2023-07-17 16:02:27 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef _LINUX_ZSWAP_H
|
|
|
|
#define _LINUX_ZSWAP_H
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/mm_types.h>
|
|
|
|
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
struct lruvec;
|
|
|
|
|
2024-10-01 05:32:20 +00:00
|
|
|
extern atomic_long_t zswap_stored_pages;
|
2023-07-17 16:02:27 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_ZSWAP
|
|
|
|
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
struct zswap_lruvec_state {
|
|
|
|
/*
|
zswap: implement a second chance algorithm for dynamic zswap shrinker
Patch series "improving dynamic zswap shrinker protection scheme", v3.
When experimenting with the memory-pressure based (i.e "dynamic") zswap
shrinker in production, we observed a sharp increase in the number of
swapins, which led to performance regression. We were able to trace this
regression to the following problems with the shrinker's warm pages
protection scheme:
1. The protection decays way too rapidly, and the decaying is coupled with
zswap stores, leading to anomalous patterns, in which a small batch of
zswap stores effectively erase all the protection in place for the
warmer pages in the zswap LRU.
This observation has also been corroborated upstream by Takero Funaki
(in [1]).
2. We inaccurately track the number of swapped in pages, missing the
non-pivot pages that are part of the readahead window, while counting
the pages that are found in the zswap pool.
To alleviate these two issues, this patch series improve the dynamic zswap
shrinker in the following manner:
1. Replace the protection size tracking scheme with a second chance
algorithm. This new scheme removes the need for haphazard stats
decaying, and automatically adjusts the pace of pages aging with memory
pressure, and writeback rate with pool activities: slowing down when
the pool is dominated with zswpouts, and speeding up when the pool is
dominated with stale entries.
2. Fix the tracking of the number of swapins to take into account
non-pivot pages in the readahead window.
With these two changes in place, in a kernel-building benchmark without
any cold data added, the number of swapins is reduced by 64.12%. This
translate to a 10.32% reduction in build time. We also observe a 3%
reduction in kernel CPU time.
In another benchmark, with cold data added (to gauge the new algorithm's
ability to offload cold data), the new second chance scheme outperforms
the old protection scheme by around 0.7%, and actually written back around
21% more pages to backing swap device. So the new scheme is just as good,
if not even better than the old scheme on this front as well.
[1]: https://lore.kernel.org/linux-mm/CAPpodddcGsK=0Xczfuk8usgZ47xeyf4ZjiofdT+ujiyz6V2pFQ@mail.gmail.com/
This patch (of 2):
Current zswap shrinker's heuristics to prevent overshrinking is brittle
and inaccurate, specifically in the way we decay the protection size (i.e
making pages in the zswap LRU eligible for reclaim).
We currently decay protection aggressively in zswap_lru_add() calls. This
leads to the following unfortunate effect: when a new batch of pages enter
zswap, the protection size rapidly decays to below 25% of the zswap LRU
size, which is way too low.
We have observed this effect in production, when experimenting with the
zswap shrinker: the rate of shrinking shoots up massively right after a
new batch of zswap stores. This is somewhat the opposite of what we want
originally - when new pages enter zswap, we want to protect both these new
pages AND the pages that are already protected in the zswap LRU.
Replace existing heuristics with a second chance algorithm
1. When a new zswap entry is stored in the zswap pool, its referenced
bit is set.
2. When the zswap shrinker encounters a zswap entry with the referenced
bit set, give it a second chance - only flips the referenced bit and
rotate it in the LRU.
3. If the shrinker encounters the entry again, this time with its
referenced bit unset, then it can reclaim the entry.
In this manner, the aging of the pages in the zswap LRUs are decoupled
from zswap stores, and picks up the pace with increasing memory pressure
(which is what we want).
The second chance scheme allows us to modulate the writeback rate based on
recent pool activities. Entries that recently entered the pool will be
protected, so if the pool is dominated by such entries the writeback rate
will reduce proportionally, protecting the workload's workingset.On the
other hand, stale entries will be written back quickly, which increases
the effective writeback rate.
The referenced bit is added at the hole after the `length` field of struct
zswap_entry, so there is no extra space overhead for this algorithm.
We will still maintain the count of swapins, which is consumed and
subtracted from the lru size in zswap_shrinker_count(), to further
penalize past overshrinking that led to disk swapins. The idea is that
had we considered this many more pages in the LRU active/protected, they
would not have been written back and we would not have had to swapped them
in.
To test this new heuristics, I built the kernel under a cgroup with
memory.max set to 2G, on a host with 36 cores:
With the old shrinker:
real: 263.89s
user: 4318.11s
sys: 673.29s
swapins: 227300.5
With the second chance algorithm:
real: 244.85s
user: 4327.22s
sys: 664.39s
swapins: 94663
(average over 5 runs)
We observe an 1.3% reduction in kernel CPU usage, and around 7.2%
reduction in real time. Note that the number of swapped in pages
dropped by 58%.
[nphamcs@gmail.com: fix a small mistake in the referenced bit documentation]
Link: https://lkml.kernel.org/r/20240806003403.3142387-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Takero Funaki <flintglass@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-05 23:22:42 +00:00
|
|
|
* Number of swapped in pages from disk, i.e not found in the zswap pool.
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
*
|
zswap: implement a second chance algorithm for dynamic zswap shrinker
Patch series "improving dynamic zswap shrinker protection scheme", v3.
When experimenting with the memory-pressure based (i.e "dynamic") zswap
shrinker in production, we observed a sharp increase in the number of
swapins, which led to performance regression. We were able to trace this
regression to the following problems with the shrinker's warm pages
protection scheme:
1. The protection decays way too rapidly, and the decaying is coupled with
zswap stores, leading to anomalous patterns, in which a small batch of
zswap stores effectively erase all the protection in place for the
warmer pages in the zswap LRU.
This observation has also been corroborated upstream by Takero Funaki
(in [1]).
2. We inaccurately track the number of swapped in pages, missing the
non-pivot pages that are part of the readahead window, while counting
the pages that are found in the zswap pool.
To alleviate these two issues, this patch series improve the dynamic zswap
shrinker in the following manner:
1. Replace the protection size tracking scheme with a second chance
algorithm. This new scheme removes the need for haphazard stats
decaying, and automatically adjusts the pace of pages aging with memory
pressure, and writeback rate with pool activities: slowing down when
the pool is dominated with zswpouts, and speeding up when the pool is
dominated with stale entries.
2. Fix the tracking of the number of swapins to take into account
non-pivot pages in the readahead window.
With these two changes in place, in a kernel-building benchmark without
any cold data added, the number of swapins is reduced by 64.12%. This
translate to a 10.32% reduction in build time. We also observe a 3%
reduction in kernel CPU time.
In another benchmark, with cold data added (to gauge the new algorithm's
ability to offload cold data), the new second chance scheme outperforms
the old protection scheme by around 0.7%, and actually written back around
21% more pages to backing swap device. So the new scheme is just as good,
if not even better than the old scheme on this front as well.
[1]: https://lore.kernel.org/linux-mm/CAPpodddcGsK=0Xczfuk8usgZ47xeyf4ZjiofdT+ujiyz6V2pFQ@mail.gmail.com/
This patch (of 2):
Current zswap shrinker's heuristics to prevent overshrinking is brittle
and inaccurate, specifically in the way we decay the protection size (i.e
making pages in the zswap LRU eligible for reclaim).
We currently decay protection aggressively in zswap_lru_add() calls. This
leads to the following unfortunate effect: when a new batch of pages enter
zswap, the protection size rapidly decays to below 25% of the zswap LRU
size, which is way too low.
We have observed this effect in production, when experimenting with the
zswap shrinker: the rate of shrinking shoots up massively right after a
new batch of zswap stores. This is somewhat the opposite of what we want
originally - when new pages enter zswap, we want to protect both these new
pages AND the pages that are already protected in the zswap LRU.
Replace existing heuristics with a second chance algorithm
1. When a new zswap entry is stored in the zswap pool, its referenced
bit is set.
2. When the zswap shrinker encounters a zswap entry with the referenced
bit set, give it a second chance - only flips the referenced bit and
rotate it in the LRU.
3. If the shrinker encounters the entry again, this time with its
referenced bit unset, then it can reclaim the entry.
In this manner, the aging of the pages in the zswap LRUs are decoupled
from zswap stores, and picks up the pace with increasing memory pressure
(which is what we want).
The second chance scheme allows us to modulate the writeback rate based on
recent pool activities. Entries that recently entered the pool will be
protected, so if the pool is dominated by such entries the writeback rate
will reduce proportionally, protecting the workload's workingset.On the
other hand, stale entries will be written back quickly, which increases
the effective writeback rate.
The referenced bit is added at the hole after the `length` field of struct
zswap_entry, so there is no extra space overhead for this algorithm.
We will still maintain the count of swapins, which is consumed and
subtracted from the lru size in zswap_shrinker_count(), to further
penalize past overshrinking that led to disk swapins. The idea is that
had we considered this many more pages in the LRU active/protected, they
would not have been written back and we would not have had to swapped them
in.
To test this new heuristics, I built the kernel under a cgroup with
memory.max set to 2G, on a host with 36 cores:
With the old shrinker:
real: 263.89s
user: 4318.11s
sys: 673.29s
swapins: 227300.5
With the second chance algorithm:
real: 244.85s
user: 4327.22s
sys: 664.39s
swapins: 94663
(average over 5 runs)
We observe an 1.3% reduction in kernel CPU usage, and around 7.2%
reduction in real time. Note that the number of swapped in pages
dropped by 58%.
[nphamcs@gmail.com: fix a small mistake in the referenced bit documentation]
Link: https://lkml.kernel.org/r/20240806003403.3142387-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Takero Funaki <flintglass@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-05 23:22:42 +00:00
|
|
|
* This is consumed and subtracted from the lru size in
|
|
|
|
* zswap_shrinker_count() to penalize past overshrinking that led to disk
|
|
|
|
* swapins. The idea is that had we considered this many more pages in the
|
|
|
|
* LRU active/protected and not written them back, we would not have had to
|
|
|
|
* swapped them in.
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
*/
|
zswap: implement a second chance algorithm for dynamic zswap shrinker
Patch series "improving dynamic zswap shrinker protection scheme", v3.
When experimenting with the memory-pressure based (i.e "dynamic") zswap
shrinker in production, we observed a sharp increase in the number of
swapins, which led to performance regression. We were able to trace this
regression to the following problems with the shrinker's warm pages
protection scheme:
1. The protection decays way too rapidly, and the decaying is coupled with
zswap stores, leading to anomalous patterns, in which a small batch of
zswap stores effectively erase all the protection in place for the
warmer pages in the zswap LRU.
This observation has also been corroborated upstream by Takero Funaki
(in [1]).
2. We inaccurately track the number of swapped in pages, missing the
non-pivot pages that are part of the readahead window, while counting
the pages that are found in the zswap pool.
To alleviate these two issues, this patch series improve the dynamic zswap
shrinker in the following manner:
1. Replace the protection size tracking scheme with a second chance
algorithm. This new scheme removes the need for haphazard stats
decaying, and automatically adjusts the pace of pages aging with memory
pressure, and writeback rate with pool activities: slowing down when
the pool is dominated with zswpouts, and speeding up when the pool is
dominated with stale entries.
2. Fix the tracking of the number of swapins to take into account
non-pivot pages in the readahead window.
With these two changes in place, in a kernel-building benchmark without
any cold data added, the number of swapins is reduced by 64.12%. This
translate to a 10.32% reduction in build time. We also observe a 3%
reduction in kernel CPU time.
In another benchmark, with cold data added (to gauge the new algorithm's
ability to offload cold data), the new second chance scheme outperforms
the old protection scheme by around 0.7%, and actually written back around
21% more pages to backing swap device. So the new scheme is just as good,
if not even better than the old scheme on this front as well.
[1]: https://lore.kernel.org/linux-mm/CAPpodddcGsK=0Xczfuk8usgZ47xeyf4ZjiofdT+ujiyz6V2pFQ@mail.gmail.com/
This patch (of 2):
Current zswap shrinker's heuristics to prevent overshrinking is brittle
and inaccurate, specifically in the way we decay the protection size (i.e
making pages in the zswap LRU eligible for reclaim).
We currently decay protection aggressively in zswap_lru_add() calls. This
leads to the following unfortunate effect: when a new batch of pages enter
zswap, the protection size rapidly decays to below 25% of the zswap LRU
size, which is way too low.
We have observed this effect in production, when experimenting with the
zswap shrinker: the rate of shrinking shoots up massively right after a
new batch of zswap stores. This is somewhat the opposite of what we want
originally - when new pages enter zswap, we want to protect both these new
pages AND the pages that are already protected in the zswap LRU.
Replace existing heuristics with a second chance algorithm
1. When a new zswap entry is stored in the zswap pool, its referenced
bit is set.
2. When the zswap shrinker encounters a zswap entry with the referenced
bit set, give it a second chance - only flips the referenced bit and
rotate it in the LRU.
3. If the shrinker encounters the entry again, this time with its
referenced bit unset, then it can reclaim the entry.
In this manner, the aging of the pages in the zswap LRUs are decoupled
from zswap stores, and picks up the pace with increasing memory pressure
(which is what we want).
The second chance scheme allows us to modulate the writeback rate based on
recent pool activities. Entries that recently entered the pool will be
protected, so if the pool is dominated by such entries the writeback rate
will reduce proportionally, protecting the workload's workingset.On the
other hand, stale entries will be written back quickly, which increases
the effective writeback rate.
The referenced bit is added at the hole after the `length` field of struct
zswap_entry, so there is no extra space overhead for this algorithm.
We will still maintain the count of swapins, which is consumed and
subtracted from the lru size in zswap_shrinker_count(), to further
penalize past overshrinking that led to disk swapins. The idea is that
had we considered this many more pages in the LRU active/protected, they
would not have been written back and we would not have had to swapped them
in.
To test this new heuristics, I built the kernel under a cgroup with
memory.max set to 2G, on a host with 36 cores:
With the old shrinker:
real: 263.89s
user: 4318.11s
sys: 673.29s
swapins: 227300.5
With the second chance algorithm:
real: 244.85s
user: 4327.22s
sys: 664.39s
swapins: 94663
(average over 5 runs)
We observe an 1.3% reduction in kernel CPU usage, and around 7.2%
reduction in real time. Note that the number of swapped in pages
dropped by 58%.
[nphamcs@gmail.com: fix a small mistake in the referenced bit documentation]
Link: https://lkml.kernel.org/r/20240806003403.3142387-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240805232243.2896283-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Takero Funaki <flintglass@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-05 23:22:42 +00:00
|
|
|
atomic_long_t nr_disk_swapins;
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
};
|
|
|
|
|
mm: zswap: optimize zswap pool size tracking
Profiling the munmap() of a zswapped memory region shows 60% of the total
cycles currently going into updating the zswap_pool_total_size.
There are three consumers of this counter:
- store, to enforce the globally configured pool limit
- meminfo & debugfs, to report the size to the user
- shrink, to determine the batch size for each cycle
Instead of aggregating everytime an entry enters or exits the zswap
pool, aggregate the value from the zpools on-demand:
- Stores aggregate the counter anyway upon success. Aggregating to
check the limit instead is the same amount of work.
- Meminfo & debugfs might benefit somewhat from a pre-aggregated
counter, but aren't exactly hotpaths.
- Shrinking can aggregate once for every cycle instead of doing it for
every freed entry. As the shrinker might work on tens or hundreds of
objects per scan cycle, this is a large reduction in aggregations.
The paths that benefit dramatically are swapin, swapoff, and unmaps.
There could be millions of pages being processed until somebody asks for
the pool size again. This eliminates the pool size updates from those
paths entirely.
Top profile entries for a 24G range munmap(), before:
38.54% zswap-unmap [kernel.kallsyms] [k] zs_zpool_total_size
12.51% zswap-unmap [kernel.kallsyms] [k] zpool_get_total_size
9.10% zswap-unmap [kernel.kallsyms] [k] zswap_update_total_size
2.95% zswap-unmap [kernel.kallsyms] [k] obj_cgroup_uncharge_zswap
2.88% zswap-unmap [kernel.kallsyms] [k] __slab_free
2.86% zswap-unmap [kernel.kallsyms] [k] xas_store
and after:
7.70% zswap-unmap [kernel.kallsyms] [k] __slab_free
7.16% zswap-unmap [kernel.kallsyms] [k] obj_cgroup_uncharge_zswap
6.74% zswap-unmap [kernel.kallsyms] [k] xas_store
It was also briefly considered to move to a single atomic in zswap
that is updated by the backends, since zswap only cares about the sum
of all pools anyway. However, zram directly needs per-pool information
out of zsmalloc. To keep the backend from having to update two atomics
every time, I opted for the lazy aggregation instead for now.
Link: https://lkml.kernel.org/r/20240312153901.3441-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-12 15:34:11 +00:00
|
|
|
unsigned long zswap_total_pages(void);
|
2023-07-15 04:23:40 +00:00
|
|
|
bool zswap_store(struct folio *folio);
|
2023-07-15 04:23:43 +00:00
|
|
|
bool zswap_load(struct folio *folio);
|
2024-02-04 03:06:00 +00:00
|
|
|
void zswap_invalidate(swp_entry_t swp);
|
2024-01-19 11:22:23 +00:00
|
|
|
int zswap_swapon(int type, unsigned long nr_pages);
|
2023-07-17 16:02:27 +00:00
|
|
|
void zswap_swapoff(int type);
|
2023-11-30 19:40:20 +00:00
|
|
|
void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg);
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
void zswap_lruvec_state_init(struct lruvec *lruvec);
|
2023-12-13 21:58:30 +00:00
|
|
|
void zswap_folio_swapin(struct folio *folio);
|
2024-06-11 02:45:14 +00:00
|
|
|
bool zswap_is_enabled(void);
|
2024-06-11 02:45:15 +00:00
|
|
|
bool zswap_never_enabled(void);
|
2023-07-17 16:02:27 +00:00
|
|
|
#else
|
|
|
|
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
struct zswap_lruvec_state {};
|
|
|
|
|
2023-07-15 04:23:40 +00:00
|
|
|
static inline bool zswap_store(struct folio *folio)
|
2023-07-17 16:02:27 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-07-15 04:23:43 +00:00
|
|
|
static inline bool zswap_load(struct folio *folio)
|
2023-07-17 16:02:27 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2024-02-04 03:06:00 +00:00
|
|
|
static inline void zswap_invalidate(swp_entry_t swp) {}
|
2024-01-19 11:22:23 +00:00
|
|
|
static inline int zswap_swapon(int type, unsigned long nr_pages)
|
mm/zswap: make sure each swapfile always have zswap rb-tree
Patch series "mm/zswap: optimize the scalability of zswap rb-tree", v2.
When testing the zswap performance by using kernel build -j32 in a tmpfs
directory, I found the scalability of zswap rb-tree is not good, which is
protected by the only spinlock. That would cause heavy lock contention if
multiple tasks zswap_store/load concurrently.
So a simple solution is to split the only one zswap rb-tree into multiple
rb-trees, each corresponds to SWAP_ADDRESS_SPACE_PAGES (64M). This idea
is from the commit 4b3ef9daa4fc ("mm/swap: split swap cache into 64MB
trunks").
Although this method can't solve the spinlock contention completely, it
can mitigate much of that contention. Below is the results of kernel
build in tmpfs with zswap shrinker enabled:
linux-next zswap-lock-optimize
real 1m9.181s 1m3.820s
user 17m44.036s 17m40.100s
sys 7m37.297s 4m54.622s
So there are clearly improvements. And it's complementary with the
ongoing zswap xarray conversion by Chris. Anyway, I think we can also
merge this first, it's complementary IMHO. So I just refresh and resend
this for further discussion.
This patch (of 2):
Not all zswap interfaces can handle the absence of the zswap rb-tree,
actually only zswap_store() has handled it for now.
To make things simple, we make sure each swapfile always have the zswap
rb-tree prepared before being enabled and used. The preparation is
unlikely to fail in practice, this patch just make it explicit.
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-0-b5cc55479090@bytedance.com
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-1-b5cc55479090@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-19 11:22:22 +00:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2023-07-17 16:02:27 +00:00
|
|
|
static inline void zswap_swapoff(int type) {}
|
2023-11-30 19:40:20 +00:00
|
|
|
static inline void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) {}
|
zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 19:40:23 +00:00
|
|
|
static inline void zswap_lruvec_state_init(struct lruvec *lruvec) {}
|
2023-12-13 21:58:30 +00:00
|
|
|
static inline void zswap_folio_swapin(struct folio *folio) {}
|
zswap: memcontrol: implement zswap writeback disabling
During our experiment with zswap, we sometimes observe swap IOs due to
occasional zswap store failures and writebacks-to-swap. These swapping
IOs prevent many users who cannot tolerate swapping from adopting zswap to
save memory and improve performance where possible.
This patch adds the option to disable this behavior entirely: do not
writeback to backing swapping device when a zswap store attempt fail, and
do not write pages in the zswap pool back to the backing swap device (both
when the pool is full, and when the new zswap shrinker is called).
This new behavior can be opted-in/out on a per-cgroup basis via a new
cgroup file. By default, writebacks to swap device is enabled, which is
the previous behavior. Initially, writeback is enabled for the root
cgroup, and a newly created cgroup will inherit the current setting of its
parent.
Note that this is subtly different from setting memory.swap.max to 0, as
it still allows for pages to be stored in the zswap pool (which itself
consumes swap space in its current form).
This patch should be applied on top of the zswap shrinker series:
https://lore.kernel.org/linux-mm/20231130194023.4102148-1-nphamcs@gmail.com/
as it also disables the zswap shrinker, a major source of zswap
writebacks.
For the most part, this feature is motivated by internal parties who
have already established their opinions regarding swapping - the
workloads that are highly sensitive to IO, and especially those who are
using servers with really slow disk performance (for instance, massive
but slow HDDs). For these folks, it's impossible to convince them to
even entertain zswap if swapping also comes as a packaged deal.
Writeback disabling is quite a useful feature in these situations - on
a mixed workloads deployment, they can disable writeback for the more
IO-sensitive workloads, and enable writeback for other background
workloads.
For instance, on a server with HDD, I allocate memories and populate
them with random values (so that zswap store will always fail), and
specify memory.high low enough to trigger reclaim. The time it takes
to allocate the memories and just read through it a couple of times
(doing silly things like computing the values' average etc.):
zswap.writeback disabled:
real 0m30.537s
user 0m23.687s
sys 0m6.637s
0 pages swapped in
0 pages swapped out
zswap.writeback enabled:
real 0m45.061s
user 0m24.310s
sys 0m8.892s
712686 pages swapped in
461093 pages swapped out
(the last two lines are from vmstat -s).
[nphamcs@gmail.com: add a comment about recurring zswap store failures leading to reclaim inefficiency]
Link: https://lkml.kernel.org/r/20231221005725.3446672-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231207192406.3809579-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Heidelberg <david@ixit.cz>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 19:24:06 +00:00
|
|
|
|
2024-06-11 02:45:14 +00:00
|
|
|
static inline bool zswap_is_enabled(void)
|
zswap: memcontrol: implement zswap writeback disabling
During our experiment with zswap, we sometimes observe swap IOs due to
occasional zswap store failures and writebacks-to-swap. These swapping
IOs prevent many users who cannot tolerate swapping from adopting zswap to
save memory and improve performance where possible.
This patch adds the option to disable this behavior entirely: do not
writeback to backing swapping device when a zswap store attempt fail, and
do not write pages in the zswap pool back to the backing swap device (both
when the pool is full, and when the new zswap shrinker is called).
This new behavior can be opted-in/out on a per-cgroup basis via a new
cgroup file. By default, writebacks to swap device is enabled, which is
the previous behavior. Initially, writeback is enabled for the root
cgroup, and a newly created cgroup will inherit the current setting of its
parent.
Note that this is subtly different from setting memory.swap.max to 0, as
it still allows for pages to be stored in the zswap pool (which itself
consumes swap space in its current form).
This patch should be applied on top of the zswap shrinker series:
https://lore.kernel.org/linux-mm/20231130194023.4102148-1-nphamcs@gmail.com/
as it also disables the zswap shrinker, a major source of zswap
writebacks.
For the most part, this feature is motivated by internal parties who
have already established their opinions regarding swapping - the
workloads that are highly sensitive to IO, and especially those who are
using servers with really slow disk performance (for instance, massive
but slow HDDs). For these folks, it's impossible to convince them to
even entertain zswap if swapping also comes as a packaged deal.
Writeback disabling is quite a useful feature in these situations - on
a mixed workloads deployment, they can disable writeback for the more
IO-sensitive workloads, and enable writeback for other background
workloads.
For instance, on a server with HDD, I allocate memories and populate
them with random values (so that zswap store will always fail), and
specify memory.high low enough to trigger reclaim. The time it takes
to allocate the memories and just read through it a couple of times
(doing silly things like computing the values' average etc.):
zswap.writeback disabled:
real 0m30.537s
user 0m23.687s
sys 0m6.637s
0 pages swapped in
0 pages swapped out
zswap.writeback enabled:
real 0m45.061s
user 0m24.310s
sys 0m8.892s
712686 pages swapped in
461093 pages swapped out
(the last two lines are from vmstat -s).
[nphamcs@gmail.com: add a comment about recurring zswap store failures leading to reclaim inefficiency]
Link: https://lkml.kernel.org/r/20231221005725.3446672-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231207192406.3809579-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Heidelberg <david@ixit.cz>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 19:24:06 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2024-06-11 02:45:15 +00:00
|
|
|
static inline bool zswap_never_enabled(void)
|
|
|
|
{
|
2024-06-29 23:22:31 +00:00
|
|
|
return true;
|
2024-06-11 02:45:15 +00:00
|
|
|
}
|
|
|
|
|
2023-07-17 16:02:27 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _LINUX_ZSWAP_H */
|