linux-next/include/linux/rculist_nulls.h

138 lines
4.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
#ifndef _LINUX_RCULIST_NULLS_H
#define _LINUX_RCULIST_NULLS_H
#ifdef __KERNEL__
/*
* RCU-protected list version
*/
#include <linux/list_nulls.h>
#include <linux/rcupdate.h>
/**
* hlist_nulls_del_init_rcu - deletes entry from hash list with re-initialization
* @n: the element to delete from the hash list.
*
* Note: hlist_nulls_unhashed() on the node return true after this. It is
* useful for RCU based read lockfree traversal if the writer side
* must know if the list entry is still hashed or already unhashed.
*
* In particular, it means that we can not poison the forward pointers
* that may still be used for walking the hash list and we can only
* zero the pprev pointer so list_unhashed() will return true after
* this.
*
* The caller must take whatever precautions are necessary (such as
* holding appropriate locks) to avoid racing with another
* list-mutation primitive, such as hlist_nulls_add_head_rcu() or
* hlist_nulls_del_rcu(), running on this same list. However, it is
* perfectly legal to run concurrently with the _rcu list-traversal
* primitives, such as hlist_nulls_for_each_entry_rcu().
*/
static inline void hlist_nulls_del_init_rcu(struct hlist_nulls_node *n)
{
if (!hlist_nulls_unhashed(n)) {
__hlist_nulls_del(n);
n->pprev = NULL;
}
}
#define hlist_nulls_first_rcu(head) \
(*((struct hlist_nulls_node __rcu __force **)&(head)->first))
#define hlist_nulls_next_rcu(node) \
(*((struct hlist_nulls_node __rcu __force **)&(node)->next))
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
/**
* hlist_nulls_del_rcu - deletes entry from hash list without re-initialization
* @n: the element to delete from the hash list.
*
* Note: hlist_nulls_unhashed() on entry does not return true after this,
* the entry is in an undefined state. It is useful for RCU based
* lockfree traversal.
*
* In particular, it means that we can not poison the forward
* pointers that may still be used for walking the hash list.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as hlist_nulls_add_head_rcu()
* or hlist_nulls_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* hlist_nulls_for_each_entry().
*/
static inline void hlist_nulls_del_rcu(struct hlist_nulls_node *n)
{
__hlist_nulls_del(n);
n->pprev = LIST_POISON2;
}
/**
* hlist_nulls_add_head_rcu
* @n: the element to add to the hash list.
* @h: the list to add to.
*
* Description:
* Adds the specified element to the specified hlist_nulls,
* while permitting racing traversals.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as hlist_nulls_add_head_rcu()
* or hlist_nulls_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* hlist_nulls_for_each_entry_rcu(), used to prevent memory-consistency
* problems on Alpha CPUs. Regardless of the type of CPU, the
* list-traversal primitive must be guarded by rcu_read_lock().
*/
static inline void hlist_nulls_add_head_rcu(struct hlist_nulls_node *n,
struct hlist_nulls_head *h)
{
struct hlist_nulls_node *first = h->first;
n->next = first;
n->pprev = &h->first;
rcu_assign_pointer(hlist_nulls_first_rcu(h), n);
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
if (!is_a_nulls(first))
first->pprev = &n->next;
}
soreuseport: fix ordering for mixed v4/v6 sockets With the SO_REUSEPORT socket option, it is possible to create sockets in the AF_INET and AF_INET6 domains which are bound to the same IPv4 address. This is only possible with SO_REUSEPORT and when not using IPV6_V6ONLY on the AF_INET6 sockets. Prior to the commits referenced below, an incoming IPv4 packet would always be routed to a socket of type AF_INET when this mixed-mode was used. After those changes, the same packet would be routed to the most recently bound socket (if this happened to be an AF_INET6 socket, it would have an IPv4 mapped IPv6 address). The change in behavior occurred because the recent SO_REUSEPORT optimizations short-circuit the socket scoring logic as soon as they find a match. They did not take into account the scoring logic that favors AF_INET sockets over AF_INET6 sockets in the event of a tie. To fix this problem, this patch changes the insertion order of AF_INET and AF_INET6 addresses in the TCP and UDP socket lists when the sockets have SO_REUSEPORT set. AF_INET sockets will be inserted at the head of the list and AF_INET6 sockets with SO_REUSEPORT set will always be inserted at the tail of the list. This will force AF_INET sockets to always be considered first. Fixes: e32ea7e74727 ("soreuseport: fast reuseport UDP socket selection") Fixes: 125e80b88687 ("soreuseport: fast reuseport TCP socket selection") Reported-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: Craig Gallek <kraig@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-12 17:11:25 +00:00
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
/**
* hlist_nulls_for_each_entry_rcu - iterate over rcu list of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_nulls_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_nulls_node within the struct.
*
* The barrier() is needed to make sure compiler doesn't cache first element [1],
* as this loop can be restarted [2]
* [1] Documentation/core-api/atomic_ops.rst around line 114
* [2] Documentation/RCU/rculist_nulls.txt around line 146
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
*/
#define hlist_nulls_for_each_entry_rcu(tpos, pos, head, member) \
for (({barrier();}), \
pos = rcu_dereference_raw(hlist_nulls_first_rcu(head)); \
(!is_a_nulls(pos)) && \
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1; }); \
pos = rcu_dereference_raw(hlist_nulls_next_rcu(pos)))
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
/**
* hlist_nulls_for_each_entry_safe -
* iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_nulls_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_nulls_node within the struct.
*/
#define hlist_nulls_for_each_entry_safe(tpos, pos, head, member) \
for (({barrier();}), \
pos = rcu_dereference_raw(hlist_nulls_first_rcu(head)); \
(!is_a_nulls(pos)) && \
({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); \
pos = rcu_dereference_raw(hlist_nulls_next_rcu(pos)); 1; });)
rcu: Introduce hlist_nulls variant of hlist hlist uses NULL value to finish a chain. hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker. This allows to store many different end markers, so that some RCU lockless algos (used in TCP/UDP stack for example) can save some memory barriers in fast paths. Two new files are added : include/linux/list_nulls.h - mimics hlist part of include/linux/list.h, derived to hlist_nulls variant include/linux/rculist_nulls.h - mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant Only four helpers are declared for the moment : hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(), hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu() prefetches() were removed, since an end of list is not anymore NULL value. prefetches() could trigger useless (and possibly dangerous) memory transactions. Example of use (extracted from __udp4_lib_lookup()) struct sock *sk, *result; struct hlist_nulls_node *node; unsigned short hnum = ntohs(dport); unsigned int hash = udp_hashfn(net, hnum); struct udp_hslot *hslot = &udptable->hash[hash]; int score, badness; rcu_read_lock(); begin: result = NULL; badness = -1; sk_nulls_for_each_rcu(sk, node, &hslot->head) { score = compute_score(sk, net, saddr, hnum, sport, daddr, dport, dif); if (score > badness) { result = sk; badness = score; } } /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != hash) goto begin; if (result) { if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) result = NULL; else if (unlikely(compute_score(result, net, saddr, hnum, sport, daddr, dport, dif) < badness)) { sock_put(result); goto begin; } } rcu_read_unlock(); return result; Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-17 03:37:55 +00:00
#endif
#endif