaks one struct ifmcaddr6 per nontrivial multicast group the interface is subscribed to. The following reproducer will leak at least $n objects: ip addr add ff2e::4242/32 dev eth0 autojoin sysctl -w net.ipv6.conf.eth0.disable_ipv6=1 for i in $(seq 1 $n); do ip link set up eth0; ip link set down eth0 done Joining groups with IPV6_ADD_MEMBERSHIP (unprivileged) or setting the sysctl net.ipv6.conf.eth0.forwarding to 1 (=> subscribing to ff02::2) can also be used to create a nontrivial idev->mc_list, which will the leak objects with the right up-down-sequence. Based on both sources for NETDEV_DOWN events the interface IPv6 state should be considered: - not ready if the network interface is not ready OR IPv6 is disabled for it - ready if the network interface is ready AND IPv6 is enabled for it The functions ipv6_mc_up() and ipv6_down() should only be run when this state changes. Implement this by remembering when the IPv6 state is ready, and only run ipv6_mc_down() if it actually changed from ready to not ready. The other direction (not ready -> ready) already works correctly, as: - the interface notification triggered codepath for NETDEV_UP / NETDEV_CHANGE returns early if ipv6 is disabled, and - the disable_ipv6=0 triggered codepath skips fully initializing the interface as long as addrconf_link_ready(dev) returns false - calling ipv6_mc_up() repeatedly does not leak anything Fixes: 3ce62a84d53c ("ipv6: exit early in addrconf_notify() if IPv6 is disabled") Signed-off-by: Johannes Nixdorf <j.nixdorf@avm.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-24 09:06:49 +00:00
/* Step 2: clear flags for stateless addrconf, repeated down
* detection
*/
was_ready = idev->if_flags & IF_READY;
if (!unregister)
idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD|IF_READY);
/* Step 3: clear tempaddr list */
while (!list_empty(&idev->tempaddr_list)) {
ifa = list_first_entry(&idev->tempaddr_list,
struct inet6_ifaddr, tmp_list);
list_del(&ifa->tmp_list);
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (ifa->ifpub) {
in6_ifa_put(ifa->ifpub);
ifa->ifpub = NULL;
}
spin_unlock_bh(&ifa->lock);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
list_for_each_entry(ifa, &idev->addr_list, if_list)
list_add_tail(&ifa->if_list_aux, &tmp_addr_list);
write_unlock_bh(&idev->lock);
while (!list_empty(&tmp_addr_list)) {
struct fib6_info *rt = NULL;
bool keep;
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
ifa = list_first_entry(&tmp_addr_list,
struct inet6_ifaddr, if_list_aux);
list_del(&ifa->if_list_aux);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
addrconf_del_dad_work(ifa);
keep = keep_addr && (ifa->flags & IFA_F_PERMANENT) &&
!addr_is_local(&ifa->addr);
spin_lock_bh(&ifa->lock);
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
if (keep) {
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
/* set state to skip the notifier below */
state = INET6_IFADDR_STATE_DEAD;
net: ipv6: Do not duplicate DAD on link up Andrey reported a warning triggered by the rcu code: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 5911 at lib/debugobjects.c:289 debug_print_object+0x175/0x210 ODEBUG: activate active (active state 1) object type: rcu_head hint: (null) Modules linked in: CPU: 1 PID: 5911 Comm: a.out Not tainted 4.11.0-rc8+ #271 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 dump_stack+0x192/0x22d lib/dump_stack.c:52 __warn+0x19f/0x1e0 kernel/panic.c:549 warn_slowpath_fmt+0xe0/0x120 kernel/panic.c:564 debug_print_object+0x175/0x210 lib/debugobjects.c:286 debug_object_activate+0x574/0x7e0 lib/debugobjects.c:442 debug_rcu_head_queue kernel/rcu/rcu.h:75 __call_rcu.constprop.76+0xff/0x9c0 kernel/rcu/tree.c:3229 call_rcu_sched+0x12/0x20 kernel/rcu/tree.c:3288 rt6_rcu_free net/ipv6/ip6_fib.c:158 rt6_release+0x1ea/0x290 net/ipv6/ip6_fib.c:188 fib6_del_route net/ipv6/ip6_fib.c:1461 fib6_del+0xa42/0xdc0 net/ipv6/ip6_fib.c:1500 __ip6_del_rt+0x100/0x160 net/ipv6/route.c:2174 ip6_del_rt+0x140/0x1b0 net/ipv6/route.c:2187 __ipv6_ifa_notify+0x269/0x780 net/ipv6/addrconf.c:5520 addrconf_ifdown+0xe60/0x1a20 net/ipv6/addrconf.c:3672 ... Andrey's reproducer program runs in a very tight loop, calling 'unshare -n' and then spawning 2 sets of 14 threads running random ioctl calls. The relevant networking sequence: 1. New network namespace created via unshare -n - ip6tnl0 device is created in down state 2. address added to ip6tnl0 - equivalent to ip -6 addr add dev ip6tnl0 fd00::bb/1 - DAD is started on the address and when it completes the host route is inserted into the FIB 3. ip6tnl0 is brought up - the new fixup_permanent_addr function restarts DAD on the address 4. exit namespace - teardown / cleanup sequence starts - once in a blue moon, lo teardown appears to happen BEFORE teardown of ip6tunl0 + down on 'lo' removes the host route from the FIB since the dst->dev for the route is loobback + host route added to rcu callback list * rcu callback has not run yet, so rt is NOT on the gc list so it has NOT been marked obsolete 5. in parallel to 4. worker_thread runs addrconf_dad_completed - DAD on the address on ip6tnl0 completes - calls ipv6_ifa_notify which inserts the host route All of that happens very quickly. The result is that a host route that has been deleted from the IPv6 FIB and added to the RCU list is re-inserted into the FIB. The exit namespace eventually gets to cleaning up ip6tnl0 which removes the host route from the FIB again, calls the rcu function for cleanup -- and triggers the double rcu trace. The root cause is duplicate DAD on the address -- steps 2 and 3. Arguably, DAD should not be started in step 2. The interface is in the down state, so it can not really send out requests for the address which makes starting DAD pointless. Since the second DAD was introduced by a recent change, seems appropriate to use it for the Fixes tag and have the fixup function only start DAD for addresses in the PREDAD state which occurs in addrconf_ifdown if the address is retained. Big thanks to Andrey for isolating a reliable reproducer for this problem. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsahern@gmail.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-02 21:43:44 +00:00
ifa->state = INET6_IFADDR_STATE_PREDAD;
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
if (!(ifa->flags & IFA_F_NODAD))
ifa->flags |= IFA_F_TENTATIVE;
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
rt = ifa->rt;
ifa->rt = NULL;
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
} else {
state = ifa->state;
ifa->state = INET6_IFADDR_STATE_DEAD;
}
spin_unlock_bh(&ifa->lock);
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
if (rt)
ip6_del_rt(net, rt, false);
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
2011-01-24 07:27:15 +00:00
if (state != INET6_IFADDR_STATE_DEAD) {
__ipv6_ifa_notify(RTM_DELADDR, ifa);
inet6addr_notifier_call_chain(NETDEV_DOWN, ifa);
} else {
if (idev->cnf.forwarding)
addrconf_leave_anycast(ifa);
addrconf_leave_solict(ifa->idev, &ifa->addr);
}
if (!keep) {
write_lock_bh(&idev->lock);
list_del_rcu(&ifa->if_list);
write_unlock_bh(&idev->lock);
in6_ifa_put(ifa);
}
2011-01-24 07:27:15 +00:00
}
/* Step 5: Discard anycast and multicast list */
if (unregister) {
ipv6_ac_destroy_dev(idev);
ipv6_mc_destroy_dev(idev);
net: ipv6: ensure we call ipv6_mc_down() at most once There are two reasons for addrconf_notify() to be called with NETDEV_DOWN: either the network device is actually going down, or IPv6 was disabled on the interface. If either of them stays down while the other is toggled, we repeatedly call the code for NETDEV_DOWN, including ipv6_mc_down(), while never calling the corresponding ipv6_mc_up() in between. This will cause a new entry in idev->mc_tomb to be allocated for each multicast group the interface is subscribed to, which in turn leaks one struct ifmcaddr6 per nontrivial multicast group the interface is subscribed to. The following reproducer will leak at least $n objects: ip addr add ff2e::4242/32 dev eth0 autojoin sysctl -w net.ipv6.conf.eth0.disable_ipv6=1 for i in $(seq 1 $n); do ip link set up eth0; ip link set down eth0 done Joining groups with IPV6_ADD_MEMBERSHIP (unprivileged) or setting the sysctl net.ipv6.conf.eth0.forwarding to 1 (=> subscribing to ff02::2) can also be used to create a nontrivial idev->mc_list, which will the leak objects with the right up-down-sequence. Based on both sources for NETDEV_DOWN events the interface IPv6 state should be considered: - not ready if the network interface is not ready OR IPv6 is disabled for it - ready if the network interface is ready AND IPv6 is enabled for it The functions ipv6_mc_up() and ipv6_down() should only be run when this state changes. Implement this by remembering when the IPv6 state is ready, and only run ipv6_mc_down() if it actually changed from ready to not ready. The other direction (not ready -> ready) already works correctly, as: - the interface notification triggered codepath for NETDEV_UP / NETDEV_CHANGE returns early if ipv6 is disabled, and - the disable_ipv6=0 triggered codepath skips fully initializing the interface as long as addrconf_link_ready(dev) returns false - calling ipv6_mc_up() repeatedly does not leak anything Fixes: 3ce62a84d53c ("ipv6: exit early in addrconf_notify() if IPv6 is disabled") Signed-off-by: Johannes Nixdorf <j.nixdorf@avm.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-24 09:06:49 +00:00
} else if (was_ready) {
ipv6_mc_down(idev);
}
idev->tstamp = jiffies;
ipv6: add IFLA_INET6_RA_MTU to expose mtu value The kernel provides a "/proc/sys/net/ipv6/conf/<iface>/mtu" file, which can temporarily record the mtu value of the last received RA message when the RA mtu value is lower than the interface mtu, but this proc has following limitations: (1) when the interface mtu (/sys/class/net/<iface>/mtu) is updeated, mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) will be updated to the value of interface mtu; (2) mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) only affect ipv6 connection, and not affect ipv4. Therefore, when the mtu option is carried in the RA message, there will be a problem that the user sometimes cannot obtain RA mtu value correctly by reading mtu6. After this patch set, if a RA message carries the mtu option, you can send a netlink msg which nlmsg_type is RTM_GETLINK, and then by parsing the attribute of IFLA_INET6_RA_MTU to get the mtu value carried in the RA message received on the inet6 device. In addition, you can also get a link notification when ra_mtu is updated so it doesn't have to poll. In this way, if the MTU values that the device receives from the network in the PCO IPv4 and the RA IPv6 procedures are different, the user can obtain the correct ipv6 ra_mtu value and compare the value of ra_mtu and ipv4 mtu, then the device can use the lower MTU value for both IPv4 and IPv6. Signed-off-by: Rocco Yue <rocco.yue@mediatek.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210827150412.9267-1-rocco.yue@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-27 15:04:12 +00:00
idev->ra_mtu = 0;
/* Last: Shot the device (if unregistered) */
if (unregister) {
addrconf_sysctl_unregister(idev);
neigh_parms_release(&nd_tbl, idev->nd_parms);
neigh_ifdown(&nd_tbl, dev);
in6_dev_put(idev);
}
return 0;
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
static void addrconf_rs_timer(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
struct inet6_dev *idev = from_timer(idev, t, rs_timer);
struct net_device *dev = idev->dev;
struct in6_addr lladdr;
write_lock(&idev->lock);
if (idev->dead || !(idev->if_flags & IF_READY))
goto out;
if (!ipv6_accept_ra(idev))
goto out;
/* Announcement received after solicitation was sent */
if (idev->if_flags & IF_RA_RCVD)
goto out;
if (idev->rs_probes++ < idev->cnf.rtr_solicits || idev->cnf.rtr_solicits < 0) {
write_unlock(&idev->lock);
if (!ipv6_get_lladdr(dev, &lladdr, IFA_F_TENTATIVE))
ndisc_send_rs(dev, &lladdr,
&in6addr_linklocal_allrouters);
else
goto put;
write_lock(&idev->lock);
idev->rs_interval = rfc3315_s14_backoff_update(
idev->rs_interval, idev->cnf.rtr_solicit_max_interval);
/* The wait after the last probe can be shorter */
addrconf_mod_rs_timer(idev, (idev->rs_probes ==
idev->cnf.rtr_solicits) ?
idev->cnf.rtr_solicit_delay :
idev->rs_interval);
} else {
/*
* Note: we do not support deprecated "all on-link"
* assumption any longer.
*/
pr_debug("%s: no IPv6 routers present\n", idev->dev->name);
}
out:
write_unlock(&idev->lock);
put:
in6_dev_put(idev);
}
/*
* Duplicate Address Detection
*/
static void addrconf_dad_kick(struct inet6_ifaddr *ifp)
{
unsigned long rand_num;
struct inet6_dev *idev = ifp->idev;
u64 nonce;
if (ifp->flags & IFA_F_OPTIMISTIC)
rand_num = 0;
else
rand_num = get_random_u32_below(idev->cnf.rtr_solicit_delay ? : 1);
nonce = 0;
if (idev->cnf.enhanced_dad ||
dev_net(idev->dev)->ipv6.devconf_all->enhanced_dad) {
do
get_random_bytes(&nonce, 6);
while (nonce == 0);
}
ifp->dad_nonce = nonce;
ifp->dad_probes = idev->cnf.dad_transmits;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_mod_dad_work(ifp, rand_num);
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_dad_begin(struct inet6_ifaddr *ifp)
{
struct inet6_dev *idev = ifp->idev;
struct net_device *dev = idev->dev;
bool bump_id, notify = false;
struct net *net;
addrconf_join_solict(dev, &ifp->addr);
read_lock_bh(&idev->lock);
spin_lock(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DEAD)
goto out;
net = dev_net(dev);
if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) ||
(net->ipv6.devconf_all->accept_dad < 1 &&
idev->cnf.accept_dad < 1) ||
!(ifp->flags&IFA_F_TENTATIVE) ||
ifp->flags & IFA_F_NODAD) {
bool send_na = false;
if (ifp->flags & IFA_F_TENTATIVE &&
!(ifp->flags & IFA_F_OPTIMISTIC))
send_na = true;
bump_id = ifp->flags & IFA_F_TENTATIVE;
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC|IFA_F_DADFAILED);
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp, bump_id, send_na);
return;
}
if (!(idev->if_flags & IF_READY)) {
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
/*
* If the device is not ready:
* - keep it tentative if it is a permanent address.
* - otherwise, kill it.
*/
in6_ifa_hold(ifp);
addrconf_dad_stop(ifp, 0);
return;
}
/*
* Optimistic nodes can start receiving
* Frames right away
*/
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
if (ifp->flags & IFA_F_OPTIMISTIC) {
ip6_ins_rt(net, ifp->rt);
if (ipv6_use_optimistic_addr(net, idev)) {
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
/* Because optimistic nodes can use this address,
* notify listeners. If DAD fails, RTM_DELADDR is sent.
*/
ipv6: addrconf: Fix recursive spin lock call A rcu stall with the following backtrace was seen on a system with forwarding, optimistic_dad and use_optimistic set. To reproduce, set these flags and allow ipv6 autoconf. This occurs because the device write_lock is acquired while already holding the read_lock. Back trace below - INFO: rcu_preempt self-detected stall on CPU { 1} (t=2100 jiffies g=3992 c=3991 q=4471) <6> Task dump for CPU 1: <2> kworker/1:0 R running task 12168 15 2 0x00000002 <2> Workqueue: ipv6_addrconf addrconf_dad_work <6> Call trace: <2> [<ffffffc000084da8>] el1_irq+0x68/0xdc <2> [<ffffffc000cc4e0c>] _raw_write_lock_bh+0x20/0x30 <2> [<ffffffc000bc5dd8>] __ipv6_dev_ac_inc+0x64/0x1b4 <2> [<ffffffc000bcbd2c>] addrconf_join_anycast+0x9c/0xc4 <2> [<ffffffc000bcf9f0>] __ipv6_ifa_notify+0x160/0x29c <2> [<ffffffc000bcfb7c>] ipv6_ifa_notify+0x50/0x70 <2> [<ffffffc000bd035c>] addrconf_dad_work+0x314/0x334 <2> [<ffffffc0000b64c8>] process_one_work+0x244/0x3fc <2> [<ffffffc0000b7324>] worker_thread+0x2f8/0x418 <2> [<ffffffc0000bb40c>] kthread+0xe0/0xec v2: do addrconf_dad_kick inside read lock and then acquire write lock for ipv6_ifa_notify as suggested by Eric Fixes: 7fd2561e4ebdd ("net: ipv6: Add a sysctl to make optimistic addresses useful candidates") Cc: Eric Dumazet <edumazet@google.com> Cc: Erik Kline <ek@google.com> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 02:11:10 +00:00
notify = true;
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
}
}
addrconf_dad_kick(ifp);
out:
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
ipv6: addrconf: Fix recursive spin lock call A rcu stall with the following backtrace was seen on a system with forwarding, optimistic_dad and use_optimistic set. To reproduce, set these flags and allow ipv6 autoconf. This occurs because the device write_lock is acquired while already holding the read_lock. Back trace below - INFO: rcu_preempt self-detected stall on CPU { 1} (t=2100 jiffies g=3992 c=3991 q=4471) <6> Task dump for CPU 1: <2> kworker/1:0 R running task 12168 15 2 0x00000002 <2> Workqueue: ipv6_addrconf addrconf_dad_work <6> Call trace: <2> [<ffffffc000084da8>] el1_irq+0x68/0xdc <2> [<ffffffc000cc4e0c>] _raw_write_lock_bh+0x20/0x30 <2> [<ffffffc000bc5dd8>] __ipv6_dev_ac_inc+0x64/0x1b4 <2> [<ffffffc000bcbd2c>] addrconf_join_anycast+0x9c/0xc4 <2> [<ffffffc000bcf9f0>] __ipv6_ifa_notify+0x160/0x29c <2> [<ffffffc000bcfb7c>] ipv6_ifa_notify+0x50/0x70 <2> [<ffffffc000bd035c>] addrconf_dad_work+0x314/0x334 <2> [<ffffffc0000b64c8>] process_one_work+0x244/0x3fc <2> [<ffffffc0000b7324>] worker_thread+0x2f8/0x418 <2> [<ffffffc0000bb40c>] kthread+0xe0/0xec v2: do addrconf_dad_kick inside read lock and then acquire write lock for ipv6_ifa_notify as suggested by Eric Fixes: 7fd2561e4ebdd ("net: ipv6: Add a sysctl to make optimistic addresses useful candidates") Cc: Eric Dumazet <edumazet@google.com> Cc: Erik Kline <ek@google.com> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 02:11:10 +00:00
if (notify)
ipv6_ifa_notify(RTM_NEWADDR, ifp);
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_dad_start(struct inet6_ifaddr *ifp)
{
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
bool begin_dad = false;
spin_lock_bh(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (ifp->state != INET6_IFADDR_STATE_DEAD) {
ifp->state = INET6_IFADDR_STATE_PREDAD;
begin_dad = true;
}
spin_unlock_bh(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (begin_dad)
addrconf_mod_dad_work(ifp, 0);
}
static void addrconf_dad_work(struct work_struct *w)
{
struct inet6_ifaddr *ifp = container_of(to_delayed_work(w),
struct inet6_ifaddr,
dad_work);
struct inet6_dev *idev = ifp->idev;
bool bump_id, disable_ipv6 = false;
struct in6_addr mcaddr;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
enum {
DAD_PROCESS,
DAD_BEGIN,
DAD_ABORT,
} action = DAD_PROCESS;
rtnl_lock();
spin_lock_bh(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (ifp->state == INET6_IFADDR_STATE_PREDAD) {
action = DAD_BEGIN;
ifp->state = INET6_IFADDR_STATE_DAD;
} else if (ifp->state == INET6_IFADDR_STATE_ERRDAD) {
action = DAD_ABORT;
ifp->state = INET6_IFADDR_STATE_POSTDAD;
net: ipv6: Remove addresses for failures with strict DAD If DAD fails with accept_dad set to 2, global addresses and host routes are incorrectly left in place. Even though disable_ipv6 is set, contrary to documentation, the addresses are not dynamically deleted from the interface. It is only on a subsequent link down/up that these are removed. The fix is not only to set the disable_ipv6 flag, but also to call addrconf_ifdown(), which is the action to carry out when disabling IPv6. This results in the addresses and routes being deleted immediately. The DAD failure for the LL addr is determined as before via netlink, or by the absence of the LL addr (which also previously would have had to be checked for in case of an intervening link down and up). As the call to addrconf_ifdown() requires an rtnl lock, the logic to disable IPv6 when DAD fails is moved to addrconf_dad_work(). Previous behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2000::10/64 scope global valid_lft forever preferred_lft forever inet6 fe80::5054:ff:fe43:dd5a/64 scope link tentative dadfailed valid_lft forever preferred_lft forever root@vm1:/# ip -6 route show dev eth3 2000::/64 proto kernel metric 256 fe80::/64 proto kernel metric 256 root@vm1:/# ip link set down eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# New behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# Signed-off-by: Mike Manning <mmanning@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-18 13:39:40 +00:00
if ((dev_net(idev->dev)->ipv6.devconf_all->accept_dad > 1 ||
idev->cnf.accept_dad > 1) &&
!idev->cnf.disable_ipv6 &&
net: ipv6: Remove addresses for failures with strict DAD If DAD fails with accept_dad set to 2, global addresses and host routes are incorrectly left in place. Even though disable_ipv6 is set, contrary to documentation, the addresses are not dynamically deleted from the interface. It is only on a subsequent link down/up that these are removed. The fix is not only to set the disable_ipv6 flag, but also to call addrconf_ifdown(), which is the action to carry out when disabling IPv6. This results in the addresses and routes being deleted immediately. The DAD failure for the LL addr is determined as before via netlink, or by the absence of the LL addr (which also previously would have had to be checked for in case of an intervening link down and up). As the call to addrconf_ifdown() requires an rtnl lock, the logic to disable IPv6 when DAD fails is moved to addrconf_dad_work(). Previous behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2000::10/64 scope global valid_lft forever preferred_lft forever inet6 fe80::5054:ff:fe43:dd5a/64 scope link tentative dadfailed valid_lft forever preferred_lft forever root@vm1:/# ip -6 route show dev eth3 2000::/64 proto kernel metric 256 fe80::/64 proto kernel metric 256 root@vm1:/# ip link set down eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# New behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# Signed-off-by: Mike Manning <mmanning@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-18 13:39:40 +00:00
!(ifp->flags & IFA_F_STABLE_PRIVACY)) {
struct in6_addr addr;
addr.s6_addr32[0] = htonl(0xfe800000);
addr.s6_addr32[1] = 0;
if (!ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) &&
ipv6_addr_equal(&ifp->addr, &addr)) {
/* DAD failed for link-local based on MAC */
idev->cnf.disable_ipv6 = 1;
pr_info("%s: IPv6 being disabled!\n",
ifp->idev->dev->name);
disable_ipv6 = true;
}
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
}
spin_unlock_bh(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (action == DAD_BEGIN) {
addrconf_dad_begin(ifp);
goto out;
} else if (action == DAD_ABORT) {
in6_ifa_hold(ifp);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_dad_stop(ifp, 1);
net: ipv6: Remove addresses for failures with strict DAD If DAD fails with accept_dad set to 2, global addresses and host routes are incorrectly left in place. Even though disable_ipv6 is set, contrary to documentation, the addresses are not dynamically deleted from the interface. It is only on a subsequent link down/up that these are removed. The fix is not only to set the disable_ipv6 flag, but also to call addrconf_ifdown(), which is the action to carry out when disabling IPv6. This results in the addresses and routes being deleted immediately. The DAD failure for the LL addr is determined as before via netlink, or by the absence of the LL addr (which also previously would have had to be checked for in case of an intervening link down and up). As the call to addrconf_ifdown() requires an rtnl lock, the logic to disable IPv6 when DAD fails is moved to addrconf_dad_work(). Previous behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2000::10/64 scope global valid_lft forever preferred_lft forever inet6 fe80::5054:ff:fe43:dd5a/64 scope link tentative dadfailed valid_lft forever preferred_lft forever root@vm1:/# ip -6 route show dev eth3 2000::/64 proto kernel metric 256 fe80::/64 proto kernel metric 256 root@vm1:/# ip link set down eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# New behavior: root@vm1:/# sysctl net.ipv6.conf.eth3.accept_dad=2 net.ipv6.conf.eth3.accept_dad = 2 root@vm1:/# ip -6 addr add 2000::10/64 dev eth3 root@vm1:/# ip link set up eth3 root@vm1:/# ip -6 addr show dev eth3 root@vm1:/# ip -6 route show dev eth3 root@vm1:/# Signed-off-by: Mike Manning <mmanning@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-18 13:39:40 +00:00
if (disable_ipv6)
addrconf_ifdown(idev->dev, false);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
goto out;
}
if (!ifp->dad_probes && addrconf_dad_end(ifp))
goto out;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
write_lock_bh(&idev->lock);
if (idev->dead || !(idev->if_flags & IF_READY)) {
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
write_unlock_bh(&idev->lock);
goto out;
}
spin_lock(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DEAD) {
spin_unlock(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
write_unlock_bh(&idev->lock);
goto out;
}
if (ifp->dad_probes == 0) {
bool send_na = false;
/*
* DAD was successful
*/
if (ifp->flags & IFA_F_TENTATIVE &&
!(ifp->flags & IFA_F_OPTIMISTIC))
send_na = true;
bump_id = ifp->flags & IFA_F_TENTATIVE;
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC|IFA_F_DADFAILED);
spin_unlock(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
write_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp, bump_id, send_na);
goto out;
}
ifp->dad_probes--;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_mod_dad_work(ifp,
max(NEIGH_VAR(ifp->idev->nd_parms, RETRANS_TIME),
HZ/100));
spin_unlock(&ifp->lock);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
write_unlock_bh(&idev->lock);
/* send a neighbour solicitation for our addr */
addrconf_addr_solict_mult(&ifp->addr, &mcaddr);
ndisc_send_ns(ifp->idev->dev, &ifp->addr, &mcaddr, &in6addr_any,
ifp->dad_nonce);
out:
in6_ifa_put(ifp);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
rtnl_unlock();
}
/* ifp->idev must be at least read locked */
static bool ipv6_lonely_lladdr(struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifpiter;
struct inet6_dev *idev = ifp->idev;
list_for_each_entry_reverse(ifpiter, &idev->addr_list, if_list) {
if (ifpiter->scope > IFA_LINK)
break;
if (ifp != ifpiter && ifpiter->scope == IFA_LINK &&
(ifpiter->flags & (IFA_F_PERMANENT|IFA_F_TENTATIVE|
IFA_F_OPTIMISTIC|IFA_F_DADFAILED)) ==
IFA_F_PERMANENT)
return false;
}
return true;
}
static void addrconf_dad_completed(struct inet6_ifaddr *ifp, bool bump_id,
bool send_na)
{
struct net_device *dev = ifp->idev->dev;
struct in6_addr lladdr;
bool send_rs, send_mld;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_del_dad_work(ifp);
/*
* Configure the address for reception. Now it is valid.
*/
ipv6_ifa_notify(RTM_NEWADDR, ifp);
ipv6: Send ICMPv6 RSes only when RAs are accepted This patch improves the logic determining when to send ICMPv6 Router Solicitations, so that they are 1) always sent when the kernel is accepting Router Advertisements, and 2) never sent when the kernel is not accepting RAs. In other words, the operational setting of the "accept_ra" sysctl is used. The change also makes the special "Hybrid Router" forwarding mode ("forwarding" sysctl set to 2) operate exactly the same as the standard Router mode (forwarding=1). The only difference between the two was that RSes was being sent in the Hybrid Router mode only. The sysctl documentation describing the special Hybrid Router mode has therefore been removed. Rationale for the change: Currently, the value of forwarding sysctl is the only thing determining whether or not to send RSes. If it has the value 0 or 2, they are sent, otherwise they are not. This leads to inconsistent behaviour in the following cases: * accept_ra=0, forwarding=0 * accept_ra=0, forwarding=2 * accept_ra=1, forwarding=2 * accept_ra=2, forwarding=1 In the first three cases, the kernel will send RSes, even though it will not accept any RAs received in reply. In the last case, it will not send any RSes, even though it will accept and process any RAs received. (Most routers will send unsolicited RAs periodically, so suppressing RSes in the last case will merely delay auto-configuration, not prevent it.) Also, it is my opinion that having the forwarding sysctl control RS sending behaviour (completely independent of whether RAs are being accepted or not) is simply not what most users would intuitively expect to be the case. Signed-off-by: Tore Anderson <tore@fud.no> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-28 23:47:33 +00:00
/* If added prefix is link local and we are prepared to process
router advertisements, start sending router solicitations.
*/
read_lock_bh(&ifp->idev->lock);
send_mld = ifp->scope == IFA_LINK && ipv6_lonely_lladdr(ifp);
send_rs = send_mld &&
ipv6_accept_ra(ifp->idev) &&
ifp->idev->cnf.rtr_solicits != 0 &&
(dev->flags & IFF_LOOPBACK) == 0 &&
(dev->type != ARPHRD_TUNNEL);
read_unlock_bh(&ifp->idev->lock);
/* While dad is in progress mld report's source address is in6_addrany.
* Resend with proper ll now.
*/
if (send_mld)
ipv6_mc_dad_complete(ifp->idev);
/* send unsolicited NA if enabled */
if (send_na &&
(ifp->idev->cnf.ndisc_notify ||
dev_net(dev)->ipv6.devconf_all->ndisc_notify)) {
ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifp->addr,
/*router=*/ !!ifp->idev->cnf.forwarding,
/*solicited=*/ false, /*override=*/ true,
/*inc_opt=*/ true);
}
if (send_rs) {
/*
* If a host as already performed a random delay
* [...] as part of DAD [...] there is no need
* to delay again before sending the first RS
*/
if (ipv6_get_lladdr(dev, &lladdr, IFA_F_TENTATIVE))
return;
ndisc_send_rs(dev, &lladdr, &in6addr_linklocal_allrouters);
write_lock_bh(&ifp->idev->lock);
spin_lock(&ifp->lock);
ifp->idev->rs_interval = rfc3315_s14_backoff_init(
ifp->idev->cnf.rtr_solicit_interval);
ifp->idev->rs_probes = 1;
ifp->idev->if_flags |= IF_RS_SENT;
addrconf_mod_rs_timer(ifp->idev, ifp->idev->rs_interval);
spin_unlock(&ifp->lock);
write_unlock_bh(&ifp->idev->lock);
}
if (bump_id)
rt_genid_bump_ipv6(dev_net(dev));
/* Make sure that a new temporary address will be created
* before this temporary address becomes deprecated.
*/
if (ifp->flags & IFA_F_TEMPORARY)
addrconf_verify_rtnl(dev_net(dev));
}
static void addrconf_dad_run(struct inet6_dev *idev, bool restart)
{
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
spin_lock(&ifp->lock);
if ((ifp->flags & IFA_F_TENTATIVE &&
ifp->state == INET6_IFADDR_STATE_DAD) || restart) {
if (restart)
ifp->state = INET6_IFADDR_STATE_PREDAD;
addrconf_dad_kick(ifp);
}
spin_unlock(&ifp->lock);
}
read_unlock_bh(&idev->lock);
}
#ifdef CONFIG_PROC_FS
struct if6_iter_state {
struct seq_net_private p;
int bucket;
int offset;
};
static struct inet6_ifaddr *if6_get_first(struct seq_file *seq, loff_t pos)
{
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
struct inet6_ifaddr *ifa = NULL;
int p = 0;
/* initial bucket if pos is 0 */
if (pos == 0) {
state->bucket = 0;
state->offset = 0;
}
for (; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) {
hlist_for_each_entry_rcu(ifa, &net->ipv6.inet6_addr_lst[state->bucket],
addr_lst) {
/* sync with offset */
if (p < state->offset) {
p++;
continue;
}
return ifa;
}
/* prepare for next bucket */
state->offset = 0;
p = 0;
}
return NULL;
}
static struct inet6_ifaddr *if6_get_next(struct seq_file *seq,
struct inet6_ifaddr *ifa)
{
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
hlist_for_each_entry_continue_rcu(ifa, addr_lst) {
state->offset++;
return ifa;
}
state->offset = 0;
while (++state->bucket < IN6_ADDR_HSIZE) {
hlist_for_each_entry_rcu(ifa,
&net->ipv6.inet6_addr_lst[state->bucket], addr_lst) {
return ifa;
}
}
return NULL;
}
static void *if6_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(rcu)
{
rcu_read_lock();
return if6_get_first(seq, *pos);
}
static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct inet6_ifaddr *ifa;
ifa = if6_get_next(seq, v);
++*pos;
return ifa;
}
static void if6_seq_stop(struct seq_file *seq, void *v)
__releases(rcu)
{
rcu_read_unlock();
}
static int if6_seq_show(struct seq_file *seq, void *v)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v;
seq_printf(seq, "%pi6 %02x %02x %02x %02x %8s\n",
&ifp->addr,
ifp->idev->dev->ifindex,
ifp->prefix_len,
ifp->scope,
(u8) ifp->flags,
ifp->idev->dev->name);
return 0;
}
static const struct seq_operations if6_seq_ops = {
.start = if6_seq_start,
.next = if6_seq_next,
.show = if6_seq_show,
.stop = if6_seq_stop,
};
static int __net_init if6_proc_net_init(struct net *net)
{
if (!proc_create_net("if_inet6", 0444, net->proc_net, &if6_seq_ops,
sizeof(struct if6_iter_state)))
return -ENOMEM;
return 0;
}
static void __net_exit if6_proc_net_exit(struct net *net)
{
remove_proc_entry("if_inet6", net->proc_net);
}
static struct pernet_operations if6_proc_net_ops = {
.init = if6_proc_net_init,
.exit = if6_proc_net_exit,
};
int __init if6_proc_init(void)
{
return register_pernet_subsys(&if6_proc_net_ops);
}
void if6_proc_exit(void)
{
unregister_pernet_subsys(&if6_proc_net_ops);
}
#endif /* CONFIG_PROC_FS */
#if IS_ENABLED(CONFIG_IPV6_MIP6)
/* Check if address is a home address configured on any interface. */
int ipv6_chk_home_addr(struct net *net, const struct in6_addr *addr)
{
unsigned int hash = inet6_addr_hash(net, addr);
struct inet6_ifaddr *ifp = NULL;
int ret = 0;
rcu_read_lock();
hlist_for_each_entry_rcu(ifp, &net->ipv6.inet6_addr_lst[hash], addr_lst) {
if (ipv6_addr_equal(&ifp->addr, addr) &&
(ifp->flags & IFA_F_HOMEADDRESS)) {
ret = 1;
break;
}
}
rcu_read_unlock();
return ret;
}
#endif
/* RFC6554 has some algorithm to avoid loops in segment routing by
* checking if the segments contains any of a local interface address.
*
* Quote:
*
* To detect loops in the SRH, a router MUST determine if the SRH
* includes multiple addresses assigned to any interface on that router.
* If such addresses appear more than once and are separated by at least
* one address not assigned to that router.
*/
int ipv6_chk_rpl_srh_loop(struct net *net, const struct in6_addr *segs,
unsigned char nsegs)
{
const struct in6_addr *addr;
int i, ret = 0, found = 0;
struct inet6_ifaddr *ifp;
bool separated = false;
unsigned int hash;
bool hash_found;
rcu_read_lock();
for (i = 0; i < nsegs; i++) {
addr = &segs[i];
hash = inet6_addr_hash(net, addr);
hash_found = false;
hlist_for_each_entry_rcu(ifp, &net->ipv6.inet6_addr_lst[hash], addr_lst) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
hash_found = true;
break;
}
}
if (hash_found) {
if (found > 1 && separated) {
ret = 1;
break;
}
separated = false;
found++;
} else {
separated = true;
}
}
rcu_read_unlock();
return ret;
}
/*
* Periodic address status verification
*/
static void addrconf_verify_rtnl(struct net *net)
{
unsigned long now, next, next_sec, next_sched;
struct inet6_ifaddr *ifp;
int i;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
ASSERT_RTNL();
rcu_read_lock_bh();
now = jiffies;
next = round_jiffies_up(now + ADDR_CHECK_FREQUENCY);
cancel_delayed_work(&net->ipv6.addr_chk_work);
for (i = 0; i < IN6_ADDR_HSIZE; i++) {
restart:
hlist_for_each_entry_rcu_bh(ifp, &net->ipv6.inet6_addr_lst[i], addr_lst) {
unsigned long age;
/* When setting preferred_lft to a value not zero or
* infinity, while valid_lft is infinity
* IFA_F_PERMANENT has a non-infinity life time.
*/
if ((ifp->flags & IFA_F_PERMANENT) &&
(ifp->prefered_lft == INFINITY_LIFE_TIME))
continue;
spin_lock(&ifp->lock);
/* We try to batch several events at once. */
age = (now - ifp->tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
ipv6/addrconf: fix timing bug in tempaddr regen The addrconf_verify_rtnl() function uses a big if/elseif/elseif/... block to categorize each address by what type of attention it needs. An about-to-expire (RFC 4941) temporary address is one such category, but the previous elseif branch catches addresses that have already run out their prefered_lft. This means that if addrconf_verify_rtnl() fails to run in the necessary time window (i.e. REGEN_ADVANCE time units before the end of the prefered_lft), the temporary address will never be regenerated, and no temporary addresses will be available until each one's valid_lft runs out and manage_tempaddrs() begins anew. Fix this by moving the entire temporary address regeneration case out of that block. That block is supposed to implement the "destructive" part of an address's lifecycle, and regenerating a fresh temporary address is not, semantically speaking, actually tied to any particular lifecycle stage. The age test is also changed from `age >= prefered_lft - regen_advance` to `age + regen_advance >= prefered_lft` instead, to ensure no underflow occurs if the system administrator increases the regen_advance to a value greater than the already-set prefered_lft. Note that this does not fix the problem of addrconf_verify_rtnl() sometimes not running in time, resulting in the race condition described in RFC 4941 section 3.4 - it only ensures that the address is regenerated. Fixing THAT problem may require either using jiffies instead of seconds for all time arithmetic here, or always rounding up when regen_advance is converted to seconds. Signed-off-by: Sam Edwards <CFSworks@gmail.com> Link: https://lore.kernel.org/r/20220623181103.7033-1-CFSworks@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-06-23 18:11:04 +00:00
if ((ifp->flags&IFA_F_TEMPORARY) &&
!(ifp->flags&IFA_F_TENTATIVE) &&
ifp->prefered_lft != INFINITY_LIFE_TIME &&
!ifp->regen_count && ifp->ifpub) {
/* This is a non-regenerated temporary addr. */
unsigned long regen_advance = ifp->idev->cnf.regen_max_retry *
ifp->idev->cnf.dad_transmits *
max(NEIGH_VAR(ifp->idev->nd_parms, RETRANS_TIME), HZ/100) / HZ;
if (age + regen_advance >= ifp->prefered_lft) {
struct inet6_ifaddr *ifpub = ifp->ifpub;
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
ifp->regen_count++;
in6_ifa_hold(ifp);
in6_ifa_hold(ifpub);
spin_unlock(&ifp->lock);
spin_lock(&ifpub->lock);
ifpub->regen_count = 0;
spin_unlock(&ifpub->lock);
rcu_read_unlock_bh();
ipv6_create_tempaddr(ifpub, true);
in6_ifa_put(ifpub);
in6_ifa_put(ifp);
rcu_read_lock_bh();
goto restart;
} else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ;
}
if (ifp->valid_lft != INFINITY_LIFE_TIME &&
age >= ifp->valid_lft) {
spin_unlock(&ifp->lock);
in6_ifa_hold(ifp);
mld: fix suspicious RCU usage in __ipv6_dev_mc_dec() __ipv6_dev_mc_dec() internally uses sleepable functions so that caller must not acquire atomic locks. But caller, which is addrconf_verify_rtnl() acquires rcu_read_lock_bh(). So this warning occurs in the __ipv6_dev_mc_dec(). Test commands: ip netns add A ip link add veth0 type veth peer name veth1 ip link set veth1 netns A ip link set veth0 up ip netns exec A ip link set veth1 up ip a a 2001:db8::1/64 dev veth0 valid_lft 2 preferred_lft 1 Splat looks like: ============================ WARNING: suspicious RCU usage 5.12.0-rc6+ #515 Not tainted ----------------------------- kernel/sched/core.c:8294 Illegal context switch in RCU-bh read-side critical section! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 4 locks held by kworker/4:0/1997: #0: ffff88810bd72d48 ((wq_completion)ipv6_addrconf){+.+.}-{0:0}, at: process_one_work+0x761/0x1440 #1: ffff888105c8fe00 ((addr_chk_work).work){+.+.}-{0:0}, at: process_one_work+0x795/0x1440 #2: ffffffffb9279fb0 (rtnl_mutex){+.+.}-{3:3}, at: addrconf_verify_work+0xa/0x20 #3: ffffffffb8e30860 (rcu_read_lock_bh){....}-{1:2}, at: addrconf_verify_rtnl+0x23/0xc60 stack backtrace: CPU: 4 PID: 1997 Comm: kworker/4:0 Not tainted 5.12.0-rc6+ #515 Workqueue: ipv6_addrconf addrconf_verify_work Call Trace: dump_stack+0xa4/0xe5 ___might_sleep+0x27d/0x2b0 __mutex_lock+0xc8/0x13f0 ? lock_downgrade+0x690/0x690 ? __ipv6_dev_mc_dec+0x49/0x2a0 ? mark_held_locks+0xb7/0x120 ? mutex_lock_io_nested+0x1270/0x1270 ? lockdep_hardirqs_on_prepare+0x12c/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x41/0x120 ? __wake_up_common_lock+0xc9/0x100 ? __wake_up_common+0x620/0x620 ? memset+0x1f/0x40 ? netlink_broadcast_filtered+0x2c4/0xa70 ? __ipv6_dev_mc_dec+0x49/0x2a0 __ipv6_dev_mc_dec+0x49/0x2a0 ? netlink_broadcast_filtered+0x2f6/0xa70 addrconf_leave_solict.part.64+0xad/0xf0 ? addrconf_join_solict.part.63+0xf0/0xf0 ? nlmsg_notify+0x63/0x1b0 __ipv6_ifa_notify+0x22c/0x9c0 ? inet6_fill_ifaddr+0xbe0/0xbe0 ? lockdep_hardirqs_on_prepare+0x12c/0x3e0 ? __local_bh_enable_ip+0xa5/0xf0 ? ipv6_del_addr+0x347/0x870 ipv6_del_addr+0x3b1/0x870 ? addrconf_ifdown+0xfe0/0xfe0 ? rcu_read_lock_any_held.part.27+0x20/0x20 addrconf_verify_rtnl+0x8a9/0xc60 addrconf_verify_work+0xf/0x20 process_one_work+0x84c/0x1440 In order to avoid this problem, it uses rcu_read_unlock_bh() for a short time. RCU is used for avoiding freeing ifp(struct *inet6_ifaddr) while ifp is being used. But this will not be released even if rcu_read_unlock_bh() is used. Because before rcu_read_unlock_bh(), it uses in6_ifa_hold(ifp). So this is safe. Fixes: 63ed8de4be81 ("mld: add mc_lock for protecting per-interface mld data") Suggested-by: Eric Dumazet <edumazet@google.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Taehee Yoo <ap420073@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-16 14:16:06 +00:00
rcu_read_unlock_bh();
ipv6_del_addr(ifp);
mld: fix suspicious RCU usage in __ipv6_dev_mc_dec() __ipv6_dev_mc_dec() internally uses sleepable functions so that caller must not acquire atomic locks. But caller, which is addrconf_verify_rtnl() acquires rcu_read_lock_bh(). So this warning occurs in the __ipv6_dev_mc_dec(). Test commands: ip netns add A ip link add veth0 type veth peer name veth1 ip link set veth1 netns A ip link set veth0 up ip netns exec A ip link set veth1 up ip a a 2001:db8::1/64 dev veth0 valid_lft 2 preferred_lft 1 Splat looks like: ============================ WARNING: suspicious RCU usage 5.12.0-rc6+ #515 Not tainted ----------------------------- kernel/sched/core.c:8294 Illegal context switch in RCU-bh read-side critical section! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 4 locks held by kworker/4:0/1997: #0: ffff88810bd72d48 ((wq_completion)ipv6_addrconf){+.+.}-{0:0}, at: process_one_work+0x761/0x1440 #1: ffff888105c8fe00 ((addr_chk_work).work){+.+.}-{0:0}, at: process_one_work+0x795/0x1440 #2: ffffffffb9279fb0 (rtnl_mutex){+.+.}-{3:3}, at: addrconf_verify_work+0xa/0x20 #3: ffffffffb8e30860 (rcu_read_lock_bh){....}-{1:2}, at: addrconf_verify_rtnl+0x23/0xc60 stack backtrace: CPU: 4 PID: 1997 Comm: kworker/4:0 Not tainted 5.12.0-rc6+ #515 Workqueue: ipv6_addrconf addrconf_verify_work Call Trace: dump_stack+0xa4/0xe5 ___might_sleep+0x27d/0x2b0 __mutex_lock+0xc8/0x13f0 ? lock_downgrade+0x690/0x690 ? __ipv6_dev_mc_dec+0x49/0x2a0 ? mark_held_locks+0xb7/0x120 ? mutex_lock_io_nested+0x1270/0x1270 ? lockdep_hardirqs_on_prepare+0x12c/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x41/0x120 ? __wake_up_common_lock+0xc9/0x100 ? __wake_up_common+0x620/0x620 ? memset+0x1f/0x40 ? netlink_broadcast_filtered+0x2c4/0xa70 ? __ipv6_dev_mc_dec+0x49/0x2a0 __ipv6_dev_mc_dec+0x49/0x2a0 ? netlink_broadcast_filtered+0x2f6/0xa70 addrconf_leave_solict.part.64+0xad/0xf0 ? addrconf_join_solict.part.63+0xf0/0xf0 ? nlmsg_notify+0x63/0x1b0 __ipv6_ifa_notify+0x22c/0x9c0 ? inet6_fill_ifaddr+0xbe0/0xbe0 ? lockdep_hardirqs_on_prepare+0x12c/0x3e0 ? __local_bh_enable_ip+0xa5/0xf0 ? ipv6_del_addr+0x347/0x870 ipv6_del_addr+0x3b1/0x870 ? addrconf_ifdown+0xfe0/0xfe0 ? rcu_read_lock_any_held.part.27+0x20/0x20 addrconf_verify_rtnl+0x8a9/0xc60 addrconf_verify_work+0xf/0x20 process_one_work+0x84c/0x1440 In order to avoid this problem, it uses rcu_read_unlock_bh() for a short time. RCU is used for avoiding freeing ifp(struct *inet6_ifaddr) while ifp is being used. But this will not be released even if rcu_read_unlock_bh() is used. Because before rcu_read_unlock_bh(), it uses in6_ifa_hold(ifp). So this is safe. Fixes: 63ed8de4be81 ("mld: add mc_lock for protecting per-interface mld data") Suggested-by: Eric Dumazet <edumazet@google.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Taehee Yoo <ap420073@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-16 14:16:06 +00:00
rcu_read_lock_bh();
goto restart;
} else if (ifp->prefered_lft == INFINITY_LIFE_TIME) {
spin_unlock(&ifp->lock);
continue;
} else if (age >= ifp->prefered_lft) {
IPv6: preferred lifetime of address not getting updated There's a bug in addrconf_prefix_rcv() where it won't update the preferred lifetime of an IPv6 address if the current valid lifetime of the address is less than 2 hours (the minimum value in the RA). For example, If I send a router advertisement with a prefix that has valid lifetime = preferred lifetime = 2 hours we'll build this address: 3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2001:1890:1109:a20:217:8ff:fe7d:4718/64 scope global dynamic valid_lft 7175sec preferred_lft 7175sec If I then send the same prefix with valid lifetime = preferred lifetime = 0 it will be ignored since the minimum valid lifetime is 2 hours: 3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2001:1890:1109:a20:217:8ff:fe7d:4718/64 scope global dynamic valid_lft 7161sec preferred_lft 7161sec But according to RFC 4862 we should always reset the preferred lifetime even if the valid lifetime is invalid, which would cause the address to immediately get deprecated. So with this patch we'd see this: 5: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 inet6 2001:1890:1109:a20:21f:29ff:fe5a:ef04/64 scope global deprecated dynamic valid_lft 7163sec preferred_lft 0sec The comment winds-up being 5x the size of the code to fix the problem. Update the preferred lifetime of IPv6 addresses derived from a prefix info option in a router advertisement even if the valid lifetime in the option is invalid, as specified in RFC 4862 Section 5.5.3e. Fixes an issue where an address will not immediately become deprecated. Reported by Jens Rosenboom. Signed-off-by: Brian Haley <brian.haley@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-02 07:10:52 +00:00
/* jiffies - ifp->tstamp > age >= ifp->prefered_lft */
int deprecate = 0;
if (!(ifp->flags&IFA_F_DEPRECATED)) {
deprecate = 1;
ifp->flags |= IFA_F_DEPRECATED;
}
if ((ifp->valid_lft != INFINITY_LIFE_TIME) &&
(time_before(ifp->tstamp + ifp->valid_lft * HZ, next)))
next = ifp->tstamp + ifp->valid_lft * HZ;
spin_unlock(&ifp->lock);
if (deprecate) {
in6_ifa_hold(ifp);
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
goto restart;
}
} else {
/* ifp->prefered_lft <= ifp->valid_lft */
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
spin_unlock(&ifp->lock);
}
}
}
next_sec = round_jiffies_up(next);
next_sched = next;
/* If rounded timeout is accurate enough, accept it. */
if (time_before(next_sec, next + ADDRCONF_TIMER_FUZZ))
next_sched = next_sec;
/* And minimum interval is ADDRCONF_TIMER_FUZZ_MAX. */
if (time_before(next_sched, jiffies + ADDRCONF_TIMER_FUZZ_MAX))
next_sched = jiffies + ADDRCONF_TIMER_FUZZ_MAX;
pr_debug("now = %lu, schedule = %lu, rounded schedule = %lu => %lu\n",
now, next, next_sec, next_sched);
mod_delayed_work(addrconf_wq, &net->ipv6.addr_chk_work, next_sched - now);
rcu_read_unlock_bh();
}
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
static void addrconf_verify_work(struct work_struct *w)
{
struct net *net = container_of(to_delayed_work(w), struct net,
ipv6.addr_chk_work);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
rtnl_lock();
addrconf_verify_rtnl(net);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
rtnl_unlock();
}
static void addrconf_verify(struct net *net)
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
{
mod_delayed_work(addrconf_wq, &net->ipv6.addr_chk_work, 0);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
}
static struct in6_addr *extract_addr(struct nlattr *addr, struct nlattr *local,
struct in6_addr **peer_pfx)
{
struct in6_addr *pfx = NULL;
*peer_pfx = NULL;
if (addr)
pfx = nla_data(addr);
if (local) {
if (pfx && nla_memcmp(local, pfx, sizeof(*pfx)))
*peer_pfx = pfx;
pfx = nla_data(local);
}
return pfx;
}
static const struct nla_policy ifa_ipv6_policy[IFA_MAX+1] = {
[IFA_ADDRESS] = { .len = sizeof(struct in6_addr) },
[IFA_LOCAL] = { .len = sizeof(struct in6_addr) },
[IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) },
[IFA_FLAGS] = { .len = sizeof(u32) },
[IFA_RT_PRIORITY] = { .len = sizeof(u32) },
[IFA_TARGET_NETNSID] = { .type = NLA_S32 },
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
[IFA_PROTO] = { .type = NLA_U8 },
};
static int
inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx, *peer_pfx;
u32 ifa_flags;
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX,
ifa_ipv6_policy, extack);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer_pfx);
if (!pfx)
return -EINVAL;
ifa_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) : ifm->ifa_flags;
/* We ignore other flags so far. */
ifa_flags &= IFA_F_MANAGETEMPADDR;
return inet6_addr_del(net, ifm->ifa_index, ifa_flags, pfx,
ifm->ifa_prefixlen);
}
static int modify_prefix_route(struct inet6_ifaddr *ifp,
unsigned long expires, u32 flags,
bool modify_peer)
{
struct fib6_info *f6i;
u32 prio;
f6i = addrconf_get_prefix_route(modify_peer ? &ifp->peer_addr : &ifp->addr,
ifp->prefix_len,
ifp->idev->dev, 0, RTF_DEFAULT, true);
if (!f6i)
return -ENOENT;
prio = ifp->rt_priority ? : IP6_RT_PRIO_ADDRCONF;
if (f6i->fib6_metric != prio) {
/* delete old one */
ip6_del_rt(dev_net(ifp->idev->dev), f6i, false);
/* add new one */
addrconf_prefix_route(modify_peer ? &ifp->peer_addr : &ifp->addr,
ifp->prefix_len,
ifp->rt_priority, ifp->idev->dev,
expires, flags, GFP_KERNEL);
} else {
if (!expires)
fib6_clean_expires(f6i);
else
fib6_set_expires(f6i, expires);
fib6_info_release(f6i);
}
return 0;
}
static int inet6_addr_modify(struct net *net, struct inet6_ifaddr *ifp,
struct ifa6_config *cfg)
{
u32 flags;
clock_t expires;
unsigned long timeout;
bool was_managetempaddr;
bool had_prefixroute;
bool new_peer = false;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
ASSERT_RTNL();
if (!cfg->valid_lft || cfg->preferred_lft > cfg->valid_lft)
return -EINVAL;
if (cfg->ifa_flags & IFA_F_MANAGETEMPADDR &&
(ifp->flags & IFA_F_TEMPORARY || ifp->prefix_len != 64))
return -EINVAL;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
if (!(ifp->flags & IFA_F_TENTATIVE) || ifp->flags & IFA_F_DADFAILED)
cfg->ifa_flags &= ~IFA_F_OPTIMISTIC;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
timeout = addrconf_timeout_fixup(cfg->valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
cfg->valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
cfg->ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(cfg->preferred_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
cfg->ifa_flags |= IFA_F_DEPRECATED;
cfg->preferred_lft = timeout;
}
if (cfg->peer_pfx &&
memcmp(&ifp->peer_addr, cfg->peer_pfx, sizeof(struct in6_addr))) {
if (!ipv6_addr_any(&ifp->peer_addr))
cleanup_prefix_route(ifp, expires, true, true);
new_peer = true;
}
spin_lock_bh(&ifp->lock);
was_managetempaddr = ifp->flags & IFA_F_MANAGETEMPADDR;
had_prefixroute = ifp->flags & IFA_F_PERMANENT &&
!(ifp->flags & IFA_F_NOPREFIXROUTE);
ifp->flags &= ~(IFA_F_DEPRECATED | IFA_F_PERMANENT | IFA_F_NODAD |
IFA_F_HOMEADDRESS | IFA_F_MANAGETEMPADDR |
IFA_F_NOPREFIXROUTE);
ifp->flags |= cfg->ifa_flags;
ifp->tstamp = jiffies;
ifp->valid_lft = cfg->valid_lft;
ifp->prefered_lft = cfg->preferred_lft;
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
ifp->ifa_proto = cfg->ifa_proto;
if (cfg->rt_priority && cfg->rt_priority != ifp->rt_priority)
ifp->rt_priority = cfg->rt_priority;
if (new_peer)
ifp->peer_addr = *cfg->peer_pfx;
spin_unlock_bh(&ifp->lock);
if (!(ifp->flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
if (!(cfg->ifa_flags & IFA_F_NOPREFIXROUTE)) {
int rc = -ENOENT;
if (had_prefixroute)
rc = modify_prefix_route(ifp, expires, flags, false);
/* prefix route could have been deleted; if so restore it */
if (rc == -ENOENT) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len,
ifp->rt_priority, ifp->idev->dev,
expires, flags, GFP_KERNEL);
}
if (had_prefixroute && !ipv6_addr_any(&ifp->peer_addr))
rc = modify_prefix_route(ifp, expires, flags, true);
if (rc == -ENOENT && !ipv6_addr_any(&ifp->peer_addr)) {
addrconf_prefix_route(&ifp->peer_addr, ifp->prefix_len,
ifp->rt_priority, ifp->idev->dev,
expires, flags, GFP_KERNEL);
}
} else if (had_prefixroute) {
enum cleanup_prefix_rt_t action;
unsigned long rt_expires;
write_lock_bh(&ifp->idev->lock);
action = check_cleanup_prefix_route(ifp, &rt_expires);
write_unlock_bh(&ifp->idev->lock);
if (action != CLEANUP_PREFIX_RT_NOP) {
cleanup_prefix_route(ifp, rt_expires,
action == CLEANUP_PREFIX_RT_DEL, false);
}
}
if (was_managetempaddr || ifp->flags & IFA_F_MANAGETEMPADDR) {
if (was_managetempaddr &&
!(ifp->flags & IFA_F_MANAGETEMPADDR)) {
cfg->valid_lft = 0;
cfg->preferred_lft = 0;
}
manage_tempaddrs(ifp->idev, ifp, cfg->valid_lft,
cfg->preferred_lft, !was_managetempaddr,
jiffies);
}
addrconf_verify_rtnl(net);
return 0;
}
static int
inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *peer_pfx;
struct inet6_ifaddr *ifa;
struct net_device *dev;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
struct inet6_dev *idev;
struct ifa6_config cfg;
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX,
ifa_ipv6_policy, extack);
if (err < 0)
return err;
memset(&cfg, 0, sizeof(cfg));
ifm = nlmsg_data(nlh);
cfg.pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer_pfx);
if (!cfg.pfx)
return -EINVAL;
cfg.peer_pfx = peer_pfx;
cfg.plen = ifm->ifa_prefixlen;
if (tb[IFA_RT_PRIORITY])
cfg.rt_priority = nla_get_u32(tb[IFA_RT_PRIORITY]);
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
if (tb[IFA_PROTO])
cfg.ifa_proto = nla_get_u8(tb[IFA_PROTO]);
cfg.valid_lft = INFINITY_LIFE_TIME;
cfg.preferred_lft = INFINITY_LIFE_TIME;
if (tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci;
ci = nla_data(tb[IFA_CACHEINFO]);
cfg.valid_lft = ci->ifa_valid;
cfg.preferred_lft = ci->ifa_prefered;
}
dev = __dev_get_by_index(net, ifm->ifa_index);
if (!dev)
return -ENODEV;
if (tb[IFA_FLAGS])
cfg.ifa_flags = nla_get_u32(tb[IFA_FLAGS]);
else
cfg.ifa_flags = ifm->ifa_flags;
/* We ignore other flags so far. */
cfg.ifa_flags &= IFA_F_NODAD | IFA_F_HOMEADDRESS |
IFA_F_MANAGETEMPADDR | IFA_F_NOPREFIXROUTE |
IFA_F_MCAUTOJOIN | IFA_F_OPTIMISTIC;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
idev = ipv6_find_idev(dev);
if (IS_ERR(idev))
return PTR_ERR(idev);
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
if (!ipv6_allow_optimistic_dad(net, idev))
cfg.ifa_flags &= ~IFA_F_OPTIMISTIC;
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
if (cfg.ifa_flags & IFA_F_NODAD &&
cfg.ifa_flags & IFA_F_OPTIMISTIC) {
ipv6: allow userspace to add IFA_F_OPTIMISTIC addresses According to RFC 4429 (section 3.1), adding new IPv6 addresses as optimistic addresses is acceptable, as long as the implementation follows some rules: * Optimistic DAD SHOULD only be used when the implementation is aware that the address is based on a most likely unique interface identifier (such as in [RFC2464]), generated randomly [RFC3041], or by a well-distributed hash function [RFC3972] or assigned by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Optimistic DAD SHOULD NOT be used for manually entered addresses. Thus, it seems reasonable to allow userspace to set the optimistic flag when adding new addresses. We must not let userspace set NODAD + OPTIMISTIC, since if the kernel is not performing DAD we would never clear the optimistic flag. We must also ignore userspace's request to add OPTIMISTIC flag to addresses that have already completed DAD (addresses that don't have the TENTATIVE flag, or that have the DADFAILED flag). Then we also need to clear the OPTIMISTIC flag on permanent addresses when DAD fails. Otherwise, IFA_F_OPTIMISTIC addresses added by userspace can still be used after DAD has failed, because in ipv6_chk_addr_and_flags(), IFA_F_OPTIMISTIC overrides IFA_F_TENTATIVE. Setting IFA_F_OPTIMISTIC from userspace is conditional on CONFIG_IPV6_OPTIMISTIC_DAD and the optimistic_dad sysctl. Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-28 15:40:08 +00:00
NL_SET_ERR_MSG(extack, "IFA_F_NODAD and IFA_F_OPTIMISTIC are mutually exclusive");
return -EINVAL;
}
ifa = ipv6_get_ifaddr(net, cfg.pfx, dev, 1);
if (!ifa) {
/*
* It would be best to check for !NLM_F_CREATE here but
* userspace already relies on not having to provide this.
*/
return inet6_addr_add(net, ifm->ifa_index, &cfg, extack);
}
if (nlh->nlmsg_flags & NLM_F_EXCL ||
!(nlh->nlmsg_flags & NLM_F_REPLACE))
err = -EEXIST;
else
err = inet6_addr_modify(net, ifa, &cfg);
in6_ifa_put(ifa);
return err;
}
static void put_ifaddrmsg(struct nlmsghdr *nlh, u8 prefixlen, u32 flags,
u8 scope, int ifindex)
{
struct ifaddrmsg *ifm;
ifm = nlmsg_data(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = prefixlen;
ifm->ifa_flags = flags;
ifm->ifa_scope = scope;
ifm->ifa_index = ifindex;
}
static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp,
unsigned long tstamp, u32 preferred, u32 valid)
{
struct ifa_cacheinfo ci;
ci.cstamp = cstamp_delta(cstamp);
ci.tstamp = cstamp_delta(tstamp);
ci.ifa_prefered = preferred;
ci.ifa_valid = valid;
return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci);
}
static inline int rt_scope(int ifa_scope)
{
if (ifa_scope & IFA_HOST)
return RT_SCOPE_HOST;
else if (ifa_scope & IFA_LINK)
return RT_SCOPE_LINK;
else if (ifa_scope & IFA_SITE)
return RT_SCOPE_SITE;
else
return RT_SCOPE_UNIVERSE;
}
static inline int inet6_ifaddr_msgsize(void)
{
return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
+ nla_total_size(16) /* IFA_LOCAL */
+ nla_total_size(16) /* IFA_ADDRESS */
+ nla_total_size(sizeof(struct ifa_cacheinfo))
+ nla_total_size(4) /* IFA_FLAGS */
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
+ nla_total_size(1) /* IFA_PROTO */
+ nla_total_size(4) /* IFA_RT_PRIORITY */;
}
enum addr_type_t {
UNICAST_ADDR,
MULTICAST_ADDR,
ANYCAST_ADDR,
};
struct inet6_fill_args {
u32 portid;
u32 seq;
int event;
unsigned int flags;
int netnsid;
int ifindex;
enum addr_type_t type;
};
static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa,
struct inet6_fill_args *args)
{
struct nlmsghdr *nlh;
u32 preferred, valid;
nlh = nlmsg_put(skb, args->portid, args->seq, args->event,
sizeof(struct ifaddrmsg), args->flags);
if (!nlh)
return -EMSGSIZE;
put_ifaddrmsg(nlh, ifa->prefix_len, ifa->flags, rt_scope(ifa->scope),
ifa->idev->dev->ifindex);
if (args->netnsid >= 0 &&
nla_put_s32(skb, IFA_TARGET_NETNSID, args->netnsid))
goto error;
spin_lock_bh(&ifa->lock);
if (!((ifa->flags&IFA_F_PERMANENT) &&
(ifa->prefered_lft == INFINITY_LIFE_TIME))) {
preferred = ifa->prefered_lft;
valid = ifa->valid_lft;
if (preferred != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->tstamp)/HZ;
if (preferred > tval)
preferred -= tval;
else
preferred = 0;
if (valid != INFINITY_LIFE_TIME) {
if (valid > tval)
valid -= tval;
else
valid = 0;
}
}
} else {
preferred = INFINITY_LIFE_TIME;
valid = INFINITY_LIFE_TIME;
}
spin_unlock_bh(&ifa->lock);
if (!ipv6_addr_any(&ifa->peer_addr)) {
if (nla_put_in6_addr(skb, IFA_LOCAL, &ifa->addr) < 0 ||
nla_put_in6_addr(skb, IFA_ADDRESS, &ifa->peer_addr) < 0)
goto error;
} else
if (nla_put_in6_addr(skb, IFA_ADDRESS, &ifa->addr) < 0)
goto error;
if (ifa->rt_priority &&
nla_put_u32(skb, IFA_RT_PRIORITY, ifa->rt_priority))
goto error;
if (put_cacheinfo(skb, ifa->cstamp, ifa->tstamp, preferred, valid) < 0)
goto error;
if (nla_put_u32(skb, IFA_FLAGS, ifa->flags) < 0)
goto error;
net: Add new protocol attribute to IP addresses This patch adds a new protocol attribute to IPv4 and IPv6 addresses. Inspiration was taken from the protocol attribute of routes. User space applications like iproute2 can set/get the protocol with the Netlink API. The attribute is stored as an 8-bit unsigned integer. The protocol attribute is set by kernel for these categories: - IPv4 and IPv6 loopback addresses - IPv6 addresses generated from router announcements - IPv6 link local addresses User space may pass custom protocols, not defined by the kernel. Grouping addresses on their origin is useful in scenarios where you want to distinguish between addresses based on who added them, e.g. kernel vs. user space. Tagging addresses with a string label is an existing feature that could be used as a solution. Unfortunately the max length of a label is 15 characters, and for compatibility reasons the label must be prefixed with the name of the device followed by a colon. Since device names also have a max length of 15 characters, only -1 characters is guaranteed to be available for any origin tag, which is not that much. A reference implementation of user space setting and getting protocols is available for iproute2: https://github.com/westermo/iproute2/commit/9a6ea18bd79f47f293e5edc7780f315ea42ff540 Signed-off-by: Jacques de Laval <Jacques.De.Laval@westermo.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220217150202.80802-1-Jacques.De.Laval@westermo.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-17 15:02:02 +00:00
if (ifa->ifa_proto &&
nla_put_u8(skb, IFA_PROTO, ifa->ifa_proto))
goto error;
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
error:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca,
struct inet6_fill_args *args)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifmca->idev->dev->ifindex;
if (ipv6_addr_scope(&ifmca->mca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, args->portid, args->seq, args->event,
sizeof(struct ifaddrmsg), args->flags);
if (!nlh)
return -EMSGSIZE;
if (args->netnsid >= 0 &&
nla_put_s32(skb, IFA_TARGET_NETNSID, args->netnsid)) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put_in6_addr(skb, IFA_MULTICAST, &ifmca->mca_addr) < 0 ||
put_cacheinfo(skb, ifmca->mca_cstamp, ifmca->mca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
}
static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca,
struct inet6_fill_args *args)
{
struct net_device *dev = fib6_info_nh_dev(ifaca->aca_rt);
int ifindex = dev ? dev->ifindex : 1;
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
if (ipv6_addr_scope(&ifaca->aca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, args->portid, args->seq, args->event,
sizeof(struct ifaddrmsg), args->flags);
if (!nlh)
return -EMSGSIZE;
if (args->netnsid >= 0 &&
nla_put_s32(skb, IFA_TARGET_NETNSID, args->netnsid)) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put_in6_addr(skb, IFA_ANYCAST, &ifaca->aca_addr) < 0 ||
put_cacheinfo(skb, ifaca->aca_cstamp, ifaca->aca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
}
/* called with rcu_read_lock() */
static int in6_dump_addrs(struct inet6_dev *idev, struct sk_buff *skb,
struct netlink_callback *cb, int s_ip_idx,
struct inet6_fill_args *fillargs)
{
struct ifmcaddr6 *ifmca;
struct ifacaddr6 *ifaca;
int ip_idx = 0;
int err = 1;
read_lock_bh(&idev->lock);
switch (fillargs->type) {
case UNICAST_ADDR: {
struct inet6_ifaddr *ifa;
fillargs->event = RTM_NEWADDR;
/* unicast address incl. temp addr */
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (ip_idx < s_ip_idx)
goto next;
err = inet6_fill_ifaddr(skb, ifa, fillargs);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
if (err < 0)
break;
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
next:
ip_idx++;
}
break;
}
case MULTICAST_ADDR:
read_unlock_bh(&idev->lock);
fillargs->event = RTM_GETMULTICAST;
/* multicast address */
ipv6: fix lockdep splat in in6_dump_addrs() As reported by syzbot, we should not use rcu_dereference() when rcu_read_lock() is not held. WARNING: suspicious RCU usage 5.19.0-rc2-syzkaller #0 Not tainted net/ipv6/addrconf.c:5175 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by syz-executor326/3617: #0: ffffffff8d5848e8 (rtnl_mutex){+.+.}-{3:3}, at: netlink_dump+0xae/0xc20 net/netlink/af_netlink.c:2223 stack backtrace: CPU: 0 PID: 3617 Comm: syz-executor326 Not tainted 5.19.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 in6_dump_addrs+0x12d1/0x1790 net/ipv6/addrconf.c:5175 inet6_dump_addr+0x9c1/0xb50 net/ipv6/addrconf.c:5300 netlink_dump+0x541/0xc20 net/netlink/af_netlink.c:2275 __netlink_dump_start+0x647/0x900 net/netlink/af_netlink.c:2380 netlink_dump_start include/linux/netlink.h:245 [inline] rtnetlink_rcv_msg+0x73e/0xc90 net/core/rtnetlink.c:6046 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2501 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0x543/0x7f0 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x917/0xe10 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:734 ____sys_sendmsg+0x6eb/0x810 net/socket.c:2492 ___sys_sendmsg+0xf3/0x170 net/socket.c:2546 __sys_sendmsg net/socket.c:2575 [inline] __do_sys_sendmsg net/socket.c:2584 [inline] __se_sys_sendmsg net/socket.c:2582 [inline] __x64_sys_sendmsg+0x132/0x220 net/socket.c:2582 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Taehee Yoo <ap420073@gmail.com> Link: https://lore.kernel.org/r/20220628121248.858695-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-28 12:12:48 +00:00
for (ifmca = rtnl_dereference(idev->mc_list);
ifmca;
ipv6: fix lockdep splat in in6_dump_addrs() As reported by syzbot, we should not use rcu_dereference() when rcu_read_lock() is not held. WARNING: suspicious RCU usage 5.19.0-rc2-syzkaller #0 Not tainted net/ipv6/addrconf.c:5175 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by syz-executor326/3617: #0: ffffffff8d5848e8 (rtnl_mutex){+.+.}-{3:3}, at: netlink_dump+0xae/0xc20 net/netlink/af_netlink.c:2223 stack backtrace: CPU: 0 PID: 3617 Comm: syz-executor326 Not tainted 5.19.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 in6_dump_addrs+0x12d1/0x1790 net/ipv6/addrconf.c:5175 inet6_dump_addr+0x9c1/0xb50 net/ipv6/addrconf.c:5300 netlink_dump+0x541/0xc20 net/netlink/af_netlink.c:2275 __netlink_dump_start+0x647/0x900 net/netlink/af_netlink.c:2380 netlink_dump_start include/linux/netlink.h:245 [inline] rtnetlink_rcv_msg+0x73e/0xc90 net/core/rtnetlink.c:6046 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2501 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0x543/0x7f0 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x917/0xe10 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:734 ____sys_sendmsg+0x6eb/0x810 net/socket.c:2492 ___sys_sendmsg+0xf3/0x170 net/socket.c:2546 __sys_sendmsg net/socket.c:2575 [inline] __do_sys_sendmsg net/socket.c:2584 [inline] __se_sys_sendmsg net/socket.c:2582 [inline] __x64_sys_sendmsg+0x132/0x220 net/socket.c:2582 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Taehee Yoo <ap420073@gmail.com> Link: https://lore.kernel.org/r/20220628121248.858695-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-28 12:12:48 +00:00
ifmca = rtnl_dereference(ifmca->next), ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifmcaddr(skb, ifmca, fillargs);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
if (err < 0)
break;
}
read_lock_bh(&idev->lock);
break;
case ANYCAST_ADDR:
fillargs->event = RTM_GETANYCAST;
/* anycast address */
for (ifaca = idev->ac_list; ifaca;
ifaca = ifaca->aca_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifacaddr(skb, ifaca, fillargs);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
if (err < 0)
break;
}
break;
default:
break;
}
read_unlock_bh(&idev->lock);
cb->args[2] = ip_idx;
return err;
}
static int inet6_valid_dump_ifaddr_req(const struct nlmsghdr *nlh,
struct inet6_fill_args *fillargs,
struct net **tgt_net, struct sock *sk,
struct netlink_callback *cb)
{
struct netlink_ext_ack *extack = cb->extack;
struct nlattr *tb[IFA_MAX+1];
struct ifaddrmsg *ifm;
int err, i;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid header for address dump request");
return -EINVAL;
}
ifm = nlmsg_data(nlh);
if (ifm->ifa_prefixlen || ifm->ifa_flags || ifm->ifa_scope) {
NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for address dump request");
return -EINVAL;
}
fillargs->ifindex = ifm->ifa_index;
if (fillargs->ifindex) {
cb->answer_flags |= NLM_F_DUMP_FILTERED;
fillargs->flags |= NLM_F_DUMP_FILTERED;
}
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated_strict(nlh, sizeof(*ifm), tb, IFA_MAX,
ifa_ipv6_policy, extack);
if (err < 0)
return err;
for (i = 0; i <= IFA_MAX; ++i) {
if (!tb[i])
continue;
if (i == IFA_TARGET_NETNSID) {
struct net *net;
fillargs->netnsid = nla_get_s32(tb[i]);
net = rtnl_get_net_ns_capable(sk, fillargs->netnsid);
if (IS_ERR(net)) {
fillargs->netnsid = -1;
NL_SET_ERR_MSG_MOD(extack, "Invalid target network namespace id");
return PTR_ERR(net);
}
*tgt_net = net;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in dump request");
return -EINVAL;
}
}
return 0;
}
static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb,
enum addr_type_t type)
{
const struct nlmsghdr *nlh = cb->nlh;
struct inet6_fill_args fillargs = {
.portid = NETLINK_CB(cb->skb).portid,
.seq = cb->nlh->nlmsg_seq,
.flags = NLM_F_MULTI,
.netnsid = -1,
.type = type,
};
struct net *tgt_net = sock_net(skb->sk);
int idx, s_idx, s_ip_idx;
int h, s_h;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
int err = 0;
s_h = cb->args[0];
s_idx = idx = cb->args[1];
s_ip_idx = cb->args[2];
if (cb->strict_check) {
err = inet6_valid_dump_ifaddr_req(nlh, &fillargs, &tgt_net,
skb->sk, cb);
if (err < 0)
goto put_tgt_net;
err = 0;
if (fillargs.ifindex) {
dev = __dev_get_by_index(tgt_net, fillargs.ifindex);
if (!dev) {
err = -ENODEV;
goto put_tgt_net;
}
idev = __in6_dev_get(dev);
if (idev) {
err = in6_dump_addrs(idev, skb, cb, s_ip_idx,
&fillargs);
if (err > 0)
err = 0;
}
goto put_tgt_net;
}
}
rcu_read_lock();
cb->seq = atomic_read(&tgt_net->ipv6.dev_addr_genid) ^ tgt_net->dev_base_seq;
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &tgt_net->dev_index_head[h];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
if (h > s_h || idx > s_idx)
s_ip_idx = 0;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (in6_dump_addrs(idev, skb, cb, s_ip_idx,
&fillargs) < 0)
goto done;
cont:
idx++;
}
}
done:
rcu_read_unlock();
cb->args[0] = h;
cb->args[1] = idx;
put_tgt_net:
if (fillargs.netnsid >= 0)
put_net(tgt_net);
return skb->len ? : err;
}
static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = UNICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = MULTICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = ANYCAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_rtm_valid_getaddr_req(struct sk_buff *skb,
const struct nlmsghdr *nlh,
struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct ifaddrmsg *ifm;
int i, err;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid header for get address request");
return -EINVAL;
}
if (!netlink_strict_get_check(skb))
return nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX,
ifa_ipv6_policy, extack);
ifm = nlmsg_data(nlh);
if (ifm->ifa_prefixlen || ifm->ifa_flags || ifm->ifa_scope) {
NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get address request");
return -EINVAL;
}
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated_strict(nlh, sizeof(*ifm), tb, IFA_MAX,
ifa_ipv6_policy, extack);
if (err)
return err;
for (i = 0; i <= IFA_MAX; i++) {
if (!tb[i])
continue;
switch (i) {
case IFA_TARGET_NETNSID:
case IFA_ADDRESS:
case IFA_LOCAL:
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get address request");
return -EINVAL;
}
}
return 0;
}
static int inet6_rtm_getaddr(struct sk_buff *in_skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *tgt_net = sock_net(in_skb->sk);
struct inet6_fill_args fillargs = {
.portid = NETLINK_CB(in_skb).portid,
.seq = nlh->nlmsg_seq,
.event = RTM_NEWADDR,
.flags = 0,
.netnsid = -1,
};
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *addr = NULL, *peer;
struct net_device *dev = NULL;
struct inet6_ifaddr *ifa;
struct sk_buff *skb;
int err;
err = inet6_rtm_valid_getaddr_req(in_skb, nlh, tb, extack);
if (err < 0)
return err;
if (tb[IFA_TARGET_NETNSID]) {
fillargs.netnsid = nla_get_s32(tb[IFA_TARGET_NETNSID]);
tgt_net = rtnl_get_net_ns_capable(NETLINK_CB(in_skb).sk,
fillargs.netnsid);
if (IS_ERR(tgt_net))
return PTR_ERR(tgt_net);
}
addr = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer);
if (!addr)
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifa_index)
dev = dev_get_by_index(tgt_net, ifm->ifa_index);
ifa = ipv6_get_ifaddr(tgt_net, addr, dev, 1);
if (!ifa) {
err = -EADDRNOTAVAIL;
goto errout;
}
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_KERNEL);
if (!skb) {
err = -ENOBUFS;
goto errout_ifa;
}
err = inet6_fill_ifaddr(skb, ifa, &fillargs);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout_ifa;
}
err = rtnl_unicast(skb, tgt_net, NETLINK_CB(in_skb).portid);
errout_ifa:
in6_ifa_put(ifa);
errout:
dev_put(dev);
if (fillargs.netnsid >= 0)
put_net(tgt_net);
return err;
}
static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa)
{
struct sk_buff *skb;
struct net *net = dev_net(ifa->idev->dev);
struct inet6_fill_args fillargs = {
.portid = 0,
.seq = 0,
.event = event,
.flags = 0,
.netnsid = -1,
};
int err = -ENOBUFS;
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_ifaddr(skb, ifa, &fillargs);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
2009-02-25 07:18:28 +00:00
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err);
}
static inline void ipv6_store_devconf(struct ipv6_devconf *cnf,
__s32 *array, int bytes)
{
BUG_ON(bytes < (DEVCONF_MAX * 4));
memset(array, 0, bytes);
array[DEVCONF_FORWARDING] = cnf->forwarding;
array[DEVCONF_HOPLIMIT] = cnf->hop_limit;
array[DEVCONF_MTU6] = cnf->mtu6;
array[DEVCONF_ACCEPT_RA] = cnf->accept_ra;
array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects;
array[DEVCONF_AUTOCONF] = cnf->autoconf;
array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits;
array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits;
array[DEVCONF_RTR_SOLICIT_INTERVAL] =
jiffies_to_msecs(cnf->rtr_solicit_interval);
array[DEVCONF_RTR_SOLICIT_MAX_INTERVAL] =
jiffies_to_msecs(cnf->rtr_solicit_max_interval);
array[DEVCONF_RTR_SOLICIT_DELAY] =
jiffies_to_msecs(cnf->rtr_solicit_delay);
array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version;
array[DEVCONF_MLDV1_UNSOLICITED_REPORT_INTERVAL] =
jiffies_to_msecs(cnf->mldv1_unsolicited_report_interval);
array[DEVCONF_MLDV2_UNSOLICITED_REPORT_INTERVAL] =
jiffies_to_msecs(cnf->mldv2_unsolicited_report_interval);
array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr;
array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft;
array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft;
array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry;
array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor;
array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses;
array[DEVCONF_ACCEPT_RA_DEFRTR] = cnf->accept_ra_defrtr;
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
array[DEVCONF_RA_DEFRTR_METRIC] = cnf->ra_defrtr_metric;
array[DEVCONF_ACCEPT_RA_MIN_HOP_LIMIT] = cnf->accept_ra_min_hop_limit;
array[DEVCONF_ACCEPT_RA_PINFO] = cnf->accept_ra_pinfo;
#ifdef CONFIG_IPV6_ROUTER_PREF
array[DEVCONF_ACCEPT_RA_RTR_PREF] = cnf->accept_ra_rtr_pref;
array[DEVCONF_RTR_PROBE_INTERVAL] =
jiffies_to_msecs(cnf->rtr_probe_interval);
#ifdef CONFIG_IPV6_ROUTE_INFO
array[DEVCONF_ACCEPT_RA_RT_INFO_MIN_PLEN] = cnf->accept_ra_rt_info_min_plen;
array[DEVCONF_ACCEPT_RA_RT_INFO_MAX_PLEN] = cnf->accept_ra_rt_info_max_plen;
#endif
#endif
array[DEVCONF_PROXY_NDP] = cnf->proxy_ndp;
array[DEVCONF_ACCEPT_SOURCE_ROUTE] = cnf->accept_source_route;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
array[DEVCONF_OPTIMISTIC_DAD] = cnf->optimistic_dad;
net: ipv6: Add a sysctl to make optimistic addresses useful candidates Add a sysctl that causes an interface's optimistic addresses to be considered equivalent to other non-deprecated addresses for source address selection purposes. Preferred addresses will still take precedence over optimistic addresses, subject to other ranking in the source address selection algorithm. This is useful where different interfaces are connected to different networks from different ISPs (e.g., a cell network and a home wifi network). The current behaviour complies with RFC 3484/6724, and it makes sense if the host has only one interface, or has multiple interfaces on the same network (same or cooperating administrative domain(s), but not in the multiple distinct networks case. For example, if a mobile device has an IPv6 address on an LTE network and then connects to IPv6-enabled wifi, while the wifi IPv6 address is undergoing DAD, IPv6 connections will try use the wifi default route with the LTE IPv6 address, and will get stuck until they time out. Also, because optimistic nodes can receive frames, issue an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC flag appropriately set). A second RTM_NEWADDR is sent if DAD completes (the address flags have changed), otherwise an RTM_DELADDR is sent. Also: add an entry in ip-sysctl.txt for optimistic_dad. Signed-off-by: Erik Kline <ek@google.com> Acked-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 09:11:14 +00:00
array[DEVCONF_USE_OPTIMISTIC] = cnf->use_optimistic;
#endif
#ifdef CONFIG_IPV6_MROUTE
array[DEVCONF_MC_FORWARDING] = atomic_read(&cnf->mc_forwarding);
#endif
array[DEVCONF_DISABLE_IPV6] = cnf->disable_ipv6;
array[DEVCONF_ACCEPT_DAD] = cnf->accept_dad;
array[DEVCONF_FORCE_TLLAO] = cnf->force_tllao;
array[DEVCONF_NDISC_NOTIFY] = cnf->ndisc_notify;
array[DEVCONF_SUPPRESS_FRAG_NDISC] = cnf->suppress_frag_ndisc;
array[DEVCONF_ACCEPT_RA_FROM_LOCAL] = cnf->accept_ra_from_local;
array[DEVCONF_ACCEPT_RA_MTU] = cnf->accept_ra_mtu;
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
array[DEVCONF_IGNORE_ROUTES_WITH_LINKDOWN] = cnf->ignore_routes_with_linkdown;
/* we omit DEVCONF_STABLE_SECRET for now */
array[DEVCONF_USE_OIF_ADDRS_ONLY] = cnf->use_oif_addrs_only;
array[DEVCONF_DROP_UNICAST_IN_L2_MULTICAST] = cnf->drop_unicast_in_l2_multicast;
array[DEVCONF_DROP_UNSOLICITED_NA] = cnf->drop_unsolicited_na;
net: ipv6: Make address flushing on ifdown optional Currently, all ipv6 addresses are flushed when the interface is configured down, including global, static addresses: $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 << nothing; all addresses have been flushed>> Add a new sysctl to make this behavior optional. The new setting defaults to flush all addresses to maintain backwards compatibility. When the set global addresses with no expire times are not flushed on an admin down. The sysctl is per-interface or system-wide for all interfaces $ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1 or $ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 Will keep addresses on eth1 on an admin down. $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000 inet6 2100:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link valid_lft forever preferred_lft forever $ ip link set dev eth1 down $ ip -6 addr show dev eth1 3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000 inet6 2100:1::2/120 scope global tentative valid_lft forever preferred_lft forever inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative valid_lft forever preferred_lft forever Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 17:25:37 +00:00
array[DEVCONF_KEEP_ADDR_ON_DOWN] = cnf->keep_addr_on_down;
array[DEVCONF_SEG6_ENABLED] = cnf->seg6_enabled;
#ifdef CONFIG_IPV6_SEG6_HMAC
array[DEVCONF_SEG6_REQUIRE_HMAC] = cnf->seg6_require_hmac;
#endif
array[DEVCONF_ENHANCED_DAD] = cnf->enhanced_dad;
array[DEVCONF_ADDR_GEN_MODE] = cnf->addr_gen_mode;
array[DEVCONF_DISABLE_POLICY] = cnf->disable_policy;
net: ipv6: sysctl to specify IPv6 ND traffic class Add a per-device sysctl to specify the default traffic class to use for kernel originated IPv6 Neighbour Discovery packets. Currently this includes: - Router Solicitation (ICMPv6 type 133) ndisc_send_rs() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Solicitation (ICMPv6 type 135) ndisc_send_ns() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Advertisement (ICMPv6 type 136) ndisc_send_na() -> ndisc_send_skb() -> ip6_nd_hdr() - Redirect (ICMPv6 type 137) ndisc_send_redirect() -> ndisc_send_skb() -> ip6_nd_hdr() and if the kernel ever gets around to generating RA's, it would presumably also include: - Router Advertisement (ICMPv6 type 134) (radvd daemon could pick up on the kernel setting and use it) Interface drivers may examine the Traffic Class value and translate the DiffServ Code Point into a link-layer appropriate traffic prioritization scheme. An example of mapping IETF DSCP values to IEEE 802.11 User Priority values can be found here: https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11 The expected primary use case is to properly prioritize ND over wifi. Testing: jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 0 jzem22:~# echo -1 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 256 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# echo 255 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 255 jzem22:~# echo 34 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 34 jzem22:~# echo $[0xDC] > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# tcpdump -v -i eth0 icmp6 and src host jzem22.pgc and dst host fe80::1 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes IP6 (class 0xdc, hlim 255, next-header ICMPv6 (58) payload length: 24) jzem22.pgc > fe80::1: [icmp6 sum ok] ICMP6, neighbor advertisement, length 24, tgt is jzem22.pgc, Flags [solicited] (based on original change written by Erik Kline, with minor changes) v2: fix 'suspicious rcu_dereference_check() usage' by explicitly grabbing the rcu_read_lock. Cc: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: Erik Kline <ek@google.com> Signed-off-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 05:52:09 +00:00
array[DEVCONF_NDISC_TCLASS] = cnf->ndisc_tclass;
array[DEVCONF_RPL_SEG_ENABLED] = cnf->rpl_seg_enabled;
ipv6: ioam: Data plane support for Pre-allocated Trace Implement support for processing the IOAM Pre-allocated Trace with IPv6, see [1] and [2]. Introduce a new IPv6 Hop-by-Hop TLV option, see IANA [3]. A new per-interface sysctl is introduced. The value is a boolean to accept (=1) or ignore (=0, by default) IPv6 IOAM options on ingress for an interface: - net.ipv6.conf.XXX.ioam6_enabled Two other sysctls are introduced to define IOAM IDs, represented by an integer. They are respectively per-namespace and per-interface: - net.ipv6.ioam6_id - net.ipv6.conf.XXX.ioam6_id The value of the first one represents the IOAM ID of the node itself (u32; max and default value = U32_MAX>>8, due to hop limit concatenation) while the other represents the IOAM ID of an interface (u16; max and default value = U16_MAX). Each "ioam6_id" sysctl has a "_wide" equivalent: - net.ipv6.ioam6_id_wide - net.ipv6.conf.XXX.ioam6_id_wide The value of the first one represents the wide IOAM ID of the node itself (u64; max and default value = U64_MAX>>8, due to hop limit concatenation) while the other represents the wide IOAM ID of an interface (u32; max and default value = U32_MAX). The use of short and wide equivalents is not exclusive, a deployment could choose to leverage both. For example, net.ipv6.conf.XXX.ioam6_id (short format) could be an identifier for a physical interface, whereas net.ipv6.conf.XXX.ioam6_id_wide (wide format) could be an identifier for a logical sub-interface. Documentation about new sysctls is provided at the end of this patchset. Two relativistic hash tables are used: one for IOAM namespaces, the other for IOAM schemas. A namespace can only have a single active schema and a schema can only be attached to a single namespace (1:1 relationship). [1] https://tools.ietf.org/html/draft-ietf-ippm-ioam-ipv6-options [2] https://tools.ietf.org/html/draft-ietf-ippm-ioam-data [3] https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2 Signed-off-by: Justin Iurman <justin.iurman@uliege.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 19:42:57 +00:00
array[DEVCONF_IOAM6_ENABLED] = cnf->ioam6_enabled;
array[DEVCONF_IOAM6_ID] = cnf->ioam6_id;
array[DEVCONF_IOAM6_ID_WIDE] = cnf->ioam6_id_wide;
array[DEVCONF_NDISC_EVICT_NOCARRIER] = cnf->ndisc_evict_nocarrier;
array[DEVCONF_ACCEPT_UNTRACKED_NA] = cnf->accept_untracked_na;
}
static inline size_t inet6_ifla6_size(void)
{
return nla_total_size(4) /* IFLA_INET6_FLAGS */
+ nla_total_size(sizeof(struct ifla_cacheinfo))
+ nla_total_size(DEVCONF_MAX * 4) /* IFLA_INET6_CONF */
+ nla_total_size(IPSTATS_MIB_MAX * 8) /* IFLA_INET6_STATS */
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
+ nla_total_size(ICMP6_MIB_MAX * 8) /* IFLA_INET6_ICMP6STATS */
+ nla_total_size(sizeof(struct in6_addr)) /* IFLA_INET6_TOKEN */
+ nla_total_size(1) /* IFLA_INET6_ADDR_GEN_MODE */
ipv6: add IFLA_INET6_RA_MTU to expose mtu value The kernel provides a "/proc/sys/net/ipv6/conf/<iface>/mtu" file, which can temporarily record the mtu value of the last received RA message when the RA mtu value is lower than the interface mtu, but this proc has following limitations: (1) when the interface mtu (/sys/class/net/<iface>/mtu) is updeated, mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) will be updated to the value of interface mtu; (2) mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) only affect ipv6 connection, and not affect ipv4. Therefore, when the mtu option is carried in the RA message, there will be a problem that the user sometimes cannot obtain RA mtu value correctly by reading mtu6. After this patch set, if a RA message carries the mtu option, you can send a netlink msg which nlmsg_type is RTM_GETLINK, and then by parsing the attribute of IFLA_INET6_RA_MTU to get the mtu value carried in the RA message received on the inet6 device. In addition, you can also get a link notification when ra_mtu is updated so it doesn't have to poll. In this way, if the MTU values that the device receives from the network in the PCO IPv4 and the RA IPv6 procedures are different, the user can obtain the correct ipv6 ra_mtu value and compare the value of ra_mtu and ipv4 mtu, then the device can use the lower MTU value for both IPv4 and IPv6. Signed-off-by: Rocco Yue <rocco.yue@mediatek.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210827150412.9267-1-rocco.yue@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-27 15:04:12 +00:00
+ nla_total_size(4) /* IFLA_INET6_RA_MTU */
+ 0;
}
static inline size_t inet6_if_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(inet6_ifla6_size()); /* IFLA_PROTINFO */
}
static inline void __snmp6_fill_statsdev(u64 *stats, atomic_long_t *mib,
int bytes)
{
int i;
int pad = bytes - sizeof(u64) * ICMP6_MIB_MAX;
BUG_ON(pad < 0);
/* Use put_unaligned() because stats may not be aligned for u64. */
put_unaligned(ICMP6_MIB_MAX, &stats[0]);
for (i = 1; i < ICMP6_MIB_MAX; i++)
put_unaligned(atomic_long_read(&mib[i]), &stats[i]);
memset(&stats[ICMP6_MIB_MAX], 0, pad);
}
static inline void __snmp6_fill_stats64(u64 *stats, void __percpu *mib,
int bytes, size_t syncpoff)
{
int i, c;
u64 buff[IPSTATS_MIB_MAX];
int pad = bytes - sizeof(u64) * IPSTATS_MIB_MAX;
BUG_ON(pad < 0);
memset(buff, 0, sizeof(buff));
buff[0] = IPSTATS_MIB_MAX;
for_each_possible_cpu(c) {
for (i = 1; i < IPSTATS_MIB_MAX; i++)
buff[i] += snmp_get_cpu_field64(mib, c, i, syncpoff);
}
memcpy(stats, buff, IPSTATS_MIB_MAX * sizeof(u64));
memset(&stats[IPSTATS_MIB_MAX], 0, pad);
}
static void snmp6_fill_stats(u64 *stats, struct inet6_dev *idev, int attrtype,
int bytes)
{
switch (attrtype) {
case IFLA_INET6_STATS:
__snmp6_fill_stats64(stats, idev->stats.ipv6, bytes,
offsetof(struct ipstats_mib, syncp));
break;
case IFLA_INET6_ICMP6STATS:
__snmp6_fill_statsdev(stats, idev->stats.icmpv6dev->mibs, bytes);
break;
}
}
static int inet6_fill_ifla6_attrs(struct sk_buff *skb, struct inet6_dev *idev,
u32 ext_filter_mask)
{
struct nlattr *nla;
struct ifla_cacheinfo ci;
if (nla_put_u32(skb, IFLA_INET6_FLAGS, idev->if_flags))
goto nla_put_failure;
ci.max_reasm_len = IPV6_MAXPLEN;
ci.tstamp = cstamp_delta(idev->tstamp);
ci.reachable_time = jiffies_to_msecs(idev->nd_parms->reachable_time);
ci.retrans_time = jiffies_to_msecs(NEIGH_VAR(idev->nd_parms, RETRANS_TIME));
if (nla_put(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci))
goto nla_put_failure;
nla = nla_reserve(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(s32));
if (!nla)
goto nla_put_failure;
ipv6_store_devconf(&idev->cnf, nla_data(nla), nla_len(nla));
/* XXX - MC not implemented */
if (ext_filter_mask & RTEXT_FILTER_SKIP_STATS)
return 0;
nla = nla_reserve(skb, IFLA_INET6_STATS, IPSTATS_MIB_MAX * sizeof(u64));
if (!nla)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_STATS, nla_len(nla));
nla = nla_reserve(skb, IFLA_INET6_ICMP6STATS, ICMP6_MIB_MAX * sizeof(u64));
if (!nla)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_ICMP6STATS, nla_len(nla));
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
nla = nla_reserve(skb, IFLA_INET6_TOKEN, sizeof(struct in6_addr));
if (!nla)
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
goto nla_put_failure;
read_lock_bh(&idev->lock);
memcpy(nla_data(nla), idev->token.s6_addr, nla_len(nla));
read_unlock_bh(&idev->lock);
if (nla_put_u8(skb, IFLA_INET6_ADDR_GEN_MODE, idev->cnf.addr_gen_mode))
goto nla_put_failure;
ipv6: add IFLA_INET6_RA_MTU to expose mtu value The kernel provides a "/proc/sys/net/ipv6/conf/<iface>/mtu" file, which can temporarily record the mtu value of the last received RA message when the RA mtu value is lower than the interface mtu, but this proc has following limitations: (1) when the interface mtu (/sys/class/net/<iface>/mtu) is updeated, mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) will be updated to the value of interface mtu; (2) mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) only affect ipv6 connection, and not affect ipv4. Therefore, when the mtu option is carried in the RA message, there will be a problem that the user sometimes cannot obtain RA mtu value correctly by reading mtu6. After this patch set, if a RA message carries the mtu option, you can send a netlink msg which nlmsg_type is RTM_GETLINK, and then by parsing the attribute of IFLA_INET6_RA_MTU to get the mtu value carried in the RA message received on the inet6 device. In addition, you can also get a link notification when ra_mtu is updated so it doesn't have to poll. In this way, if the MTU values that the device receives from the network in the PCO IPv4 and the RA IPv6 procedures are different, the user can obtain the correct ipv6 ra_mtu value and compare the value of ra_mtu and ipv4 mtu, then the device can use the lower MTU value for both IPv4 and IPv6. Signed-off-by: Rocco Yue <rocco.yue@mediatek.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210827150412.9267-1-rocco.yue@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-27 15:04:12 +00:00
if (idev->ra_mtu &&
nla_put_u32(skb, IFLA_INET6_RA_MTU, idev->ra_mtu))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static size_t inet6_get_link_af_size(const struct net_device *dev,
u32 ext_filter_mask)
{
if (!__in6_dev_get(dev))
return 0;
return inet6_ifla6_size();
}
static int inet6_fill_link_af(struct sk_buff *skb, const struct net_device *dev,
u32 ext_filter_mask)
{
struct inet6_dev *idev = __in6_dev_get(dev);
if (!idev)
return -ENODATA;
if (inet6_fill_ifla6_attrs(skb, idev, ext_filter_mask) < 0)
return -EMSGSIZE;
return 0;
}
static int inet6_set_iftoken(struct inet6_dev *idev, struct in6_addr *token,
struct netlink_ext_ack *extack)
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
{
struct inet6_ifaddr *ifp;
struct net_device *dev = idev->dev;
bool clear_token, update_rs = false;
struct in6_addr ll_addr;
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
ASSERT_RTNL();
if (!token)
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return -EINVAL;
if (dev->flags & IFF_LOOPBACK) {
NL_SET_ERR_MSG_MOD(extack, "Device is loopback");
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return -EINVAL;
}
if (dev->flags & IFF_NOARP) {
NL_SET_ERR_MSG_MOD(extack,
"Device does not do neighbour discovery");
return -EINVAL;
}
if (!ipv6_accept_ra(idev)) {
NL_SET_ERR_MSG_MOD(extack,
"Router advertisement is disabled on device");
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return -EINVAL;
}
if (idev->cnf.rtr_solicits == 0) {
NL_SET_ERR_MSG(extack,
"Router solicitation is disabled on device");
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return -EINVAL;
}
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
write_lock_bh(&idev->lock);
BUILD_BUG_ON(sizeof(token->s6_addr) != 16);
memcpy(idev->token.s6_addr + 8, token->s6_addr + 8, 8);
write_unlock_bh(&idev->lock);
clear_token = ipv6_addr_any(token);
if (clear_token)
goto update_lft;
if (!idev->dead && (idev->if_flags & IF_READY) &&
!ipv6_get_lladdr(dev, &ll_addr, IFA_F_TENTATIVE |
IFA_F_OPTIMISTIC)) {
/* If we're not ready, then normal ifup will take care
* of this. Otherwise, we need to request our rs here.
*/
ndisc_send_rs(dev, &ll_addr, &in6addr_linklocal_allrouters);
update_rs = true;
}
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
update_lft:
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
write_lock_bh(&idev->lock);
if (update_rs) {
idev->if_flags |= IF_RS_SENT;
idev->rs_interval = rfc3315_s14_backoff_init(
idev->cnf.rtr_solicit_interval);
idev->rs_probes = 1;
addrconf_mod_rs_timer(idev, idev->rs_interval);
}
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
/* Well, that's kinda nasty ... */
list_for_each_entry(ifp, &idev->addr_list, if_list) {
spin_lock(&ifp->lock);
if (ifp->tokenized) {
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
ifp->valid_lft = 0;
ifp->prefered_lft = 0;
}
spin_unlock(&ifp->lock);
}
write_unlock_bh(&idev->lock);
inet6_ifinfo_notify(RTM_NEWLINK, idev);
addrconf_verify_rtnl(dev_net(dev));
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return 0;
}
static const struct nla_policy inet6_af_policy[IFLA_INET6_MAX + 1] = {
[IFLA_INET6_ADDR_GEN_MODE] = { .type = NLA_U8 },
[IFLA_INET6_TOKEN] = { .len = sizeof(struct in6_addr) },
ipv6: add IFLA_INET6_RA_MTU to expose mtu value The kernel provides a "/proc/sys/net/ipv6/conf/<iface>/mtu" file, which can temporarily record the mtu value of the last received RA message when the RA mtu value is lower than the interface mtu, but this proc has following limitations: (1) when the interface mtu (/sys/class/net/<iface>/mtu) is updeated, mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) will be updated to the value of interface mtu; (2) mtu6 (/proc/sys/net/ipv6/conf/<iface>/mtu) only affect ipv6 connection, and not affect ipv4. Therefore, when the mtu option is carried in the RA message, there will be a problem that the user sometimes cannot obtain RA mtu value correctly by reading mtu6. After this patch set, if a RA message carries the mtu option, you can send a netlink msg which nlmsg_type is RTM_GETLINK, and then by parsing the attribute of IFLA_INET6_RA_MTU to get the mtu value carried in the RA message received on the inet6 device. In addition, you can also get a link notification when ra_mtu is updated so it doesn't have to poll. In this way, if the MTU values that the device receives from the network in the PCO IPv4 and the RA IPv6 procedures are different, the user can obtain the correct ipv6 ra_mtu value and compare the value of ra_mtu and ipv4 mtu, then the device can use the lower MTU value for both IPv4 and IPv6. Signed-off-by: Rocco Yue <rocco.yue@mediatek.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210827150412.9267-1-rocco.yue@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-27 15:04:12 +00:00
[IFLA_INET6_RA_MTU] = { .type = NLA_REJECT,
.reject_message =
"IFLA_INET6_RA_MTU can not be set" },
};
static int check_addr_gen_mode(int mode)
{
if (mode != IN6_ADDR_GEN_MODE_EUI64 &&
mode != IN6_ADDR_GEN_MODE_NONE &&
mode != IN6_ADDR_GEN_MODE_STABLE_PRIVACY &&
mode != IN6_ADDR_GEN_MODE_RANDOM)
return -EINVAL;
return 1;
}
static int check_stable_privacy(struct inet6_dev *idev, struct net *net,
int mode)
{
if (mode == IN6_ADDR_GEN_MODE_STABLE_PRIVACY &&
!idev->cnf.stable_secret.initialized &&
!net->ipv6.devconf_dflt->stable_secret.initialized)
return -EINVAL;
return 1;
}
static int inet6_validate_link_af(const struct net_device *dev,
const struct nlattr *nla,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[IFLA_INET6_MAX + 1];
struct inet6_dev *idev = NULL;
int err;
if (dev) {
idev = __in6_dev_get(dev);
if (!idev)
return -EAFNOSUPPORT;
}
err = nla_parse_nested_deprecated(tb, IFLA_INET6_MAX, nla,
inet6_af_policy, extack);
if (err)
return err;
if (!tb[IFLA_INET6_TOKEN] && !tb[IFLA_INET6_ADDR_GEN_MODE])
return -EINVAL;
if (tb[IFLA_INET6_ADDR_GEN_MODE]) {
u8 mode = nla_get_u8(tb[IFLA_INET6_ADDR_GEN_MODE]);
if (check_addr_gen_mode(mode) < 0)
return -EINVAL;
if (dev && check_stable_privacy(idev, dev_net(dev), mode) < 0)
return -EINVAL;
}
return 0;
}
static int inet6_set_link_af(struct net_device *dev, const struct nlattr *nla,
struct netlink_ext_ack *extack)
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
{
struct inet6_dev *idev = __in6_dev_get(dev);
struct nlattr *tb[IFLA_INET6_MAX + 1];
int err;
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
ipv6/addrconf: fix potential NULL deref in inet6_set_link_af() __in6_dev_get(dev) called from inet6_set_link_af() can return NULL. The needed check has been recently removed, let's add it back. While do_setlink() does call validate_linkmsg() : ... err = validate_linkmsg(dev, tb); /* OK at this point */ ... It is possible that the following call happening before the ->set_link_af() removes IPv6 if MTU is less than 1280 : if (tb[IFLA_MTU]) { err = dev_set_mtu_ext(dev, nla_get_u32(tb[IFLA_MTU]), extack); if (err < 0) goto errout; status |= DO_SETLINK_MODIFIED; } ... if (tb[IFLA_AF_SPEC]) { ... err = af_ops->set_link_af(dev, af); ->inet6_set_link_af() // CRASH because idev is NULL Please note that IPv4 is immune to the bug since inet_set_link_af() does : struct in_device *in_dev = __in_dev_get_rcu(dev); if (!in_dev) return -EAFNOSUPPORT; This problem has been mentioned in commit cf7afbfeb8ce ("rtnl: make link af-specific updates atomic") changelog : This method is not fail proof, while it is currently sufficient to make set_link_af() inerrable and thus 100% atomic, the validation function method will not be able to detect all error scenarios in the future, there will likely always be errors depending on states which are f.e. not protected by rtnl_mutex and thus may change between validation and setting. IPv6: ADDRCONF(NETDEV_CHANGE): lo: link becomes ready general protection fault, probably for non-canonical address 0xdffffc0000000056: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000002b0-0x00000000000002b7] CPU: 0 PID: 9698 Comm: syz-executor712 Not tainted 5.5.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:inet6_set_link_af+0x66e/0xae0 net/ipv6/addrconf.c:5733 Code: 38 d0 7f 08 84 c0 0f 85 20 03 00 00 48 8d bb b0 02 00 00 45 0f b6 64 24 04 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 1a 03 00 00 44 89 a3 b0 02 00 RSP: 0018:ffffc90005b06d40 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff86df39a6 RDX: 0000000000000056 RSI: ffffffff86df3e74 RDI: 00000000000002b0 RBP: ffffc90005b06e70 R08: ffff8880a2ac0380 R09: ffffc90005b06db0 R10: fffff52000b60dbe R11: ffffc90005b06df7 R12: 0000000000000000 R13: 0000000000000000 R14: ffff8880a1fcc424 R15: dffffc0000000000 FS: 0000000000c46880(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f0494ca0d0 CR3: 000000009e4ac000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: do_setlink+0x2a9f/0x3720 net/core/rtnetlink.c:2754 rtnl_group_changelink net/core/rtnetlink.c:3103 [inline] __rtnl_newlink+0xdd1/0x1790 net/core/rtnetlink.c:3257 rtnl_newlink+0x69/0xa0 net/core/rtnetlink.c:3377 rtnetlink_rcv_msg+0x45e/0xaf0 net/core/rtnetlink.c:5438 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5456 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x59e/0x7e0 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x91c/0xea0 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:672 ____sys_sendmsg+0x753/0x880 net/socket.c:2343 ___sys_sendmsg+0x100/0x170 net/socket.c:2397 __sys_sendmsg+0x105/0x1d0 net/socket.c:2430 __do_sys_sendmsg net/socket.c:2439 [inline] __se_sys_sendmsg net/socket.c:2437 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2437 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4402e9 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fffd62fbcf8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 00000000004402e9 RDX: 0000000000000000 RSI: 0000000020000080 RDI: 0000000000000003 RBP: 00000000006ca018 R08: 0000000000000008 R09: 00000000004002c8 R10: 0000000000000005 R11: 0000000000000246 R12: 0000000000401b70 R13: 0000000000401c00 R14: 0000000000000000 R15: 0000000000000000 Modules linked in: ---[ end trace cfa7664b8fdcdff3 ]--- RIP: 0010:inet6_set_link_af+0x66e/0xae0 net/ipv6/addrconf.c:5733 Code: 38 d0 7f 08 84 c0 0f 85 20 03 00 00 48 8d bb b0 02 00 00 45 0f b6 64 24 04 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 1a 03 00 00 44 89 a3 b0 02 00 RSP: 0018:ffffc90005b06d40 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff86df39a6 RDX: 0000000000000056 RSI: ffffffff86df3e74 RDI: 00000000000002b0 RBP: ffffc90005b06e70 R08: ffff8880a2ac0380 R09: ffffc90005b06db0 R10: fffff52000b60dbe R11: ffffc90005b06df7 R12: 0000000000000000 R13: 0000000000000000 R14: ffff8880a1fcc424 R15: dffffc0000000000 FS: 0000000000c46880(0000) GS:ffff8880ae900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000004 CR3: 000000009e4ac000 CR4: 00000000001406e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Fixes: 7dc2bccab0ee ("Validate required parameters in inet6_validate_link_af") Signed-off-by: Eric Dumazet <edumazet@google.com> Bisected-and-reported-by: syzbot <syzkaller@googlegroups.com> Cc: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-07 15:16:37 +00:00
if (!idev)
return -EAFNOSUPPORT;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
if (nla_parse_nested_deprecated(tb, IFLA_INET6_MAX, nla, NULL, NULL) < 0)
return -EINVAL;
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
if (tb[IFLA_INET6_TOKEN]) {
err = inet6_set_iftoken(idev, nla_data(tb[IFLA_INET6_TOKEN]),
extack);
if (err)
return err;
}
if (tb[IFLA_INET6_ADDR_GEN_MODE]) {
u8 mode = nla_get_u8(tb[IFLA_INET6_ADDR_GEN_MODE]);
idev->cnf.addr_gen_mode = mode;
}
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
return 0;
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
}
static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct net_device *dev = idev->dev;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
void *protoinfo;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
if (!nlh)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_INET6;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
(dev->addr_len &&
nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
(dev->ifindex != dev_get_iflink(dev) &&
nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))) ||
nla_put_u8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN))
goto nla_put_failure;
protoinfo = nla_nest_start_noflag(skb, IFLA_PROTINFO);
if (!protoinfo)
goto nla_put_failure;
if (inet6_fill_ifla6_attrs(skb, idev, 0) < 0)
goto nla_put_failure;
nla_nest_end(skb, protoinfo);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_valid_dump_ifinfo(const struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct ifinfomsg *ifm;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid header for link dump request");
return -EINVAL;
}
if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
NL_SET_ERR_MSG_MOD(extack, "Invalid data after header");
return -EINVAL;
}
ifm = nlmsg_data(nlh);
if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
ifm->ifi_change || ifm->ifi_index) {
NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for dump request");
return -EINVAL;
}
return 0;
}
static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx = 0, s_idx;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
/* only requests using strict checking can pass data to
* influence the dump
*/
if (cb->strict_check) {
int err = inet6_valid_dump_ifinfo(cb->nlh, cb->extack);
if (err < 0)
return err;
}
s_h = cb->args[0];
s_idx = cb->args[1];
rcu_read_lock();
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (inet6_fill_ifinfo(skb, idev,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
RTM_NEWLINK, NLM_F_MULTI) < 0)
goto out;
cont:
idx++;
}
}
out:
rcu_read_unlock();
cb->args[1] = idx;
cb->args[0] = h;
return skb->len;
}
void inet6_ifinfo_notify(int event, struct inet6_dev *idev)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_if_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_ifinfo(skb, idev, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFINFO, NULL, GFP_ATOMIC);
2009-02-25 07:18:28 +00:00
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFINFO, err);
}
static inline size_t inet6_prefix_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct prefixmsg))
+ nla_total_size(sizeof(struct in6_addr))
+ nla_total_size(sizeof(struct prefix_cacheinfo));
}
static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev,
struct prefix_info *pinfo, u32 portid, u32 seq,
int event, unsigned int flags)
{
struct prefixmsg *pmsg;
struct nlmsghdr *nlh;
struct prefix_cacheinfo ci;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*pmsg), flags);
if (!nlh)
return -EMSGSIZE;
pmsg = nlmsg_data(nlh);
pmsg->prefix_family = AF_INET6;
pmsg->prefix_pad1 = 0;
pmsg->prefix_pad2 = 0;
pmsg->prefix_ifindex = idev->dev->ifindex;
pmsg->prefix_len = pinfo->prefix_len;
pmsg->prefix_type = pinfo->type;
pmsg->prefix_pad3 = 0;
pmsg->prefix_flags = 0;
if (pinfo->onlink)
pmsg->prefix_flags |= IF_PREFIX_ONLINK;
if (pinfo->autoconf)
pmsg->prefix_flags |= IF_PREFIX_AUTOCONF;
if (nla_put(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix))
goto nla_put_failure;
ci.preferred_time = ntohl(pinfo->prefered);
ci.valid_time = ntohl(pinfo->valid);
if (nla_put(skb, PREFIX_CACHEINFO, sizeof(ci), &ci))
goto nla_put_failure;
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_prefix_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_prefix(skb, idev, pinfo, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_prefix_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
2009-02-25 07:18:28 +00:00
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_PREFIX, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_PREFIX, err);
}
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
struct net *net = dev_net(ifp->idev->dev);
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
if (event)
ASSERT_RTNL();
inet6_ifa_notify(event ? : RTM_NEWADDR, ifp);
switch (event) {
case RTM_NEWADDR:
/*
ipv6: Handle missing host route in __ipv6_ifa_notify Rajendra reported a kernel panic when a link was taken down: [ 6870.263084] BUG: unable to handle kernel NULL pointer dereference at 00000000000000a8 [ 6870.271856] IP: [<ffffffff8efc5764>] __ipv6_ifa_notify+0x154/0x290 <snip> [ 6870.570501] Call Trace: [ 6870.573238] [<ffffffff8efc58c6>] ? ipv6_ifa_notify+0x26/0x40 [ 6870.579665] [<ffffffff8efc98ec>] ? addrconf_dad_completed+0x4c/0x2c0 [ 6870.586869] [<ffffffff8efe70c6>] ? ipv6_dev_mc_inc+0x196/0x260 [ 6870.593491] [<ffffffff8efc9c6a>] ? addrconf_dad_work+0x10a/0x430 [ 6870.600305] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.606732] [<ffffffff8ea93a7a>] ? process_one_work+0x18a/0x430 [ 6870.613449] [<ffffffff8ea93d6d>] ? worker_thread+0x4d/0x490 [ 6870.619778] [<ffffffff8ea93d20>] ? process_one_work+0x430/0x430 [ 6870.626495] [<ffffffff8ea99dd9>] ? kthread+0xd9/0xf0 [ 6870.632145] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.638573] [<ffffffff8ea99d00>] ? kthread_park+0x60/0x60 [ 6870.644707] [<ffffffff8f01ae77>] ? ret_from_fork+0x57/0x70 [ 6870.650936] Code: 31 c0 31 d2 41 b9 20 00 08 02 b9 09 00 00 0 addrconf_dad_work is kicked to be scheduled when a device is brought up. There is a race between addrcond_dad_work getting scheduled and taking the rtnl lock and a process taking the link down (under rtnl). The latter removes the host route from the inet6_addr as part of addrconf_ifdown which is run for NETDEV_DOWN. The former attempts to use the host route in __ipv6_ifa_notify. If the down event removes the host route due to the race to the rtnl, then the BUG listed above occurs. Since the DAD sequence can not be aborted, add a check for the missing host route in __ipv6_ifa_notify. The only way this should happen is due to the previously mentioned race. The host route is created when the address is added to an interface; it is only removed on a down event where the address is kept. Add a warning if the host route is missing AND the device is up; this is a situation that should never happen. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Rajendra Dendukuri <rajendra.dendukuri@broadcom.com> Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-04 15:03:09 +00:00
* If the address was optimistic we inserted the route at the
* start of our DAD process, so we don't need to do it again.
* If the device was taken down in the middle of the DAD
* cycle there is a race where we could get here without a
* host route, so nothing to insert. That will be fixed when
* the device is brought up.
*/
ipv6: Handle missing host route in __ipv6_ifa_notify Rajendra reported a kernel panic when a link was taken down: [ 6870.263084] BUG: unable to handle kernel NULL pointer dereference at 00000000000000a8 [ 6870.271856] IP: [<ffffffff8efc5764>] __ipv6_ifa_notify+0x154/0x290 <snip> [ 6870.570501] Call Trace: [ 6870.573238] [<ffffffff8efc58c6>] ? ipv6_ifa_notify+0x26/0x40 [ 6870.579665] [<ffffffff8efc98ec>] ? addrconf_dad_completed+0x4c/0x2c0 [ 6870.586869] [<ffffffff8efe70c6>] ? ipv6_dev_mc_inc+0x196/0x260 [ 6870.593491] [<ffffffff8efc9c6a>] ? addrconf_dad_work+0x10a/0x430 [ 6870.600305] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.606732] [<ffffffff8ea93a7a>] ? process_one_work+0x18a/0x430 [ 6870.613449] [<ffffffff8ea93d6d>] ? worker_thread+0x4d/0x490 [ 6870.619778] [<ffffffff8ea93d20>] ? process_one_work+0x430/0x430 [ 6870.626495] [<ffffffff8ea99dd9>] ? kthread+0xd9/0xf0 [ 6870.632145] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.638573] [<ffffffff8ea99d00>] ? kthread_park+0x60/0x60 [ 6870.644707] [<ffffffff8f01ae77>] ? ret_from_fork+0x57/0x70 [ 6870.650936] Code: 31 c0 31 d2 41 b9 20 00 08 02 b9 09 00 00 0 addrconf_dad_work is kicked to be scheduled when a device is brought up. There is a race between addrcond_dad_work getting scheduled and taking the rtnl lock and a process taking the link down (under rtnl). The latter removes the host route from the inet6_addr as part of addrconf_ifdown which is run for NETDEV_DOWN. The former attempts to use the host route in __ipv6_ifa_notify. If the down event removes the host route due to the race to the rtnl, then the BUG listed above occurs. Since the DAD sequence can not be aborted, add a check for the missing host route in __ipv6_ifa_notify. The only way this should happen is due to the previously mentioned race. The host route is created when the address is added to an interface; it is only removed on a down event where the address is kept. Add a warning if the host route is missing AND the device is up; this is a situation that should never happen. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Rajendra Dendukuri <rajendra.dendukuri@broadcom.com> Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-04 15:03:09 +00:00
if (ifp->rt && !rcu_access_pointer(ifp->rt->fib6_node)) {
ip6_ins_rt(net, ifp->rt);
ipv6: Handle missing host route in __ipv6_ifa_notify Rajendra reported a kernel panic when a link was taken down: [ 6870.263084] BUG: unable to handle kernel NULL pointer dereference at 00000000000000a8 [ 6870.271856] IP: [<ffffffff8efc5764>] __ipv6_ifa_notify+0x154/0x290 <snip> [ 6870.570501] Call Trace: [ 6870.573238] [<ffffffff8efc58c6>] ? ipv6_ifa_notify+0x26/0x40 [ 6870.579665] [<ffffffff8efc98ec>] ? addrconf_dad_completed+0x4c/0x2c0 [ 6870.586869] [<ffffffff8efe70c6>] ? ipv6_dev_mc_inc+0x196/0x260 [ 6870.593491] [<ffffffff8efc9c6a>] ? addrconf_dad_work+0x10a/0x430 [ 6870.600305] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.606732] [<ffffffff8ea93a7a>] ? process_one_work+0x18a/0x430 [ 6870.613449] [<ffffffff8ea93d6d>] ? worker_thread+0x4d/0x490 [ 6870.619778] [<ffffffff8ea93d20>] ? process_one_work+0x430/0x430 [ 6870.626495] [<ffffffff8ea99dd9>] ? kthread+0xd9/0xf0 [ 6870.632145] [<ffffffff8f01ade4>] ? __switch_to_asm+0x34/0x70 [ 6870.638573] [<ffffffff8ea99d00>] ? kthread_park+0x60/0x60 [ 6870.644707] [<ffffffff8f01ae77>] ? ret_from_fork+0x57/0x70 [ 6870.650936] Code: 31 c0 31 d2 41 b9 20 00 08 02 b9 09 00 00 0 addrconf_dad_work is kicked to be scheduled when a device is brought up. There is a race between addrcond_dad_work getting scheduled and taking the rtnl lock and a process taking the link down (under rtnl). The latter removes the host route from the inet6_addr as part of addrconf_ifdown which is run for NETDEV_DOWN. The former attempts to use the host route in __ipv6_ifa_notify. If the down event removes the host route due to the race to the rtnl, then the BUG listed above occurs. Since the DAD sequence can not be aborted, add a check for the missing host route in __ipv6_ifa_notify. The only way this should happen is due to the previously mentioned race. The host route is created when the address is added to an interface; it is only removed on a down event where the address is kept. Add a warning if the host route is missing AND the device is up; this is a situation that should never happen. Fixes: f1705ec197e7 ("net: ipv6: Make address flushing on ifdown optional") Reported-by: Rajendra Dendukuri <rajendra.dendukuri@broadcom.com> Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-04 15:03:09 +00:00
} else if (!ifp->rt && (ifp->idev->dev->flags & IFF_UP)) {
pr_warn("BUG: Address %pI6c on device %s is missing its host route.\n",
&ifp->addr, ifp->idev->dev->name);
}
if (ifp->idev->cnf.forwarding)
addrconf_join_anycast(ifp);
if (!ipv6_addr_any(&ifp->peer_addr))
addrconf_prefix_route(&ifp->peer_addr, 128,
ifp->rt_priority, ifp->idev->dev,
0, 0, GFP_ATOMIC);
break;
case RTM_DELADDR:
if (ifp->idev->cnf.forwarding)
addrconf_leave_anycast(ifp);
addrconf_leave_solict(ifp->idev, &ifp->addr);
if (!ipv6_addr_any(&ifp->peer_addr)) {
struct fib6_info *rt;
rt = addrconf_get_prefix_route(&ifp->peer_addr, 128,
ifp->idev->dev, 0, 0,
false);
if (rt)
ip6_del_rt(net, rt, false);
}
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
if (ifp->rt) {
ip6_del_rt(net, ifp->rt, false);
ifp->rt = NULL;
net: ipv6: Delete host routes on an ifdown It was a simple idea -- save IPv6 configured addresses on a link down so that IPv6 behaves similar to IPv4. As always the devil is in the details and the IPv6 stack as too many behavioral differences from IPv4 making the simple idea more complicated than it needs to be. The current implementation for keeping IPv6 addresses can panic or spit out a warning in one of many paths: 1. IPv6 route gets an IPv4 route as its 'next' which causes a panic in rt6_fill_node while handling a route dump request. 2. rt->dst.obsolete is set to DST_OBSOLETE_DEAD hitting the WARN_ON in fib6_del 3. Panic in fib6_purge_rt because rt6i_ref count is not 1. The root cause of all these is references related to the host route for an address that is retained. So, this patch deletes the host route every time the ifdown loop runs. Since the host route is deleted and will be re-generated an up there is no longer a need for the l3mdev fix up. On the 'admin up' side move addrconf_permanent_addr into the NETDEV_UP event handling so that it runs only once versus on UP and CHANGE events. All of the current panics and warnings appear to be related to addresses on the loopback device, but given the catastrophic nature when a bug is triggered this patch takes the conservative approach and evicts all host routes rather than trying to determine when it can be re-used and when it can not. That can be a later optimizaton if desired. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-22 03:56:12 +00:00
}
rt_genid_bump_ipv6(net);
break;
}
atomic_inc(&net->ipv6.dev_addr_genid);
}
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
if (likely(ifp->idev->dead == 0))
__ipv6_ifa_notify(event, ifp);
}
#ifdef CONFIG_SYSCTL
static int addrconf_sysctl_forward(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/*
* ctl->data points to idev->cnf.forwarding, we should
* not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_fixup_forwarding(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static int addrconf_sysctl_mtu(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct inet6_dev *idev = ctl->extra1;
int min_mtu = IPV6_MIN_MTU;
struct ctl_table lctl;
lctl = *ctl;
lctl.extra1 = &min_mtu;
lctl.extra2 = idev ? &idev->dev->mtu : NULL;
return proc_dointvec_minmax(&lctl, write, buffer, lenp, ppos);
}
static void dev_disable_change(struct inet6_dev *idev)
{
struct netdev_notifier_info info;
if (!idev || !idev->dev)
return;
netdev_notifier_info_init(&info, idev->dev);
if (idev->cnf.disable_ipv6)
addrconf_notify(NULL, NETDEV_DOWN, &info);
else
addrconf_notify(NULL, NETDEV_UP, &info);
}
static void addrconf_disable_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.disable_ipv6) ^ (!newf);
idev->cnf.disable_ipv6 = newf;
if (changed)
dev_disable_change(idev);
}
}
}
static int addrconf_disable_ipv6(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->disable_ipv6) {
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->disable_ipv6) {
net->ipv6.devconf_dflt->disable_ipv6 = newf;
addrconf_disable_change(net, newf);
} else if ((!newf) ^ (!old))
dev_disable_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
return 0;
}
static int addrconf_sysctl_disable(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/*
* ctl->data points to idev->cnf.disable_ipv6, we should
* not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_disable_ipv6(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static int addrconf_sysctl_proxy_ndp(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int ret;
int old, new;
old = *valp;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
new = *valp;
if (write && old != new) {
struct net *net = ctl->extra2;
if (!rtnl_trylock())
return restart_syscall();
if (valp == &net->ipv6.devconf_dflt->proxy_ndp)
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
else if (valp == &net->ipv6.devconf_all->proxy_ndp)
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
else {
struct inet6_dev *idev = ctl->extra1;
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
idev->dev->ifindex,
&idev->cnf);
}
rtnl_unlock();
}
return ret;
}
static int addrconf_sysctl_addr_gen_mode(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = 0;
u32 new_val;
struct inet6_dev *idev = (struct inet6_dev *)ctl->extra1;
struct net *net = (struct net *)ctl->extra2;
struct ctl_table tmp = {
.data = &new_val,
.maxlen = sizeof(new_val),
.mode = ctl->mode,
};
if (!rtnl_trylock())
return restart_syscall();
new_val = *((u32 *)ctl->data);
ret = proc_douintvec(&tmp, write, buffer, lenp, ppos);
if (ret != 0)
goto out;
if (write) {
if (check_addr_gen_mode(new_val) < 0) {
ret = -EINVAL;
goto out;
}
if (idev) {
if (check_stable_privacy(idev, net, new_val) < 0) {
ret = -EINVAL;
goto out;
}
if (idev->cnf.addr_gen_mode != new_val) {
idev->cnf.addr_gen_mode = new_val;
ip/ip6_gre: Fix changing addr gen mode not generating IPv6 link local address For our point-to-point GRE tunnels, they have IN6_ADDR_GEN_MODE_NONE when they are created then we set IN6_ADDR_GEN_MODE_EUI64 when they come up to generate the IPv6 link local address for the interface. Recently we found that they were no longer generating IPv6 addresses. This issue would also have affected SIT tunnels. Commit e5dd729460ca changed the code path so that GRE tunnels generate an IPv6 address based on the tunnel source address. It also changed the code path so GRE tunnels don't call addrconf_addr_gen in addrconf_dev_config which is called by addrconf_sysctl_addr_gen_mode when the IN6_ADDR_GEN_MODE is changed. This patch aims to fix this issue by moving the code in addrconf_notify which calls the addr gen for GRE and SIT into a separate function and calling it in the places that expect the IPv6 address to be generated. The previous addrconf_dev_config is renamed to addrconf_eth_config since it only expected eth type interfaces and follows the addrconf_gre/sit_config format. A part of this changes means that the loopback address will be attempted to be configured when changing addr_gen_mode for lo. This should not be a problem because the address should exist anyway and if does already exist then no error is produced. Fixes: e5dd729460ca ("ip/ip6_gre: use the same logic as SIT interfaces when computing v6LL address") Signed-off-by: Thomas Winter <Thomas.Winter@alliedtelesis.co.nz> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-31 03:46:45 +00:00
addrconf_init_auto_addrs(idev->dev);
}
} else if (&net->ipv6.devconf_all->addr_gen_mode == ctl->data) {
struct net_device *dev;
net->ipv6.devconf_dflt->addr_gen_mode = new_val;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev &&
idev->cnf.addr_gen_mode != new_val) {
idev->cnf.addr_gen_mode = new_val;
ip/ip6_gre: Fix changing addr gen mode not generating IPv6 link local address For our point-to-point GRE tunnels, they have IN6_ADDR_GEN_MODE_NONE when they are created then we set IN6_ADDR_GEN_MODE_EUI64 when they come up to generate the IPv6 link local address for the interface. Recently we found that they were no longer generating IPv6 addresses. This issue would also have affected SIT tunnels. Commit e5dd729460ca changed the code path so that GRE tunnels generate an IPv6 address based on the tunnel source address. It also changed the code path so GRE tunnels don't call addrconf_addr_gen in addrconf_dev_config which is called by addrconf_sysctl_addr_gen_mode when the IN6_ADDR_GEN_MODE is changed. This patch aims to fix this issue by moving the code in addrconf_notify which calls the addr gen for GRE and SIT into a separate function and calling it in the places that expect the IPv6 address to be generated. The previous addrconf_dev_config is renamed to addrconf_eth_config since it only expected eth type interfaces and follows the addrconf_gre/sit_config format. A part of this changes means that the loopback address will be attempted to be configured when changing addr_gen_mode for lo. This should not be a problem because the address should exist anyway and if does already exist then no error is produced. Fixes: e5dd729460ca ("ip/ip6_gre: use the same logic as SIT interfaces when computing v6LL address") Signed-off-by: Thomas Winter <Thomas.Winter@alliedtelesis.co.nz> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-31 03:46:45 +00:00
addrconf_init_auto_addrs(idev->dev);
}
}
}
*((u32 *)ctl->data) = new_val;
}
out:
rtnl_unlock();
return ret;
}
static int addrconf_sysctl_stable_secret(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp,
loff_t *ppos)
{
int err;
struct in6_addr addr;
char str[IPV6_MAX_STRLEN];
struct ctl_table lctl = *ctl;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
struct net *net = ctl->extra2;
struct ipv6_stable_secret *secret = ctl->data;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
if (&net->ipv6.devconf_all->stable_secret == ctl->data)
return -EIO;
lctl.maxlen = IPV6_MAX_STRLEN;
lctl.data = str;
if (!rtnl_trylock())
return restart_syscall();
if (!write && !secret->initialized) {
err = -EIO;
goto out;
}
err = snprintf(str, sizeof(str), "%pI6", &secret->secret);
if (err >= sizeof(str)) {
err = -EIO;
goto out;
}
err = proc_dostring(&lctl, write, buffer, lenp, ppos);
if (err || !write)
goto out;
if (in6_pton(str, -1, addr.in6_u.u6_addr8, -1, NULL) != 1) {
err = -EIO;
goto out;
}
secret->initialized = true;
secret->secret = addr;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
if (&net->ipv6.devconf_dflt->stable_secret == ctl->data) {
struct net_device *dev;
for_each_netdev(net, dev) {
struct inet6_dev *idev = __in6_dev_get(dev);
if (idev) {
idev->cnf.addr_gen_mode =
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
}
}
} else {
struct inet6_dev *idev = ctl->extra1;
idev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
ipv6: generation of stable privacy addresses for link-local and autoconf This patch implements the stable privacy address generation for link-local and autoconf addresses as specified in RFC7217. RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) is the RID (random identifier). As the hash function F we chose one round of sha1. Prefix will be either the link-local prefix or the router advertised one. As Net_Iface we use the MAC address of the device. DAD_Counter and secret_key are implemented as specified. We don't use Network_ID, as it couples the code too closely to other subsystems. It is specified as optional in the RFC. As Net_Iface we only use the MAC address: we simply have no stable identifier in the kernel we could possibly use: because this code might run very early, we cannot depend on names, as they might be changed by user space early on during the boot process. A new address generation mode is introduced, IN6_ADDR_GEN_MODE_STABLE_PRIVACY. With iproute2 one can switch back to none or eui64 address configuration mode although the stable_secret is already set. We refuse writes to ipv6/conf/all/stable_secret but only allow ipv6/conf/default/stable_secret and the interface specific file to be written to. The default stable_secret is used as the parameter for the namespace, the interface specific can overwrite the secret, e.g. when switching a network configuration from one system to another while inheriting the secret. Cc: Erik Kline <ek@google.com> Cc: Fernando Gont <fgont@si6networks.com> Cc: Lorenzo Colitti <lorenzo@google.com> Cc: YOSHIFUJI Hideaki/吉藤英明 <hideaki.yoshifuji@miraclelinux.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 22:36:01 +00:00
}
out:
rtnl_unlock();
return err;
}
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
static
int addrconf_sysctl_ignore_routes_with_linkdown(struct ctl_table *ctl,
int write, void *buffer,
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
size_t *lenp,
loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/* ctl->data points to idev->cnf.ignore_routes_when_linkdown
* we should not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_fixup_linkdown(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static
void addrconf_set_nopolicy(struct rt6_info *rt, int action)
{
if (rt) {
if (action)
rt->dst.flags |= DST_NOPOLICY;
else
rt->dst.flags &= ~DST_NOPOLICY;
}
}
static
void addrconf_disable_policy_idev(struct inet6_dev *idev, int val)
{
struct inet6_ifaddr *ifa;
read_lock_bh(&idev->lock);
list_for_each_entry(ifa, &idev->addr_list, if_list) {
spin_lock(&ifa->lock);
if (ifa->rt) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* host routes only use builtin fib6_nh */
struct fib6_nh *nh = ifa->rt->fib6_nh;
int cpu;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
ifa->rt->dst_nopolicy = val ? true : false;
if (nh->rt6i_pcpu) {
for_each_possible_cpu(cpu) {
struct rt6_info **rtp;
rtp = per_cpu_ptr(nh->rt6i_pcpu, cpu);
addrconf_set_nopolicy(*rtp, val);
}
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
}
spin_unlock(&ifa->lock);
}
read_unlock_bh(&idev->lock);
}
static
int addrconf_disable_policy(struct ctl_table *ctl, int *valp, int val)
{
struct inet6_dev *idev;
struct net *net;
if (!rtnl_trylock())
return restart_syscall();
*valp = val;
net = (struct net *)ctl->extra2;
if (valp == &net->ipv6.devconf_dflt->disable_policy) {
rtnl_unlock();
return 0;
}
if (valp == &net->ipv6.devconf_all->disable_policy) {
struct net_device *dev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev)
addrconf_disable_policy_idev(idev, val);
}
} else {
idev = (struct inet6_dev *)ctl->extra1;
addrconf_disable_policy_idev(idev, val);
}
rtnl_unlock();
return 0;
}
static int addrconf_sysctl_disable_policy(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write && (*valp != val))
ret = addrconf_disable_policy(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static int minus_one = -1;
static const int two_five_five = 255;
static u32 ioam6_if_id_max = U16_MAX;
static const struct ctl_table addrconf_sysctl[] = {
{
.procname = "forwarding",
.data = &ipv6_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_forward,
},
{
.procname = "hop_limit",
.data = &ipv6_devconf.hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
proc/sysctl: add shared variables for range check In the sysctl code the proc_dointvec_minmax() function is often used to validate the user supplied value between an allowed range. This function uses the extra1 and extra2 members from struct ctl_table as minimum and maximum allowed value. On sysctl handler declaration, in every source file there are some readonly variables containing just an integer which address is assigned to the extra1 and extra2 members, so the sysctl range is enforced. The special values 0, 1 and INT_MAX are very often used as range boundary, leading duplication of variables like zero=0, one=1, int_max=INT_MAX in different source files: $ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l 248 Add a const int array containing the most commonly used values, some macros to refer more easily to the correct array member, and use them instead of creating a local one for every object file. This is the bloat-o-meter output comparing the old and new binary compiled with the default Fedora config: # scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164) Data old new delta sysctl_vals - 12 +12 __kstrtab_sysctl_vals - 12 +12 max 14 10 -4 int_max 16 - -16 one 68 - -68 zero 128 28 -100 Total: Before=20583249, After=20583085, chg -0.00% [mcroce@redhat.com: tipc: remove two unused variables] Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com [akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c] [arnd@arndb.de: proc/sysctl: make firmware loader table conditional] Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de [akpm@linux-foundation.org: fix fs/eventpoll.c] Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com Signed-off-by: Matteo Croce <mcroce@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 22:58:50 +00:00
.extra1 = (void *)SYSCTL_ONE,
.extra2 = (void *)&two_five_five,
},
{
.procname = "mtu",
.data = &ipv6_devconf.mtu6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_mtu,
},
{
.procname = "accept_ra",
.data = &ipv6_devconf.accept_ra,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_redirects",
.data = &ipv6_devconf.accept_redirects,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "autoconf",
.data = &ipv6_devconf.autoconf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "dad_transmits",
.data = &ipv6_devconf.dad_transmits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "router_solicitations",
.data = &ipv6_devconf.rtr_solicits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &minus_one,
},
{
.procname = "router_solicitation_interval",
.data = &ipv6_devconf.rtr_solicit_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "router_solicitation_max_interval",
.data = &ipv6_devconf.rtr_solicit_max_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "router_solicitation_delay",
.data = &ipv6_devconf.rtr_solicit_delay,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "force_mld_version",
.data = &ipv6_devconf.force_mld_version,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "mldv1_unsolicited_report_interval",
.data =
&ipv6_devconf.mldv1_unsolicited_report_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{
.procname = "mldv2_unsolicited_report_interval",
.data =
&ipv6_devconf.mldv2_unsolicited_report_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{
.procname = "use_tempaddr",
.data = &ipv6_devconf.use_tempaddr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "temp_valid_lft",
.data = &ipv6_devconf.temp_valid_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "temp_prefered_lft",
.data = &ipv6_devconf.temp_prefered_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "regen_max_retry",
.data = &ipv6_devconf.regen_max_retry,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "max_desync_factor",
.data = &ipv6_devconf.max_desync_factor,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "max_addresses",
.data = &ipv6_devconf.max_addresses,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_defrtr",
.data = &ipv6_devconf.accept_ra_defrtr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
{
.procname = "ra_defrtr_metric",
.data = &ipv6_devconf.ra_defrtr_metric,
.maxlen = sizeof(u32),
.mode = 0644,
.proc_handler = proc_douintvec_minmax,
.extra1 = (void *)SYSCTL_ONE,
},
{
.procname = "accept_ra_min_hop_limit",
.data = &ipv6_devconf.accept_ra_min_hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_pinfo",
.data = &ipv6_devconf.accept_ra_pinfo,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_ROUTER_PREF
{
.procname = "accept_ra_rtr_pref",
.data = &ipv6_devconf.accept_ra_rtr_pref,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "router_probe_interval",
.data = &ipv6_devconf.rtr_probe_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
#ifdef CONFIG_IPV6_ROUTE_INFO
{
.procname = "accept_ra_rt_info_min_plen",
.data = &ipv6_devconf.accept_ra_rt_info_min_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_rt_info_max_plen",
.data = &ipv6_devconf.accept_ra_rt_info_max_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#endif
{
.procname = "proxy_ndp",
.data = &ipv6_devconf.proxy_ndp,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_proxy_ndp,
},
{
.procname = "accept_source_route",
.data = &ipv6_devconf.accept_source_route,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
{
.procname = "optimistic_dad",
.data = &ipv6_devconf.optimistic_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "use_optimistic",
.data = &ipv6_devconf.use_optimistic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#ifdef CONFIG_IPV6_MROUTE
{
.procname = "mc_forwarding",
.data = &ipv6_devconf.mc_forwarding,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
#endif
{
.procname = "disable_ipv6",
.data = &ipv6_devconf.disable_ipv6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_disable,
},
{
.procname = "accept_dad",
.data = &ipv6_devconf.accept_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "force_tllao",
.data = &ipv6_devconf.force_tllao,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "ndisc_notify",
.data = &ipv6_devconf.ndisc_notify,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "suppress_frag_ndisc",
.data = &ipv6_devconf.suppress_frag_ndisc,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "accept_ra_from_local",
.data = &ipv6_devconf.accept_ra_from_local,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_mtu",
.data = &ipv6_devconf.accept_ra_mtu,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "stable_secret",
.data = &ipv6_devconf.stable_secret,
.maxlen = IPV6_MAX_STRLEN,
.mode = 0600,
.proc_handler = addrconf_sysctl_stable_secret,
},
{
.procname = "use_oif_addrs_only",
.data = &ipv6_devconf.use_oif_addrs_only,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "ignore_routes_with_linkdown",
.data = &ipv6_devconf.ignore_routes_with_linkdown,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_ignore_routes_with_linkdown,
},
{
.procname = "drop_unicast_in_l2_multicast",
.data = &ipv6_devconf.drop_unicast_in_l2_multicast,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "drop_unsolicited_na",
.data = &ipv6_devconf.drop_unsolicited_na,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "keep_addr_on_down",
.data = &ipv6_devconf.keep_addr_on_down,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "seg6_enabled",
.data = &ipv6_devconf.seg6_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_SEG6_HMAC
{
.procname = "seg6_require_hmac",
.data = &ipv6_devconf.seg6_require_hmac,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
{
.procname = "enhanced_dad",
.data = &ipv6_devconf.enhanced_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "addr_gen_mode",
.data = &ipv6_devconf.addr_gen_mode,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_addr_gen_mode,
},
{
.procname = "disable_policy",
.data = &ipv6_devconf.disable_policy,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_disable_policy,
},
net: ipv6: sysctl to specify IPv6 ND traffic class Add a per-device sysctl to specify the default traffic class to use for kernel originated IPv6 Neighbour Discovery packets. Currently this includes: - Router Solicitation (ICMPv6 type 133) ndisc_send_rs() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Solicitation (ICMPv6 type 135) ndisc_send_ns() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Advertisement (ICMPv6 type 136) ndisc_send_na() -> ndisc_send_skb() -> ip6_nd_hdr() - Redirect (ICMPv6 type 137) ndisc_send_redirect() -> ndisc_send_skb() -> ip6_nd_hdr() and if the kernel ever gets around to generating RA's, it would presumably also include: - Router Advertisement (ICMPv6 type 134) (radvd daemon could pick up on the kernel setting and use it) Interface drivers may examine the Traffic Class value and translate the DiffServ Code Point into a link-layer appropriate traffic prioritization scheme. An example of mapping IETF DSCP values to IEEE 802.11 User Priority values can be found here: https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11 The expected primary use case is to properly prioritize ND over wifi. Testing: jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 0 jzem22:~# echo -1 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 256 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# echo 255 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 255 jzem22:~# echo 34 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 34 jzem22:~# echo $[0xDC] > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# tcpdump -v -i eth0 icmp6 and src host jzem22.pgc and dst host fe80::1 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes IP6 (class 0xdc, hlim 255, next-header ICMPv6 (58) payload length: 24) jzem22.pgc > fe80::1: [icmp6 sum ok] ICMP6, neighbor advertisement, length 24, tgt is jzem22.pgc, Flags [solicited] (based on original change written by Erik Kline, with minor changes) v2: fix 'suspicious rcu_dereference_check() usage' by explicitly grabbing the rcu_read_lock. Cc: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: Erik Kline <ek@google.com> Signed-off-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 05:52:09 +00:00
{
.procname = "ndisc_tclass",
.data = &ipv6_devconf.ndisc_tclass,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
proc/sysctl: add shared variables for range check In the sysctl code the proc_dointvec_minmax() function is often used to validate the user supplied value between an allowed range. This function uses the extra1 and extra2 members from struct ctl_table as minimum and maximum allowed value. On sysctl handler declaration, in every source file there are some readonly variables containing just an integer which address is assigned to the extra1 and extra2 members, so the sysctl range is enforced. The special values 0, 1 and INT_MAX are very often used as range boundary, leading duplication of variables like zero=0, one=1, int_max=INT_MAX in different source files: $ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l 248 Add a const int array containing the most commonly used values, some macros to refer more easily to the correct array member, and use them instead of creating a local one for every object file. This is the bloat-o-meter output comparing the old and new binary compiled with the default Fedora config: # scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164) Data old new delta sysctl_vals - 12 +12 __kstrtab_sysctl_vals - 12 +12 max 14 10 -4 int_max 16 - -16 one 68 - -68 zero 128 28 -100 Total: Before=20583249, After=20583085, chg -0.00% [mcroce@redhat.com: tipc: remove two unused variables] Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com [akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c] [arnd@arndb.de: proc/sysctl: make firmware loader table conditional] Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de [akpm@linux-foundation.org: fix fs/eventpoll.c] Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com Signed-off-by: Matteo Croce <mcroce@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 22:58:50 +00:00
.extra1 = (void *)SYSCTL_ZERO,
net: ipv6: sysctl to specify IPv6 ND traffic class Add a per-device sysctl to specify the default traffic class to use for kernel originated IPv6 Neighbour Discovery packets. Currently this includes: - Router Solicitation (ICMPv6 type 133) ndisc_send_rs() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Solicitation (ICMPv6 type 135) ndisc_send_ns() -> ndisc_send_skb() -> ip6_nd_hdr() - Neighbour Advertisement (ICMPv6 type 136) ndisc_send_na() -> ndisc_send_skb() -> ip6_nd_hdr() - Redirect (ICMPv6 type 137) ndisc_send_redirect() -> ndisc_send_skb() -> ip6_nd_hdr() and if the kernel ever gets around to generating RA's, it would presumably also include: - Router Advertisement (ICMPv6 type 134) (radvd daemon could pick up on the kernel setting and use it) Interface drivers may examine the Traffic Class value and translate the DiffServ Code Point into a link-layer appropriate traffic prioritization scheme. An example of mapping IETF DSCP values to IEEE 802.11 User Priority values can be found here: https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11 The expected primary use case is to properly prioritize ND over wifi. Testing: jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 0 jzem22:~# echo -1 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 256 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass -bash: echo: write error: Invalid argument jzem22:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# echo 255 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 255 jzem22:~# echo 34 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass 34 jzem22:~# echo $[0xDC] > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass jzem22:~# tcpdump -v -i eth0 icmp6 and src host jzem22.pgc and dst host fe80::1 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes IP6 (class 0xdc, hlim 255, next-header ICMPv6 (58) payload length: 24) jzem22.pgc > fe80::1: [icmp6 sum ok] ICMP6, neighbor advertisement, length 24, tgt is jzem22.pgc, Flags [solicited] (based on original change written by Erik Kline, with minor changes) v2: fix 'suspicious rcu_dereference_check() usage' by explicitly grabbing the rcu_read_lock. Cc: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: Erik Kline <ek@google.com> Signed-off-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 05:52:09 +00:00
.extra2 = (void *)&two_five_five,
},
{
.procname = "rpl_seg_enabled",
.data = &ipv6_devconf.rpl_seg_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
ipv6: ioam: Data plane support for Pre-allocated Trace Implement support for processing the IOAM Pre-allocated Trace with IPv6, see [1] and [2]. Introduce a new IPv6 Hop-by-Hop TLV option, see IANA [3]. A new per-interface sysctl is introduced. The value is a boolean to accept (=1) or ignore (=0, by default) IPv6 IOAM options on ingress for an interface: - net.ipv6.conf.XXX.ioam6_enabled Two other sysctls are introduced to define IOAM IDs, represented by an integer. They are respectively per-namespace and per-interface: - net.ipv6.ioam6_id - net.ipv6.conf.XXX.ioam6_id The value of the first one represents the IOAM ID of the node itself (u32; max and default value = U32_MAX>>8, due to hop limit concatenation) while the other represents the IOAM ID of an interface (u16; max and default value = U16_MAX). Each "ioam6_id" sysctl has a "_wide" equivalent: - net.ipv6.ioam6_id_wide - net.ipv6.conf.XXX.ioam6_id_wide The value of the first one represents the wide IOAM ID of the node itself (u64; max and default value = U64_MAX>>8, due to hop limit concatenation) while the other represents the wide IOAM ID of an interface (u32; max and default value = U32_MAX). The use of short and wide equivalents is not exclusive, a deployment could choose to leverage both. For example, net.ipv6.conf.XXX.ioam6_id (short format) could be an identifier for a physical interface, whereas net.ipv6.conf.XXX.ioam6_id_wide (wide format) could be an identifier for a logical sub-interface. Documentation about new sysctls is provided at the end of this patchset. Two relativistic hash tables are used: one for IOAM namespaces, the other for IOAM schemas. A namespace can only have a single active schema and a schema can only be attached to a single namespace (1:1 relationship). [1] https://tools.ietf.org/html/draft-ietf-ippm-ioam-ipv6-options [2] https://tools.ietf.org/html/draft-ietf-ippm-ioam-data [3] https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2 Signed-off-by: Justin Iurman <justin.iurman@uliege.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 19:42:57 +00:00
{
.procname = "ioam6_enabled",
.data = &ipv6_devconf.ioam6_enabled,
.maxlen = sizeof(u8),
.mode = 0644,
.proc_handler = proc_dou8vec_minmax,
.extra1 = (void *)SYSCTL_ZERO,
.extra2 = (void *)SYSCTL_ONE,
},
{
.procname = "ioam6_id",
.data = &ipv6_devconf.ioam6_id,
.maxlen = sizeof(u32),
.mode = 0644,
.proc_handler = proc_douintvec_minmax,
.extra1 = (void *)SYSCTL_ZERO,
.extra2 = (void *)&ioam6_if_id_max,
},
{
.procname = "ioam6_id_wide",
.data = &ipv6_devconf.ioam6_id_wide,
.maxlen = sizeof(u32),
.mode = 0644,
.proc_handler = proc_douintvec,
},
{
.procname = "ndisc_evict_nocarrier",
.data = &ipv6_devconf.ndisc_evict_nocarrier,
.maxlen = sizeof(u8),
.mode = 0644,
.proc_handler = proc_dou8vec_minmax,
.extra1 = (void *)SYSCTL_ZERO,
.extra2 = (void *)SYSCTL_ONE,
},
{
.procname = "accept_untracked_na",
.data = &ipv6_devconf.accept_untracked_na,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_TWO,
},
{
/* sentinel */
}
};
static int __addrconf_sysctl_register(struct net *net, char *dev_name,
struct inet6_dev *idev, struct ipv6_devconf *p)
{
int i, ifindex;
struct ctl_table *table;
char path[sizeof("net/ipv6/conf/") + IFNAMSIZ];
memcg: accounting for objects allocated for new netdevice Creating a new netdevice allocates at least ~50Kb of memory for various kernel objects, but only ~5Kb of them are accounted to memcg. As a result, creating an unlimited number of netdevice inside a memcg-limited container does not fall within memcg restrictions, consumes a significant part of the host's memory, can cause global OOM and lead to random kills of host processes. The main consumers of non-accounted memory are: ~10Kb 80+ kernfs nodes ~6Kb ipv6_add_dev() allocations 6Kb __register_sysctl_table() allocations 4Kb neigh_sysctl_register() allocations 4Kb __devinet_sysctl_register() allocations 4Kb __addrconf_sysctl_register() allocations Accounting of these objects allows to increase the share of memcg-related memory up to 60-70% (~38Kb accounted vs ~54Kb total for dummy netdevice on typical VM with default Fedora 35 kernel) and this should be enough to somehow protect the host from misuse inside container. Other related objects are quite small and may not be taken into account to minimize the expected performance degradation. It should be separately mentonied ~300 bytes of percpu allocation of struct ipstats_mib in snmp6_alloc_dev(), on huge multi-cpu nodes it can become the main consumer of memory. This patch does not enables kernfs accounting as it affects other parts of the kernel and should be discussed separately. However, even without kernfs, this patch significantly improves the current situation and allows to take into account more than half of all netdevice allocations. Signed-off-by: Vasily Averin <vvs@openvz.org> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Link: https://lore.kernel.org/r/354a0a5f-9ec3-a25c-3215-304eab2157bc@openvz.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-02 12:15:51 +00:00
table = kmemdup(addrconf_sysctl, sizeof(addrconf_sysctl), GFP_KERNEL_ACCOUNT);
if (!table)
goto out;
for (i = 0; table[i].data; i++) {
table[i].data += (char *)p - (char *)&ipv6_devconf;
/* If one of these is already set, then it is not safe to
* overwrite either of them: this makes proc_dointvec_minmax
* usable.
*/
if (!table[i].extra1 && !table[i].extra2) {
table[i].extra1 = idev; /* embedded; no ref */
table[i].extra2 = net;
}
}
snprintf(path, sizeof(path), "net/ipv6/conf/%s", dev_name);
p->sysctl_header = register_net_sysctl(net, path, table);
if (!p->sysctl_header)
goto free;
if (!strcmp(dev_name, "all"))
ifindex = NETCONFA_IFINDEX_ALL;
else if (!strcmp(dev_name, "default"))
ifindex = NETCONFA_IFINDEX_DEFAULT;
else
ifindex = idev->dev->ifindex;
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_ALL,
ifindex, p);
return 0;
free:
kfree(table);
out:
return -ENOBUFS;
}
static void __addrconf_sysctl_unregister(struct net *net,
struct ipv6_devconf *p, int ifindex)
{
struct ctl_table *table;
if (!p->sysctl_header)
return;
table = p->sysctl_header->ctl_table_arg;
unregister_net_sysctl_table(p->sysctl_header);
p->sysctl_header = NULL;
kfree(table);
inet6_netconf_notify_devconf(net, RTM_DELNETCONF, 0, ifindex, NULL);
}
static int addrconf_sysctl_register(struct inet6_dev *idev)
{
int err;
if (!sysctl_dev_name_is_allowed(idev->dev->name))
return -EINVAL;
err = neigh_sysctl_register(idev->dev, idev->nd_parms,
&ndisc_ifinfo_sysctl_change);
if (err)
return err;
err = __addrconf_sysctl_register(dev_net(idev->dev), idev->dev->name,
idev, &idev->cnf);
if (err)
neigh_sysctl_unregister(idev->nd_parms);
return err;
}
static void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
__addrconf_sysctl_unregister(dev_net(idev->dev), &idev->cnf,
idev->dev->ifindex);
neigh_sysctl_unregister(idev->nd_parms);
}
#endif
static int __net_init addrconf_init_net(struct net *net)
{
int err = -ENOMEM;
struct ipv6_devconf *all, *dflt;
spin_lock_init(&net->ipv6.addrconf_hash_lock);
INIT_DEFERRABLE_WORK(&net->ipv6.addr_chk_work, addrconf_verify_work);
net->ipv6.inet6_addr_lst = kcalloc(IN6_ADDR_HSIZE,
sizeof(struct hlist_head),
GFP_KERNEL);
if (!net->ipv6.inet6_addr_lst)
goto err_alloc_addr;
all = kmemdup(&ipv6_devconf, sizeof(ipv6_devconf), GFP_KERNEL);
if (!all)
goto err_alloc_all;
dflt = kmemdup(&ipv6_devconf_dflt, sizeof(ipv6_devconf_dflt), GFP_KERNEL);
if (!dflt)
goto err_alloc_dflt;
if (!net_eq(net, &init_net)) {
switch (net_inherit_devconf()) {
case 1: /* copy from init_net */
memcpy(all, init_net.ipv6.devconf_all,
sizeof(ipv6_devconf));
memcpy(dflt, init_net.ipv6.devconf_dflt,
sizeof(ipv6_devconf_dflt));
break;
case 3: /* copy from the current netns */
memcpy(all, current->nsproxy->net_ns->ipv6.devconf_all,
sizeof(ipv6_devconf));
memcpy(dflt,
current->nsproxy->net_ns->ipv6.devconf_dflt,
sizeof(ipv6_devconf_dflt));
break;
case 0:
case 2:
/* use compiled values */
break;
}
net: introduce a knob to control whether to inherit devconf config There have been many people complaining about the inconsistent behaviors of IPv4 and IPv6 devconf when creating new network namespaces. Currently, for IPv4, we inherit all current settings from init_net, but for IPv6 we reset all setting to default. This patch introduces a new /proc file /proc/sys/net/core/devconf_inherit_init_net to control the behavior of whether to inhert sysctl current settings from init_net. This file itself is only available in init_net. As demonstrated below: Initial setup in init_net: # cat /proc/sys/net/ipv4/conf/all/rp_filter 2 # cat /proc/sys/net/ipv6/conf/all/accept_dad 1 Default value 0 (current behavior): # ip netns del test # ip netns add test # ip netns exec test cat /proc/sys/net/ipv4/conf/all/rp_filter 2 # ip netns exec test cat /proc/sys/net/ipv6/conf/all/accept_dad 0 Set to 1 (inherit from init_net): # echo 1 > /proc/sys/net/core/devconf_inherit_init_net # ip netns del test # ip netns add test # ip netns exec test cat /proc/sys/net/ipv4/conf/all/rp_filter 2 # ip netns exec test cat /proc/sys/net/ipv6/conf/all/accept_dad 1 Set to 2 (reset to default): # echo 2 > /proc/sys/net/core/devconf_inherit_init_net # ip netns del test # ip netns add test # ip netns exec test cat /proc/sys/net/ipv4/conf/all/rp_filter 0 # ip netns exec test cat /proc/sys/net/ipv6/conf/all/accept_dad 0 Set to a value out of range (invalid): # echo 3 > /proc/sys/net/core/devconf_inherit_init_net -bash: echo: write error: Invalid argument # echo -1 > /proc/sys/net/core/devconf_inherit_init_net -bash: echo: write error: Invalid argument Reported-by: Zhu Yanjun <Yanjun.Zhu@windriver.com> Reported-by: Tonghao Zhang <xiangxia.m.yue@gmail.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Acked-by: Tonghao Zhang <xiangxia.m.yue@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-18 07:27:11 +00:00
}
/* these will be inherited by all namespaces */
dflt->autoconf = ipv6_defaults.autoconf;
dflt->disable_ipv6 = ipv6_defaults.disable_ipv6;
dflt->stable_secret.initialized = false;
all->stable_secret.initialized = false;
net->ipv6.devconf_all = all;
net->ipv6.devconf_dflt = dflt;
#ifdef CONFIG_SYSCTL
err = __addrconf_sysctl_register(net, "all", NULL, all);
if (err < 0)
goto err_reg_all;
err = __addrconf_sysctl_register(net, "default", NULL, dflt);
if (err < 0)
goto err_reg_dflt;
#endif
return 0;
#ifdef CONFIG_SYSCTL
err_reg_dflt:
__addrconf_sysctl_unregister(net, all, NETCONFA_IFINDEX_ALL);
err_reg_all:
kfree(dflt);
ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed If the initialization fails in calling addrconf_init_net(), devconf_all is the pointer that has been released. Then ip6mr_sk_done() is called to release the net, accessing devconf->mc_forwarding directly causes invalid pointer access. The process is as follows: setup_net() ops_init() addrconf_init_net() all = kmemdup(...) ---> alloc "all" ... net->ipv6.devconf_all = all; __addrconf_sysctl_register() ---> failed ... kfree(all); ---> ipv6.devconf_all invalid ... ops_exit_list() ... ip6mr_sk_done() devconf = net->ipv6.devconf_all; //devconf is invalid pointer if (!devconf || !atomic_read(&devconf->mc_forwarding)) The following is the Call Trace information: BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0 Read of size 4 at addr ffff888075508e88 by task ip/14554 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 kasan_check_range+0x35/0x1b0 ip6mr_sk_done+0x112/0x3a0 rawv6_close+0x48/0x70 inet_release+0x109/0x230 inet6_release+0x4c/0x70 sock_release+0x87/0x1b0 igmp6_net_exit+0x6b/0x170 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f7963322547 </TASK> Allocated by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc_node_track_caller+0x4a/0xb0 kmemdup+0x28/0x60 addrconf_init_net+0x1be/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 addrconf_init_net+0x623/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: 7d9b1b578d67 ("ip6mr: fix use-after-free in ip6mr_sk_done()") Signed-off-by: Zhengchao Shao <shaozhengchao@huawei.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20221017080331.16878-1-shaozhengchao@huawei.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-10-17 08:03:31 +00:00
net->ipv6.devconf_dflt = NULL;
#endif
err_alloc_dflt:
kfree(all);
ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed If the initialization fails in calling addrconf_init_net(), devconf_all is the pointer that has been released. Then ip6mr_sk_done() is called to release the net, accessing devconf->mc_forwarding directly causes invalid pointer access. The process is as follows: setup_net() ops_init() addrconf_init_net() all = kmemdup(...) ---> alloc "all" ... net->ipv6.devconf_all = all; __addrconf_sysctl_register() ---> failed ... kfree(all); ---> ipv6.devconf_all invalid ... ops_exit_list() ... ip6mr_sk_done() devconf = net->ipv6.devconf_all; //devconf is invalid pointer if (!devconf || !atomic_read(&devconf->mc_forwarding)) The following is the Call Trace information: BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0 Read of size 4 at addr ffff888075508e88 by task ip/14554 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 kasan_check_range+0x35/0x1b0 ip6mr_sk_done+0x112/0x3a0 rawv6_close+0x48/0x70 inet_release+0x109/0x230 inet6_release+0x4c/0x70 sock_release+0x87/0x1b0 igmp6_net_exit+0x6b/0x170 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f7963322547 </TASK> Allocated by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc_node_track_caller+0x4a/0xb0 kmemdup+0x28/0x60 addrconf_init_net+0x1be/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 addrconf_init_net+0x623/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: 7d9b1b578d67 ("ip6mr: fix use-after-free in ip6mr_sk_done()") Signed-off-by: Zhengchao Shao <shaozhengchao@huawei.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20221017080331.16878-1-shaozhengchao@huawei.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-10-17 08:03:31 +00:00
net->ipv6.devconf_all = NULL;
err_alloc_all:
kfree(net->ipv6.inet6_addr_lst);
err_alloc_addr:
return err;
}
static void __net_exit addrconf_exit_net(struct net *net)
{
int i;
#ifdef CONFIG_SYSCTL
__addrconf_sysctl_unregister(net, net->ipv6.devconf_dflt,
NETCONFA_IFINDEX_DEFAULT);
__addrconf_sysctl_unregister(net, net->ipv6.devconf_all,
NETCONFA_IFINDEX_ALL);
#endif
kfree(net->ipv6.devconf_dflt);
ip6mr: fix use-after-free in ip6mr_sk_done() Apparently addrconf_exit_net() is called before igmp6_net_exit() and ndisc_net_exit() at netns dismantle time: net_namespace: call ip6table_mangle_net_exit() net_namespace: call ip6_tables_net_exit() net_namespace: call ipv6_sysctl_net_exit() net_namespace: call ioam6_net_exit() net_namespace: call seg6_net_exit() net_namespace: call ping_v6_proc_exit_net() net_namespace: call tcpv6_net_exit() ip6mr_sk_done sk=ffffa354c78a74c0 net_namespace: call ipv6_frags_exit_net() net_namespace: call addrconf_exit_net() net_namespace: call ip6addrlbl_net_exit() net_namespace: call ip6_flowlabel_net_exit() net_namespace: call ip6_route_net_exit_late() net_namespace: call fib6_rules_net_exit() net_namespace: call xfrm6_net_exit() net_namespace: call fib6_net_exit() net_namespace: call ip6_route_net_exit() net_namespace: call ipv6_inetpeer_exit() net_namespace: call if6_proc_net_exit() net_namespace: call ipv6_proc_exit_net() net_namespace: call udplite6_proc_exit_net() net_namespace: call raw6_exit_net() net_namespace: call igmp6_net_exit() ip6mr_sk_done sk=ffffa35472b2a180 ip6mr_sk_done sk=ffffa354c78a7980 net_namespace: call ndisc_net_exit() ip6mr_sk_done sk=ffffa35472b2ab00 net_namespace: call ip6mr_net_exit() net_namespace: call inet6_net_exit() This was fine because ip6mr_sk_done() would not reach the point decreasing net->ipv6.devconf_all->mc_forwarding until my patch in ip6mr_sk_done(). To fix this without changing struct pernet_operations ordering, we can clear net->ipv6.devconf_dflt and net->ipv6.devconf_all when they are freed from addrconf_exit_net() BUG: KASAN: use-after-free in instrument_atomic_read include/linux/instrumented.h:71 [inline] BUG: KASAN: use-after-free in atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline] BUG: KASAN: use-after-free in ip6mr_sk_done+0x11b/0x410 net/ipv6/ip6mr.c:1578 Read of size 4 at addr ffff88801ff08688 by task kworker/u4:4/963 CPU: 0 PID: 963 Comm: kworker/u4:4 Not tainted 5.17.0-rc2-syzkaller-00650-g5a8fb33e5305 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: netns cleanup_net Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x336 mm/kasan/report.c:255 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189 instrument_atomic_read include/linux/instrumented.h:71 [inline] atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline] ip6mr_sk_done+0x11b/0x410 net/ipv6/ip6mr.c:1578 rawv6_close+0x58/0x80 net/ipv6/raw.c:1201 inet_release+0x12e/0x280 net/ipv4/af_inet.c:428 inet6_release+0x4c/0x70 net/ipv6/af_inet6.c:478 __sock_release net/socket.c:650 [inline] sock_release+0x87/0x1b0 net/socket.c:678 inet_ctl_sock_destroy include/net/inet_common.h:65 [inline] igmp6_net_exit+0x6b/0x170 net/ipv6/mcast.c:3173 ops_exit_list+0xb0/0x170 net/core/net_namespace.c:168 cleanup_net+0x4ea/0xb00 net/core/net_namespace.c:600 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Fixes: f2f2325ec799 ("ip6mr: ip6mr_sk_done() can exit early in common cases") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-06 15:56:00 +00:00
net->ipv6.devconf_dflt = NULL;
kfree(net->ipv6.devconf_all);
ip6mr: fix use-after-free in ip6mr_sk_done() Apparently addrconf_exit_net() is called before igmp6_net_exit() and ndisc_net_exit() at netns dismantle time: net_namespace: call ip6table_mangle_net_exit() net_namespace: call ip6_tables_net_exit() net_namespace: call ipv6_sysctl_net_exit() net_namespace: call ioam6_net_exit() net_namespace: call seg6_net_exit() net_namespace: call ping_v6_proc_exit_net() net_namespace: call tcpv6_net_exit() ip6mr_sk_done sk=ffffa354c78a74c0 net_namespace: call ipv6_frags_exit_net() net_namespace: call addrconf_exit_net() net_namespace: call ip6addrlbl_net_exit() net_namespace: call ip6_flowlabel_net_exit() net_namespace: call ip6_route_net_exit_late() net_namespace: call fib6_rules_net_exit() net_namespace: call xfrm6_net_exit() net_namespace: call fib6_net_exit() net_namespace: call ip6_route_net_exit() net_namespace: call ipv6_inetpeer_exit() net_namespace: call if6_proc_net_exit() net_namespace: call ipv6_proc_exit_net() net_namespace: call udplite6_proc_exit_net() net_namespace: call raw6_exit_net() net_namespace: call igmp6_net_exit() ip6mr_sk_done sk=ffffa35472b2a180 ip6mr_sk_done sk=ffffa354c78a7980 net_namespace: call ndisc_net_exit() ip6mr_sk_done sk=ffffa35472b2ab00 net_namespace: call ip6mr_net_exit() net_namespace: call inet6_net_exit() This was fine because ip6mr_sk_done() would not reach the point decreasing net->ipv6.devconf_all->mc_forwarding until my patch in ip6mr_sk_done(). To fix this without changing struct pernet_operations ordering, we can clear net->ipv6.devconf_dflt and net->ipv6.devconf_all when they are freed from addrconf_exit_net() BUG: KASAN: use-after-free in instrument_atomic_read include/linux/instrumented.h:71 [inline] BUG: KASAN: use-after-free in atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline] BUG: KASAN: use-after-free in ip6mr_sk_done+0x11b/0x410 net/ipv6/ip6mr.c:1578 Read of size 4 at addr ffff88801ff08688 by task kworker/u4:4/963 CPU: 0 PID: 963 Comm: kworker/u4:4 Not tainted 5.17.0-rc2-syzkaller-00650-g5a8fb33e5305 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: netns cleanup_net Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x336 mm/kasan/report.c:255 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189 instrument_atomic_read include/linux/instrumented.h:71 [inline] atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline] ip6mr_sk_done+0x11b/0x410 net/ipv6/ip6mr.c:1578 rawv6_close+0x58/0x80 net/ipv6/raw.c:1201 inet_release+0x12e/0x280 net/ipv4/af_inet.c:428 inet6_release+0x4c/0x70 net/ipv6/af_inet6.c:478 __sock_release net/socket.c:650 [inline] sock_release+0x87/0x1b0 net/socket.c:678 inet_ctl_sock_destroy include/net/inet_common.h:65 [inline] igmp6_net_exit+0x6b/0x170 net/ipv6/mcast.c:3173 ops_exit_list+0xb0/0x170 net/core/net_namespace.c:168 cleanup_net+0x4ea/0xb00 net/core/net_namespace.c:600 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Fixes: f2f2325ec799 ("ip6mr: ip6mr_sk_done() can exit early in common cases") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-06 15:56:00 +00:00
net->ipv6.devconf_all = NULL;
cancel_delayed_work_sync(&net->ipv6.addr_chk_work);
/*
* Check hash table, then free it.
*/
for (i = 0; i < IN6_ADDR_HSIZE; i++)
WARN_ON_ONCE(!hlist_empty(&net->ipv6.inet6_addr_lst[i]));
kfree(net->ipv6.inet6_addr_lst);
net->ipv6.inet6_addr_lst = NULL;
}
static struct pernet_operations addrconf_ops = {
.init = addrconf_init_net,
.exit = addrconf_exit_net,
};
static struct rtnl_af_ops inet6_ops __read_mostly = {
.family = AF_INET6,
.fill_link_af = inet6_fill_link_af,
.get_link_af_size = inet6_get_link_af_size,
.validate_link_af = inet6_validate_link_af,
net: ipv6: add tokenized interface identifier support This patch adds support for IPv6 tokenized IIDs, that allow for administrators to assign well-known host-part addresses to nodes whilst still obtaining global network prefix from Router Advertisements. It is currently in draft status. The primary target for such support is server platforms where addresses are usually manually configured, rather than using DHCPv6 or SLAAC. By using tokenised identifiers, hosts can still determine their network prefix by use of SLAAC, but more readily be automatically renumbered should their network prefix change. [...] The disadvantage with static addresses is that they are likely to require manual editing should the network prefix in use change. If instead there were a method to only manually configure the static identifier part of the IPv6 address, then the address could be automatically updated when a new prefix was introduced, as described in [RFC4192] for example. In such cases a DNS server might be configured with such a tokenised interface identifier of ::53, and SLAAC would use the token in constructing the interface address, using the advertised prefix. [...] http://tools.ietf.org/html/draft-chown-6man-tokenised-ipv6-identifiers-02 The implementation is partially based on top of Mark K. Thompson's proof of concept. However, it uses the Netlink interface for configuration resp. data retrival, so that it can be easily extended in future. Successfully tested by myself. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-08 04:01:30 +00:00
.set_link_af = inet6_set_link_af,
};
/*
* Init / cleanup code
*/
int __init addrconf_init(void)
{
struct inet6_dev *idev;
int err;
err = ipv6_addr_label_init();
if (err < 0) {
pr_crit("%s: cannot initialize default policy table: %d\n",
__func__, err);
goto out;
}
err = register_pernet_subsys(&addrconf_ops);
if (err < 0)
goto out_addrlabel;
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
addrconf_wq = create_workqueue("ipv6_addrconf");
if (!addrconf_wq) {
err = -ENOMEM;
goto out_nowq;
}
rtnl_lock();
idev = ipv6_add_dev(blackhole_netdev);
rtnl_unlock();
if (IS_ERR(idev)) {
err = PTR_ERR(idev);
goto errlo;
}
ip6_route_init_special_entries();
register_netdevice_notifier(&ipv6_dev_notf);
addrconf_verify(&init_net);
rtnl_af_register(&inet6_ops);
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETLINK,
NULL, inet6_dump_ifinfo, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWADDR,
inet6_rtm_newaddr, NULL, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELADDR,
inet6_rtm_deladdr, NULL, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETADDR,
inet6_rtm_getaddr, inet6_dump_ifaddr,
RTNL_FLAG_DOIT_UNLOCKED);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETMULTICAST,
NULL, inet6_dump_ifmcaddr, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETANYCAST,
NULL, inet6_dump_ifacaddr, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETNETCONF,
inet6_netconf_get_devconf,
inet6_netconf_dump_devconf,
RTNL_FLAG_DOIT_UNLOCKED);
if (err < 0)
goto errout;
err = ipv6_addr_label_rtnl_register();
if (err < 0)
goto errout;
return 0;
errout:
rtnl_unregister_all(PF_INET6);
rtnl_af_unregister(&inet6_ops);
unregister_netdevice_notifier(&ipv6_dev_notf);
errlo:
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
destroy_workqueue(addrconf_wq);
out_nowq:
unregister_pernet_subsys(&addrconf_ops);
out_addrlabel:
ipv6_addr_label_cleanup();
out:
return err;
}
void addrconf_cleanup(void)
{
struct net_device *dev;
unregister_netdevice_notifier(&ipv6_dev_notf);
unregister_pernet_subsys(&addrconf_ops);
ipv6_addr_label_cleanup();
rtnl_af_unregister(&inet6_ops);
rtnl_lock();
/* clean dev list */
for_each_netdev(&init_net, dev) {
if (__in6_dev_get(dev) == NULL)
continue;
addrconf_ifdown(dev, true);
}
addrconf_ifdown(init_net.loopback_dev, true);
rtnl_unlock();
ipv6: move DAD and addrconf_verify processing to workqueue addrconf_join_solict and addrconf_join_anycast may cause actions which need rtnl locked, especially on first address creation. A new DAD state is introduced which defers processing of the initial DAD processing into a workqueue. To get rtnl lock we need to push the code paths which depend on those calls up to workqueues, specifically addrconf_verify and the DAD processing. (v2) addrconf_dad_failure needs to be queued up to the workqueue, too. This patch introduces a new DAD state and stop the DAD processing in the workqueue (this is because of the possible ipv6_del_addr processing which removes the solicited multicast address from the device). addrconf_verify_lock is removed, too. After the transition it is not needed any more. As we are not processing in bottom half anymore we need to be a bit more careful about disabling bottom half out when we lock spin_locks which are also used in bh. Relevant backtrace: [ 541.030090] RTNL: assertion failed at net/core/dev.c (4496) [ 541.031143] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 3.10.33-1-amd64-vyatta #1 [ 541.031145] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 541.031146] ffffffff8148a9f0 000000000000002f ffffffff813c98c1 ffff88007c4451f8 [ 541.031148] 0000000000000000 0000000000000000 ffffffff813d3540 ffff88007fc03d18 [ 541.031150] 0000880000000006 ffff88007c445000 ffffffffa0194160 0000000000000000 [ 541.031152] Call Trace: [ 541.031153] <IRQ> [<ffffffff8148a9f0>] ? dump_stack+0xd/0x17 [ 541.031180] [<ffffffff813c98c1>] ? __dev_set_promiscuity+0x101/0x180 [ 541.031183] [<ffffffff813d3540>] ? __hw_addr_create_ex+0x60/0xc0 [ 541.031185] [<ffffffff813cfe1a>] ? __dev_set_rx_mode+0xaa/0xc0 [ 541.031189] [<ffffffff813d3a81>] ? __dev_mc_add+0x61/0x90 [ 541.031198] [<ffffffffa01dcf9c>] ? igmp6_group_added+0xfc/0x1a0 [ipv6] [ 541.031208] [<ffffffff8111237b>] ? kmem_cache_alloc+0xcb/0xd0 [ 541.031212] [<ffffffffa01ddcd7>] ? ipv6_dev_mc_inc+0x267/0x300 [ipv6] [ 541.031216] [<ffffffffa01c2fae>] ? addrconf_join_solict+0x2e/0x40 [ipv6] [ 541.031219] [<ffffffffa01ba2e9>] ? ipv6_dev_ac_inc+0x159/0x1f0 [ipv6] [ 541.031223] [<ffffffffa01c0772>] ? addrconf_join_anycast+0x92/0xa0 [ipv6] [ 541.031226] [<ffffffffa01c311e>] ? __ipv6_ifa_notify+0x11e/0x1e0 [ipv6] [ 541.031229] [<ffffffffa01c3213>] ? ipv6_ifa_notify+0x33/0x50 [ipv6] [ 541.031233] [<ffffffffa01c36c8>] ? addrconf_dad_completed+0x28/0x100 [ipv6] [ 541.031241] [<ffffffff81075c1d>] ? task_cputime+0x2d/0x50 [ 541.031244] [<ffffffffa01c38d6>] ? addrconf_dad_timer+0x136/0x150 [ipv6] [ 541.031247] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] [ 541.031255] [<ffffffff8105313a>] ? call_timer_fn.isra.22+0x2a/0x90 [ 541.031258] [<ffffffffa01c37a0>] ? addrconf_dad_completed+0x100/0x100 [ipv6] Hunks and backtrace stolen from a patch by Stephen Hemminger. Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 17:28:07 +00:00
destroy_workqueue(addrconf_wq);
}