linux-next/include/linux/errno.h

36 lines
1.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_ERRNO_H
#define _LINUX_ERRNO_H
#include <uapi/linux/errno.h>
/*
* These should never be seen by user programs. To return one of ERESTART*
* codes, signal_pending() MUST be set. Note that ptrace can observe these
* at syscall exit tracing, but they will never be left for the debugged user
* process to see.
*/
#define ERESTARTSYS 512
#define ERESTARTNOINTR 513
#define ERESTARTNOHAND 514 /* restart if no handler.. */
#define ENOIOCTLCMD 515 /* No ioctl command */
#define ERESTART_RESTARTBLOCK 516 /* restart by calling sys_restart_syscall */
drivercore: Add driver probe deferral mechanism Allow drivers to report at probe time that they cannot get all the resources required by the device, and should be retried at a later time. This should completely solve the problem of getting devices initialized in the right order. Right now this is mostly handled by mucking about with initcall ordering which is a complete hack, and doesn't even remotely handle the case where device drivers are in modules. This approach completely sidesteps the issues by allowing driver registration to occur in any order, and any driver can request to be retried after a few more other drivers get probed. v4: - Integrate Manjunath's addition of a separate workqueue - Change -EAGAIN to -EPROBE_DEFER for drivers to trigger deferral - Update comment blocks to reflect how the code really works v3: - Hold off workqueue scheduling until late_initcall so that the bulk of driver probes are complete before we start retrying deferred devices. - Tested with simple use cases. Still needs more testing though. Using it to get rid of the gpio early_initcall madness, or to replace the ASoC internal probe deferral code would be ideal. v2: - added locking so it should no longer be utterly broken in that regard - remove device from deferred list at device_del time. - Still completely untested with any real use case, but has been boot tested. Signed-off-by: Grant Likely <grant.likely@secretlab.ca> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dilan Lee <dilee@nvidia.com> Cc: Manjunath GKondaiah <manjunath.gkondaiah@linaro.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Tony Lindgren <tony@atomide.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: David Daney <david.daney@cavium.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-03-05 15:47:41 +00:00
#define EPROBE_DEFER 517 /* Driver requests probe retry */
#define EOPENSTALE 518 /* open found a stale dentry */
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-01 23:07:24 +00:00
#define ENOPARAM 519 /* Parameter not supported */
/* Defined for the NFSv3 protocol */
#define EBADHANDLE 521 /* Illegal NFS file handle */
#define ENOTSYNC 522 /* Update synchronization mismatch */
#define EBADCOOKIE 523 /* Cookie is stale */
#define ENOTSUPP 524 /* Operation is not supported */
#define ETOOSMALL 525 /* Buffer or request is too small */
#define ESERVERFAULT 526 /* An untranslatable error occurred */
#define EBADTYPE 527 /* Type not supported by server */
#define EJUKEBOX 528 /* Request initiated, but will not complete before timeout */
#define EIOCBQUEUED 529 /* iocb queued, will get completion event */
pnfs: rework LAYOUTGET retry handling There are several problems in the way a stateid is selected for a LAYOUTGET operation: We pick a stateid to use in the RPC prepare op, but that makes it difficult to serialize LAYOUTGETs that use the open stateid. That serialization is done in pnfs_update_layout, which occurs well before the rpc_prepare operation. Between those two events, the i_lock is dropped and reacquired. pnfs_update_layout can find that the list has lsegs in it and not do any serialization, but then later pnfs_choose_layoutget_stateid ends up choosing the open stateid. This patch changes the client to select the stateid to use in the LAYOUTGET earlier, when we're searching for a usable layout segment. This way we can do it all while holding the i_lock the first time, and ensure that we serialize any LAYOUTGET call that uses a non-layout stateid. This also means a rework of how LAYOUTGET replies are handled, as we must now get the latest stateid if we want to retransmit in response to a retryable error. Most of those errors boil down to the fact that the layout state has changed in some fashion. Thus, what we really want to do is to re-search for a layout when it fails with a retryable error, so that we can avoid reissuing the RPC at all if possible. While the LAYOUTGET RPC is async, the initiating thread always waits for it to complete, so it's effectively synchronous anyway. Currently, when we need to retry a LAYOUTGET because of an error, we drive that retry via the rpc state machine. This means that once the call has been submitted, it runs until it completes. So, we must move the error handling for this RPC out of the rpc_call_done operation and into the caller. In order to handle errors like NFS4ERR_DELAY properly, we must also pass a pointer to the sliding timeout, which is now moved to the stack in pnfs_update_layout. The complicating errors are -NFS4ERR_RECALLCONFLICT and -NFS4ERR_LAYOUTTRYLATER, as those involve a timeout after which we give up and return NULL back to the caller. So, there is some special handling for those errors to ensure that the layers driving the retries can handle that appropriately. Signed-off-by: Jeff Layton <jeff.layton@primarydata.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-05-17 16:28:47 +00:00
#define ERECALLCONFLICT 530 /* conflict with recalled state */
#endif