linux-next/block/blk-zoned.c

1822 lines
51 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Zoned block device handling
*
* Copyright (c) 2015, Hannes Reinecke
* Copyright (c) 2015, SUSE Linux GmbH
*
* Copyright (c) 2016, Damien Le Moal
* Copyright (c) 2016, Western Digital
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
* Copyright (c) 2024, Western Digital Corporation or its affiliates.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blkdev.h>
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
#include <linux/blk-mq.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/sched/mm.h>
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/mempool.h>
#include "blk.h"
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
#include "blk-mq-sched.h"
#include "blk-mq-debugfs.h"
#define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name
static const char *const zone_cond_name[] = {
ZONE_COND_NAME(NOT_WP),
ZONE_COND_NAME(EMPTY),
ZONE_COND_NAME(IMP_OPEN),
ZONE_COND_NAME(EXP_OPEN),
ZONE_COND_NAME(CLOSED),
ZONE_COND_NAME(READONLY),
ZONE_COND_NAME(FULL),
ZONE_COND_NAME(OFFLINE),
};
#undef ZONE_COND_NAME
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
/*
* Per-zone write plug.
* @node: hlist_node structure for managing the plug using a hash table.
* @link: To list the plug in the zone write plug error list of the disk.
* @ref: Zone write plug reference counter. A zone write plug reference is
* always at least 1 when the plug is hashed in the disk plug hash table.
* The reference is incremented whenever a new BIO needing plugging is
* submitted and when a function needs to manipulate a plug. The
* reference count is decremented whenever a plugged BIO completes and
* when a function that referenced the plug returns. The initial
* reference is dropped whenever the zone of the zone write plug is reset,
* finished and when the zone becomes full (last write BIO to the zone
* completes).
* @lock: Spinlock to atomically manipulate the plug.
* @flags: Flags indicating the plug state.
* @zone_no: The number of the zone the plug is managing.
* @wp_offset: The zone write pointer location relative to the start of the zone
* as a number of 512B sectors.
* @bio_list: The list of BIOs that are currently plugged.
* @bio_work: Work struct to handle issuing of plugged BIOs
* @rcu_head: RCU head to free zone write plugs with an RCU grace period.
* @disk: The gendisk the plug belongs to.
*/
struct blk_zone_wplug {
struct hlist_node node;
struct list_head link;
atomic_t ref;
spinlock_t lock;
unsigned int flags;
unsigned int zone_no;
unsigned int wp_offset;
struct bio_list bio_list;
struct work_struct bio_work;
struct rcu_head rcu_head;
struct gendisk *disk;
};
/*
* Zone write plug flags bits:
* - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged,
* that is, that write BIOs are being throttled due to a write BIO already
* being executed or the zone write plug bio list is not empty.
* - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be
* recovered with a report zone to update the zone write pointer offset.
* - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed
* from the disk hash table and that the initial reference to the zone
* write plug set when the plug was first added to the hash table has been
* dropped. This flag is set when a zone is reset, finished or become full,
* to prevent new references to the zone write plug to be taken for
* newly incoming BIOs. A zone write plug flagged with this flag will be
* freed once all remaining references from BIOs or functions are dropped.
*/
#define BLK_ZONE_WPLUG_PLUGGED (1U << 0)
#define BLK_ZONE_WPLUG_ERROR (1U << 1)
#define BLK_ZONE_WPLUG_UNHASHED (1U << 2)
#define BLK_ZONE_WPLUG_BUSY (BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR)
/**
* blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX.
* @zone_cond: BLK_ZONE_COND_XXX.
*
* Description: Centralize block layer function to convert BLK_ZONE_COND_XXX
* into string format. Useful in the debugging and tracing zone conditions. For
* invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN".
*/
const char *blk_zone_cond_str(enum blk_zone_cond zone_cond)
{
static const char *zone_cond_str = "UNKNOWN";
if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond])
zone_cond_str = zone_cond_name[zone_cond];
return zone_cond_str;
}
EXPORT_SYMBOL_GPL(blk_zone_cond_str);
/**
* bdev_nr_zones - Get number of zones
* @bdev: Target device
*
* Return the total number of zones of a zoned block device. For a block
* device without zone capabilities, the number of zones is always 0.
*/
unsigned int bdev_nr_zones(struct block_device *bdev)
{
sector_t zone_sectors = bdev_zone_sectors(bdev);
if (!bdev_is_zoned(bdev))
return 0;
return (bdev_nr_sectors(bdev) + zone_sectors - 1) >>
ilog2(zone_sectors);
}
EXPORT_SYMBOL_GPL(bdev_nr_zones);
/**
* blkdev_report_zones - Get zones information
* @bdev: Target block device
* @sector: Sector from which to report zones
* @nr_zones: Maximum number of zones to report
* @cb: Callback function called for each reported zone
* @data: Private data for the callback
*
* Description:
* Get zone information starting from the zone containing @sector for at most
* @nr_zones, and call @cb for each zone reported by the device.
* To report all zones in a device starting from @sector, the BLK_ALL_ZONES
* constant can be passed to @nr_zones.
* Returns the number of zones reported by the device, or a negative errno
* value in case of failure.
*
* Note: The caller must use memalloc_noXX_save/restore() calls to control
* memory allocations done within this function.
*/
int blkdev_report_zones(struct block_device *bdev, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data)
{
struct gendisk *disk = bdev->bd_disk;
sector_t capacity = get_capacity(disk);
if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones))
return -EOPNOTSUPP;
if (!nr_zones || sector >= capacity)
return 0;
return disk->fops->report_zones(disk, sector, nr_zones, cb, data);
}
EXPORT_SYMBOL_GPL(blkdev_report_zones);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
static inline unsigned long *blk_alloc_zone_bitmap(int node,
unsigned int nr_zones)
{
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long),
GFP_NOIO, node);
}
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
static int blk_zone_need_reset_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
/*
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
* For an all-zones reset, ignore conventional, empty, read-only
* and offline zones.
*/
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
switch (zone->cond) {
case BLK_ZONE_COND_NOT_WP:
case BLK_ZONE_COND_EMPTY:
case BLK_ZONE_COND_READONLY:
case BLK_ZONE_COND_OFFLINE:
return 0;
default:
set_bit(idx, (unsigned long *)data);
return 0;
}
}
static int blkdev_zone_reset_all_emulated(struct block_device *bdev)
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
{
struct gendisk *disk = bdev->bd_disk;
sector_t capacity = bdev_nr_sectors(bdev);
sector_t zone_sectors = bdev_zone_sectors(bdev);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
unsigned long *need_reset;
struct bio *bio = NULL;
sector_t sector = 0;
int ret;
need_reset = blk_alloc_zone_bitmap(disk->queue->node, disk->nr_zones);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
if (!need_reset)
return -ENOMEM;
ret = disk->fops->report_zones(disk, 0, disk->nr_zones,
blk_zone_need_reset_cb, need_reset);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
if (ret < 0)
goto out_free_need_reset;
ret = 0;
while (sector < capacity) {
if (!test_bit(disk_zone_no(disk, sector), need_reset)) {
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
sector += zone_sectors;
continue;
}
bio = blk_next_bio(bio, bdev, 0, REQ_OP_ZONE_RESET | REQ_SYNC,
GFP_KERNEL);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
bio->bi_iter.bi_sector = sector;
sector += zone_sectors;
/* This may take a while, so be nice to others */
cond_resched();
}
if (bio) {
ret = submit_bio_wait(bio);
bio_put(bio);
}
out_free_need_reset:
kfree(need_reset);
return ret;
}
static int blkdev_zone_reset_all(struct block_device *bdev)
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
{
struct bio bio;
bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
return submit_bio_wait(&bio);
}
/**
2019-10-27 14:05:45 +00:00
* blkdev_zone_mgmt - Execute a zone management operation on a range of zones
* @bdev: Target block device
2019-10-27 14:05:45 +00:00
* @op: Operation to be performed on the zones
* @sector: Start sector of the first zone to operate on
* @nr_sectors: Number of sectors, should be at least the length of one zone and
* must be zone size aligned.
*
* Description:
2019-10-27 14:05:45 +00:00
* Perform the specified operation on the range of zones specified by
* @sector..@sector+@nr_sectors. Specifying the entire disk sector range
* is valid, but the specified range should not contain conventional zones.
2019-10-27 14:05:45 +00:00
* The operation to execute on each zone can be a zone reset, open, close
* or finish request.
*/
int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
sector_t sector, sector_t nr_sectors)
{
struct request_queue *q = bdev_get_queue(bdev);
sector_t zone_sectors = bdev_zone_sectors(bdev);
sector_t capacity = bdev_nr_sectors(bdev);
sector_t end_sector = sector + nr_sectors;
struct bio *bio = NULL;
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
int ret = 0;
if (!bdev_is_zoned(bdev))
return -EOPNOTSUPP;
if (bdev_read_only(bdev))
return -EPERM;
2019-10-27 14:05:45 +00:00
if (!op_is_zone_mgmt(op))
return -EOPNOTSUPP;
if (end_sector <= sector || end_sector > capacity)
/* Out of range */
return -EINVAL;
/* Check alignment (handle eventual smaller last zone) */
if (!bdev_is_zone_start(bdev, sector))
return -EINVAL;
if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity)
return -EINVAL;
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
/*
* In the case of a zone reset operation over all zones,
* REQ_OP_ZONE_RESET_ALL can be used with devices supporting this
* command. For other devices, we emulate this command behavior by
* identifying the zones needing a reset.
*/
if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) {
if (!blk_queue_zone_resetall(q))
return blkdev_zone_reset_all_emulated(bdev);
return blkdev_zone_reset_all(bdev);
block: improve handling of all zones reset operation SCSI, ZNS and null_blk zoned devices support resetting all zones using a single command (REQ_OP_ZONE_RESET_ALL), as indicated using the device request queue flag QUEUE_FLAG_ZONE_RESETALL. This flag is not set for device mapper targets creating zoned devices. In this case, a user request for resetting all zones of a device is processed in blkdev_zone_mgmt() by issuing a REQ_OP_ZONE_RESET operation for each zone of the device. This leads to different behaviors of the BLKRESETZONE ioctl() depending on the target device support for the reset all operation. E.g. blkzone reset /dev/sdX will reset all zones of a SCSI device using a single command that will ignore conventional, read-only or offline zones. But a dm-linear device including conventional, read-only or offline zones cannot be reset in the same manner as some of the single zone reset operations issued by blkdev_zone_mgmt() will fail. E.g.: blkzone reset /dev/dm-Y blkzone: /dev/dm-0: BLKRESETZONE ioctl failed: Remote I/O error To simplify applications and tools development, unify the behavior of the all-zone reset operation by modifying blkdev_zone_mgmt() to not issue a zone reset operation for conventional, read-only and offline zones, thus mimicking what an actual reset-all device command does on a device supporting REQ_OP_ZONE_RESET_ALL. This emulation is done using the new function blkdev_zone_reset_all_emulated(). The zones needing a reset are identified using a bitmap that is initialized using a zone report. Since empty zones do not need a reset, also ignore these zones. The function blkdev_zone_reset_all() is introduced for block devices natively supporting reset all operations. blkdev_zone_mgmt() is modified to call either function to execute an all zone reset request. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> [hch: split into multiple functions] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-05-25 21:24:51 +00:00
}
while (sector < end_sector) {
bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL);
bio->bi_iter.bi_sector = sector;
sector += zone_sectors;
/* This may take a while, so be nice to others */
cond_resched();
}
ret = submit_bio_wait(bio);
bio_put(bio);
return ret;
}
2019-10-27 14:05:45 +00:00
EXPORT_SYMBOL_GPL(blkdev_zone_mgmt);
struct zone_report_args {
struct blk_zone __user *zones;
};
static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct zone_report_args *args = data;
if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone)))
return -EFAULT;
return 0;
}
/*
* BLKREPORTZONE ioctl processing.
* Called from blkdev_ioctl.
*/
int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct zone_report_args args;
struct blk_zone_report rep;
int ret;
if (!argp)
return -EINVAL;
if (!bdev_is_zoned(bdev))
return -ENOTTY;
if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report)))
return -EFAULT;
if (!rep.nr_zones)
return -EINVAL;
args.zones = argp + sizeof(struct blk_zone_report);
ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones,
blkdev_copy_zone_to_user, &args);
if (ret < 0)
return ret;
rep.nr_zones = ret;
rep.flags = BLK_ZONE_REP_CAPACITY;
if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report)))
return -EFAULT;
return 0;
}
static int blkdev_truncate_zone_range(struct block_device *bdev,
blk_mode_t mode, const struct blk_zone_range *zrange)
{
loff_t start, end;
if (zrange->sector + zrange->nr_sectors <= zrange->sector ||
zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk))
/* Out of range */
return -EINVAL;
start = zrange->sector << SECTOR_SHIFT;
end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1;
return truncate_bdev_range(bdev, mode, start, end);
}
/*
* BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing.
* Called from blkdev_ioctl.
*/
int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct blk_zone_range zrange;
enum req_op op;
int ret;
if (!argp)
return -EINVAL;
if (!bdev_is_zoned(bdev))
return -ENOTTY;
if (!(mode & BLK_OPEN_WRITE))
return -EBADF;
if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range)))
return -EFAULT;
switch (cmd) {
case BLKRESETZONE:
op = REQ_OP_ZONE_RESET;
/* Invalidate the page cache, including dirty pages. */
filemap_invalidate_lock(bdev->bd_inode->i_mapping);
ret = blkdev_truncate_zone_range(bdev, mode, &zrange);
if (ret)
goto fail;
break;
case BLKOPENZONE:
op = REQ_OP_ZONE_OPEN;
break;
case BLKCLOSEZONE:
op = REQ_OP_ZONE_CLOSE;
break;
case BLKFINISHZONE:
op = REQ_OP_ZONE_FINISH;
break;
default:
return -ENOTTY;
}
ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors);
fail:
if (cmd == BLKRESETZONE)
filemap_invalidate_unlock(bdev->bd_inode->i_mapping);
return ret;
}
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector)
{
if (!disk->conv_zones_bitmap)
return false;
return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
}
static bool disk_insert_zone_wplug(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
struct blk_zone_wplug *zwplg;
unsigned long flags;
unsigned int idx =
hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits);
/*
* Add the new zone write plug to the hash table, but carefully as we
* are racing with other submission context, so we may already have a
* zone write plug for the same zone.
*/
spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) {
if (zwplg->zone_no == zwplug->zone_no) {
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
return false;
}
}
hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]);
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
return true;
}
static void disk_remove_zone_wplug(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
unsigned long flags;
spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED;
atomic_dec(&zwplug->ref);
hlist_del_init_rcu(&zwplug->node);
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
}
static inline bool disk_should_remove_zone_wplug(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
/* If the zone is still busy, the plug cannot be removed. */
if (zwplug->flags & BLK_ZONE_WPLUG_BUSY)
return false;
/* We can remove zone write plugs for zones that are empty or full. */
return !zwplug->wp_offset || zwplug->wp_offset >= disk->zone_capacity;
}
static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk,
sector_t sector)
{
unsigned int zno = disk_zone_no(disk, sector);
unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits);
struct blk_zone_wplug *zwplug;
rcu_read_lock();
hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) {
if (zwplug->zone_no == zno &&
atomic_inc_not_zero(&zwplug->ref)) {
rcu_read_unlock();
return zwplug;
}
}
rcu_read_unlock();
return NULL;
}
static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head)
{
struct blk_zone_wplug *zwplug =
container_of(rcu_head, struct blk_zone_wplug, rcu_head);
mempool_free(zwplug, zwplug->disk->zone_wplugs_pool);
}
static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug)
{
if (atomic_dec_and_test(&zwplug->ref)) {
WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list));
WARN_ON_ONCE(!list_empty(&zwplug->link));
call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu);
}
}
static void blk_zone_wplug_bio_work(struct work_struct *work);
/*
* Get a reference on the write plug for the zone containing @sector.
* If the plug does not exist, it is allocated and hashed.
* Return a pointer to the zone write plug with the plug spinlock held.
*/
static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk,
sector_t sector, gfp_t gfp_mask,
unsigned long *flags)
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
{
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
unsigned int zno = disk_zone_no(disk, sector);
struct blk_zone_wplug *zwplug;
again:
zwplug = disk_get_zone_wplug(disk, sector);
if (zwplug) {
/*
* Check that a BIO completion or a zone reset or finish
* operation has not already removed the zone write plug from
* the hash table and dropped its reference count. In such case,
* we need to get a new plug so start over from the beginning.
*/
spin_lock_irqsave(&zwplug->lock, *flags);
if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) {
spin_unlock_irqrestore(&zwplug->lock, *flags);
disk_put_zone_wplug(zwplug);
goto again;
}
return zwplug;
}
/*
* Allocate and initialize a zone write plug with an extra reference
* so that it is not freed when the zone write plug becomes idle without
* the zone being full.
*/
zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask);
if (!zwplug)
return NULL;
INIT_HLIST_NODE(&zwplug->node);
INIT_LIST_HEAD(&zwplug->link);
atomic_set(&zwplug->ref, 2);
spin_lock_init(&zwplug->lock);
zwplug->flags = 0;
zwplug->zone_no = zno;
zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1);
bio_list_init(&zwplug->bio_list);
INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work);
zwplug->disk = disk;
spin_lock_irqsave(&zwplug->lock, *flags);
/*
* Insert the new zone write plug in the hash table. This can fail only
* if another context already inserted a plug. Retry from the beginning
* in such case.
*/
if (!disk_insert_zone_wplug(disk, zwplug)) {
spin_unlock_irqrestore(&zwplug->lock, *flags);
mempool_free(zwplug, disk->zone_wplugs_pool);
goto again;
}
return zwplug;
}
static inline void blk_zone_wplug_bio_io_error(struct bio *bio)
{
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING);
bio_io_error(bio);
blk_queue_exit(q);
}
/*
* Abort (fail) all plugged BIOs of a zone write plug.
*/
static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug)
{
struct bio *bio;
while ((bio = bio_list_pop(&zwplug->bio_list))) {
blk_zone_wplug_bio_io_error(bio);
disk_put_zone_wplug(zwplug);
}
}
/*
* Abort (fail) all plugged BIOs of a zone write plug that are not aligned
* with the assumed write pointer location of the zone when the BIO will
* be unplugged.
*/
static void disk_zone_wplug_abort_unaligned(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
unsigned int zone_capacity = disk->zone_capacity;
unsigned int wp_offset = zwplug->wp_offset;
struct bio_list bl = BIO_EMPTY_LIST;
struct bio *bio;
while ((bio = bio_list_pop(&zwplug->bio_list))) {
if (wp_offset >= zone_capacity ||
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
(bio_op(bio) != REQ_OP_ZONE_APPEND &&
bio_offset_from_zone_start(bio) != wp_offset)) {
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
blk_zone_wplug_bio_io_error(bio);
disk_put_zone_wplug(zwplug);
continue;
}
wp_offset += bio_sectors(bio);
bio_list_add(&bl, bio);
}
bio_list_merge(&zwplug->bio_list, &bl);
}
/*
* Set a zone write plug write pointer offset to either 0 (zone reset case)
* or to the zone size (zone finish case). This aborts all plugged BIOs, which
* is fine to do as doing a zone reset or zone finish while writes are in-flight
* is a mistake from the user which will most likely cause all plugged BIOs to
* fail anyway.
*/
static void disk_zone_wplug_set_wp_offset(struct gendisk *disk,
struct blk_zone_wplug *zwplug,
unsigned int wp_offset)
{
unsigned long flags;
spin_lock_irqsave(&zwplug->lock, flags);
/*
* Make sure that a BIO completion or another zone reset or finish
* operation has not already removed the plug from the hash table.
*/
if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) {
spin_unlock_irqrestore(&zwplug->lock, flags);
return;
}
/* Update the zone write pointer and abort all plugged BIOs. */
zwplug->wp_offset = wp_offset;
disk_zone_wplug_abort(zwplug);
/*
* Updating the write pointer offset puts back the zone
* in a good state. So clear the error flag and decrement the
* error count if we were in error state.
*/
if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) {
zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR;
spin_lock(&disk->zone_wplugs_lock);
list_del_init(&zwplug->link);
spin_unlock(&disk->zone_wplugs_lock);
}
/*
* The zone write plug now has no BIO plugged: remove it from the
* hash table so that it cannot be seen. The plug will be freed
* when the last reference is dropped.
*/
if (disk_should_remove_zone_wplug(disk, zwplug))
disk_remove_zone_wplug(disk, zwplug);
spin_unlock_irqrestore(&zwplug->lock, flags);
}
static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio,
unsigned int wp_offset)
{
struct gendisk *disk = bio->bi_bdev->bd_disk;
sector_t sector = bio->bi_iter.bi_sector;
struct blk_zone_wplug *zwplug;
/* Conventional zones cannot be reset nor finished. */
if (disk_zone_is_conv(disk, sector)) {
bio_io_error(bio);
return true;
}
/*
* If we have a zone write plug, set its write pointer offset to 0
* (reset case) or to the zone size (finish case). This will abort all
* BIOs plugged for the target zone. It is fine as resetting or
* finishing zones while writes are still in-flight will result in the
* writes failing anyway.
*/
zwplug = disk_get_zone_wplug(disk, sector);
if (zwplug) {
disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset);
disk_put_zone_wplug(zwplug);
}
return false;
}
static bool blk_zone_wplug_handle_reset_all(struct bio *bio)
{
struct gendisk *disk = bio->bi_bdev->bd_disk;
struct blk_zone_wplug *zwplug;
sector_t sector;
/*
* Set the write pointer offset of all zone write plugs to 0. This will
* abort all plugged BIOs. It is fine as resetting zones while writes
* are still in-flight will result in the writes failing anyway.
*/
for (sector = 0; sector < get_capacity(disk);
sector += disk->queue->limits.chunk_sectors) {
zwplug = disk_get_zone_wplug(disk, sector);
if (zwplug) {
disk_zone_wplug_set_wp_offset(disk, zwplug, 0);
disk_put_zone_wplug(zwplug);
}
}
return false;
}
static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug,
struct bio *bio, unsigned int nr_segs)
{
/*
* Grab an extra reference on the BIO request queue usage counter.
* This reference will be reused to submit a request for the BIO for
* blk-mq devices and dropped when the BIO is failed and after
* it is issued in the case of BIO-based devices.
*/
percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter);
/*
* The BIO is being plugged and thus will have to wait for the on-going
* write and for all other writes already plugged. So polling makes
* no sense.
*/
bio_clear_polled(bio);
/*
* Reuse the poll cookie field to store the number of segments when
* split to the hardware limits.
*/
bio->__bi_nr_segments = nr_segs;
/*
* We always receive BIOs after they are split and ready to be issued.
* The block layer passes the parts of a split BIO in order, and the
* user must also issue write sequentially. So simply add the new BIO
* at the tail of the list to preserve the sequential write order.
*/
bio_list_add(&zwplug->bio_list, bio);
}
/*
* Called from bio_attempt_back_merge() when a BIO was merged with a request.
*/
void blk_zone_write_plug_bio_merged(struct bio *bio)
{
struct blk_zone_wplug *zwplug;
unsigned long flags;
/*
* If the BIO was already plugged, then we were called through
* blk_zone_write_plug_attempt_merge() -> blk_attempt_bio_merge().
* For this case, blk_zone_write_plug_attempt_merge() will handle the
* zone write pointer offset update.
*/
if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
return;
bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING);
/*
* Increase the plug reference count and advance the zone write
* pointer offset.
*/
zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk,
bio->bi_iter.bi_sector);
spin_lock_irqsave(&zwplug->lock, flags);
zwplug->wp_offset += bio_sectors(bio);
spin_unlock_irqrestore(&zwplug->lock, flags);
}
/*
* Attempt to merge plugged BIOs with a newly prepared request for a BIO that
* already went through zone write plugging (either a new BIO or one that was
* unplugged).
*/
void blk_zone_write_plug_attempt_merge(struct request *req)
{
sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req);
struct request_queue *q = req->q;
struct gendisk *disk = q->disk;
unsigned int zone_capacity = disk->zone_capacity;
struct blk_zone_wplug *zwplug =
disk_get_zone_wplug(disk, blk_rq_pos(req));
unsigned long flags;
struct bio *bio;
/*
* Completion of this request needs to be handled with
* blk_zone_write_plug_complete_request().
*/
req->rq_flags |= RQF_ZONE_WRITE_PLUGGING;
if (blk_queue_nomerges(q))
return;
/*
* Walk through the list of plugged BIOs to check if they can be merged
* into the back of the request.
*/
spin_lock_irqsave(&zwplug->lock, flags);
while (zwplug->wp_offset < zone_capacity) {
bio = bio_list_peek(&zwplug->bio_list);
if (!bio)
break;
if (bio->bi_iter.bi_sector != req_back_sector ||
!blk_rq_merge_ok(req, bio))
break;
WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES &&
!bio->__bi_nr_segments);
bio_list_pop(&zwplug->bio_list);
if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) !=
BIO_MERGE_OK) {
bio_list_add_head(&zwplug->bio_list, bio);
break;
}
/*
* Drop the extra reference on the queue usage we got when
* plugging the BIO and advance the write pointer offset.
*/
blk_queue_exit(q);
zwplug->wp_offset += bio_sectors(bio);
req_back_sector += bio_sectors(bio);
}
spin_unlock_irqrestore(&zwplug->lock, flags);
}
static inline void disk_zone_wplug_set_error(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) {
unsigned long flags;
/*
* Increase the plug reference count. The reference will be
* dropped in disk_zone_wplugs_work() once the error state
* is handled.
*/
zwplug->flags |= BLK_ZONE_WPLUG_ERROR;
atomic_inc(&zwplug->ref);
spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list);
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
}
}
/*
* Check and prepare a BIO for submission by incrementing the write pointer
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
* offset of its zone write plug and changing zone append operations into
* regular write when zone append emulation is needed.
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
*/
static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug,
struct bio *bio)
{
struct gendisk *disk = bio->bi_bdev->bd_disk;
/*
* Check that the user is not attempting to write to a full zone.
* We know such BIO will fail, and that would potentially overflow our
* write pointer offset beyond the end of the zone.
*/
if (zwplug->wp_offset >= disk->zone_capacity)
goto err;
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
/*
* Use a regular write starting at the current write pointer.
* Similarly to native zone append operations, do not allow
* merging.
*/
bio->bi_opf &= ~REQ_OP_MASK;
bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE;
bio->bi_iter.bi_sector += zwplug->wp_offset;
/*
* Remember that this BIO is in fact a zone append operation
* so that we can restore its operation code on completion.
*/
bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND);
} else {
/*
* Check for non-sequential writes early because we avoid a
* whole lot of error handling trouble if we don't send it off
* to the driver.
*/
if (bio_offset_from_zone_start(bio) != zwplug->wp_offset)
goto err;
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
/* Advance the zone write pointer offset. */
zwplug->wp_offset += bio_sectors(bio);
return true;
err:
/* We detected an invalid write BIO: schedule error recovery. */
disk_zone_wplug_set_error(disk, zwplug);
kblockd_schedule_work(&disk->zone_wplugs_work);
return false;
}
static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs)
{
struct gendisk *disk = bio->bi_bdev->bd_disk;
sector_t sector = bio->bi_iter.bi_sector;
struct blk_zone_wplug *zwplug;
gfp_t gfp_mask = GFP_NOIO;
unsigned long flags;
/*
* BIOs must be fully contained within a zone so that we use the correct
* zone write plug for the entire BIO. For blk-mq devices, the block
* layer should already have done any splitting required to ensure this
* and this BIO should thus not be straddling zone boundaries. For
* BIO-based devices, it is the responsibility of the driver to split
* the bio before submitting it.
*/
if (WARN_ON_ONCE(bio_straddles_zones(bio))) {
bio_io_error(bio);
return true;
}
/* Conventional zones do not need write plugging. */
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
if (disk_zone_is_conv(disk, sector)) {
/* Zone append to conventional zones is not allowed. */
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
bio_io_error(bio);
return true;
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
return false;
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
if (bio->bi_opf & REQ_NOWAIT)
gfp_mask = GFP_NOWAIT;
zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags);
if (!zwplug) {
bio_io_error(bio);
return true;
}
/* Indicate that this BIO is being handled using zone write plugging. */
bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING);
/*
* If the zone is already plugged or has a pending error, add the BIO
* to the plug BIO list. Otherwise, plug and let the BIO execute.
*/
if (zwplug->flags & BLK_ZONE_WPLUG_BUSY)
goto plug;
/*
* If an error is detected when preparing the BIO, add it to the BIO
* list so that error recovery can deal with it.
*/
if (!blk_zone_wplug_prepare_bio(zwplug, bio))
goto plug;
zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED;
spin_unlock_irqrestore(&zwplug->lock, flags);
return false;
plug:
zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED;
blk_zone_wplug_add_bio(zwplug, bio, nr_segs);
spin_unlock_irqrestore(&zwplug->lock, flags);
return true;
}
/**
* blk_zone_plug_bio - Handle a zone write BIO with zone write plugging
* @bio: The BIO being submitted
* @nr_segs: The number of physical segments of @bio
*
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
* Handle write, write zeroes and zone append operations requiring emulation
* using zone write plugging.
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
*
* Return true whenever @bio execution needs to be delayed through the zone
* write plug. Otherwise, return false to let the submission path process
* @bio normally.
*/
bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
{
struct block_device *bdev = bio->bi_bdev;
if (!bdev->bd_disk->zone_wplugs_hash)
return false;
/*
* If the BIO already has the plugging flag set, then it was already
* handled through this path and this is a submission from the zone
* plug bio submit work.
*/
if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
return false;
/*
* We do not need to do anything special for empty flush BIOs, e.g
* BIOs such as issued by blkdev_issue_flush(). The is because it is
* the responsibility of the user to first wait for the completion of
* write operations for flush to have any effect on the persistence of
* the written data.
*/
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
return false;
/*
* Regular writes and write zeroes need to be handled through the target
* zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH
* which may need to go through the flush machinery depending on the
* target device capabilities. Plugging such writes is fine as the flush
* machinery operates at the request level, below the plug, and
* completion of the flush sequence will go through the regular BIO
* completion, which will handle zone write plugging.
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
* Zone append operations for devices that requested emulation must
* also be plugged so that these BIOs can be changed into regular
* write BIOs.
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
* Zone reset, reset all and finish commands need special treatment
* to correctly track the write pointer offset of zones. These commands
* are not plugged as we do not need serialization with write
* operations. It is the responsibility of the user to not issue reset
* and finish commands when write operations are in flight.
*/
switch (bio_op(bio)) {
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
case REQ_OP_ZONE_APPEND:
if (!bdev_emulates_zone_append(bdev))
return false;
fallthrough;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
case REQ_OP_WRITE:
case REQ_OP_WRITE_ZEROES:
return blk_zone_wplug_handle_write(bio, nr_segs);
case REQ_OP_ZONE_RESET:
return blk_zone_wplug_handle_reset_or_finish(bio, 0);
case REQ_OP_ZONE_FINISH:
return blk_zone_wplug_handle_reset_or_finish(bio,
bdev_zone_sectors(bdev));
case REQ_OP_ZONE_RESET_ALL:
return blk_zone_wplug_handle_reset_all(bio);
default:
return false;
}
return false;
}
EXPORT_SYMBOL_GPL(blk_zone_plug_bio);
static void disk_zone_wplug_unplug_bio(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
unsigned long flags;
spin_lock_irqsave(&zwplug->lock, flags);
/*
* If we had an error, schedule error recovery. The recovery work
* will restart submission of plugged BIOs.
*/
if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) {
spin_unlock_irqrestore(&zwplug->lock, flags);
kblockd_schedule_work(&disk->zone_wplugs_work);
return;
}
/* Schedule submission of the next plugged BIO if we have one. */
if (!bio_list_empty(&zwplug->bio_list)) {
spin_unlock_irqrestore(&zwplug->lock, flags);
queue_work(disk->zone_wplugs_wq, &zwplug->bio_work);
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
return;
}
zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
/*
* If the zone is full (it was fully written or finished, or empty
* (it was reset), remove its zone write plug from the hash table.
*/
if (disk_should_remove_zone_wplug(disk, zwplug))
disk_remove_zone_wplug(disk, zwplug);
spin_unlock_irqrestore(&zwplug->lock, flags);
}
void blk_zone_write_plug_bio_endio(struct bio *bio)
{
struct gendisk *disk = bio->bi_bdev->bd_disk;
struct blk_zone_wplug *zwplug =
disk_get_zone_wplug(bio->bi_bdev->bd_disk,
bio->bi_iter.bi_sector);
unsigned long flags;
if (WARN_ON_ONCE(!zwplug))
return;
/* Make sure we do not see this BIO again by clearing the plug flag. */
bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING);
block: Implement zone append emulation Given that zone write plugging manages all writes to zones of a zoned block device and tracks the write pointer position of all zones that are not full nor empty, emulating zone append operations using regular writes can be implemented generically, without relying on the underlying device driver to implement such emulation. This is needed for devices that do not natively support the zone append command (e.g. SMR hard-disks). A device may request zone append emulation by setting its max_zone_append_sectors queue limit to 0. For such device, the function blk_zone_wplug_prepare_bio() changes zone append BIOs into non-mergeable regular write BIOs. Modified zone append BIOs are flagged with the new BIO flag BIO_EMULATES_ZONE_APPEND. This flag is checked on completion of the BIO in blk_zone_write_plug_bio_endio() to restore the original REQ_OP_ZONE_APPEND operation code of the BIO. The block layer internal inline helper function bio_is_zone_append() is added to test if a BIO is either a native zone append operation (REQ_OP_ZONE_APPEND operation code) or if it is flagged with BIO_EMULATES_ZONE_APPEND. Given that both native and emulated zone append BIO completion handling should be similar, The functions blk_update_request() and blk_zone_complete_request_bio() are modified to use bio_is_zone_append() to execute blk_zone_update_request_bio() for both native and emulated zone append operations. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-11-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:10 +00:00
/*
* If this is a regular write emulating a zone append operation,
* restore the original operation code.
*/
if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) {
bio->bi_opf &= ~REQ_OP_MASK;
bio->bi_opf |= REQ_OP_ZONE_APPEND;
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
/*
* If the BIO failed, mark the plug as having an error to trigger
* recovery.
*/
if (bio->bi_status != BLK_STS_OK) {
spin_lock_irqsave(&zwplug->lock, flags);
disk_zone_wplug_set_error(disk, zwplug);
spin_unlock_irqrestore(&zwplug->lock, flags);
}
/*
* For BIO-based devices, blk_zone_write_plug_complete_request()
* is not called. So we need to schedule execution of the next
* plugged BIO here.
*/
if (bio->bi_bdev->bd_has_submit_bio)
disk_zone_wplug_unplug_bio(disk, zwplug);
/* Drop the reference we took when the BIO was issued. */
atomic_dec(&zwplug->ref);
disk_put_zone_wplug(zwplug);
}
void blk_zone_write_plug_complete_request(struct request *req)
{
struct gendisk *disk = req->q->disk;
struct blk_zone_wplug *zwplug = disk_get_zone_wplug(disk, req->__sector);
if (WARN_ON_ONCE(!zwplug))
return;
req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING;
disk_zone_wplug_unplug_bio(disk, zwplug);
/*
* Drop the reference we took when the request was initialized in
* blk_zone_write_plug_attempt_merge().
*/
atomic_dec(&zwplug->ref);
disk_put_zone_wplug(zwplug);
}
static void blk_zone_wplug_bio_work(struct work_struct *work)
{
struct blk_zone_wplug *zwplug =
container_of(work, struct blk_zone_wplug, bio_work);
struct block_device *bdev;
unsigned long flags;
struct bio *bio;
/*
* Submit the next plugged BIO. If we do not have any, clear
* the plugged flag.
*/
spin_lock_irqsave(&zwplug->lock, flags);
bio = bio_list_pop(&zwplug->bio_list);
if (!bio) {
zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
spin_unlock_irqrestore(&zwplug->lock, flags);
return;
}
if (!blk_zone_wplug_prepare_bio(zwplug, bio)) {
/* Error recovery will decide what to do with the BIO. */
bio_list_add_head(&zwplug->bio_list, bio);
spin_unlock_irqrestore(&zwplug->lock, flags);
return;
}
spin_unlock_irqrestore(&zwplug->lock, flags);
bdev = bio->bi_bdev;
submit_bio_noacct_nocheck(bio);
/*
* blk-mq devices will reuse the extra reference on the request queue
* usage counter we took when the BIO was plugged, but the submission
* path for BIO-based devices will not do that. So drop this extra
* reference here.
*/
if (bdev->bd_has_submit_bio)
blk_queue_exit(bdev->bd_disk->queue);
}
static unsigned int blk_zone_wp_offset(struct blk_zone *zone)
{
switch (zone->cond) {
case BLK_ZONE_COND_IMP_OPEN:
case BLK_ZONE_COND_EXP_OPEN:
case BLK_ZONE_COND_CLOSED:
return zone->wp - zone->start;
case BLK_ZONE_COND_FULL:
return zone->len;
case BLK_ZONE_COND_EMPTY:
return 0;
case BLK_ZONE_COND_NOT_WP:
case BLK_ZONE_COND_OFFLINE:
case BLK_ZONE_COND_READONLY:
default:
/*
* Conventional, offline and read-only zones do not have a valid
* write pointer.
*/
return UINT_MAX;
}
}
static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone,
unsigned int idx, void *data)
{
struct blk_zone *zonep = data;
*zonep = *zone;
return 0;
}
static void disk_zone_wplug_handle_error(struct gendisk *disk,
struct blk_zone_wplug *zwplug)
{
sector_t zone_start_sector =
bdev_zone_sectors(disk->part0) * zwplug->zone_no;
unsigned int noio_flag;
struct blk_zone zone;
unsigned long flags;
int ret;
/* Get the current zone information from the device. */
noio_flag = memalloc_noio_save();
ret = disk->fops->report_zones(disk, zone_start_sector, 1,
blk_zone_wplug_report_zone_cb, &zone);
memalloc_noio_restore(noio_flag);
spin_lock_irqsave(&zwplug->lock, flags);
/*
* A zone reset or finish may have cleared the error already. In such
* case, do nothing as the report zones may have seen the "old" write
* pointer value before the reset/finish operation completed.
*/
if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR))
goto unlock;
zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR;
if (ret != 1) {
/*
* We failed to get the zone information, meaning that something
* is likely really wrong with the device. Abort all remaining
* plugged BIOs as otherwise we could endup waiting forever on
* plugged BIOs to complete if there is a queue freeze on-going.
*/
disk_zone_wplug_abort(zwplug);
goto unplug;
}
/* Update the zone write pointer offset. */
zwplug->wp_offset = blk_zone_wp_offset(&zone);
disk_zone_wplug_abort_unaligned(disk, zwplug);
/* Restart BIO submission if we still have any BIO left. */
if (!bio_list_empty(&zwplug->bio_list)) {
WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED));
queue_work(disk->zone_wplugs_wq, &zwplug->bio_work);
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
goto unlock;
}
unplug:
zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
if (disk_should_remove_zone_wplug(disk, zwplug))
disk_remove_zone_wplug(disk, zwplug);
unlock:
spin_unlock_irqrestore(&zwplug->lock, flags);
}
static void disk_zone_wplugs_work(struct work_struct *work)
{
struct gendisk *disk =
container_of(work, struct gendisk, zone_wplugs_work);
struct blk_zone_wplug *zwplug;
unsigned long flags;
spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
while (!list_empty(&disk->zone_wplugs_err_list)) {
zwplug = list_first_entry(&disk->zone_wplugs_err_list,
struct blk_zone_wplug, link);
list_del_init(&zwplug->link);
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
disk_zone_wplug_handle_error(disk, zwplug);
disk_put_zone_wplug(zwplug);
spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
}
spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
}
static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk)
{
return 1U << disk->zone_wplugs_hash_bits;
}
void disk_init_zone_resources(struct gendisk *disk)
{
spin_lock_init(&disk->zone_wplugs_lock);
INIT_LIST_HEAD(&disk->zone_wplugs_err_list);
INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work);
}
/*
* For the size of a disk zone write plug hash table, use the size of the
* zone write plug mempool, which is the maximum of the disk open zones and
* active zones limits. But do not exceed 4KB (512 hlist head entries), that is,
* 9 bits. For a disk that has no limits, mempool size defaults to 128.
*/
#define BLK_ZONE_WPLUG_MAX_HASH_BITS 9
#define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE 128
static int disk_alloc_zone_resources(struct gendisk *disk,
unsigned int pool_size)
{
unsigned int i;
disk->zone_wplugs_hash_bits =
min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS);
disk->zone_wplugs_hash =
kcalloc(disk_zone_wplugs_hash_size(disk),
sizeof(struct hlist_head), GFP_KERNEL);
if (!disk->zone_wplugs_hash)
return -ENOMEM;
for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++)
INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]);
disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size,
sizeof(struct blk_zone_wplug));
if (!disk->zone_wplugs_pool)
goto free_hash;
disk->zone_wplugs_wq =
alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI,
pool_size, disk->disk_name);
if (!disk->zone_wplugs_wq)
goto destroy_pool;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
return 0;
destroy_pool:
mempool_destroy(disk->zone_wplugs_pool);
disk->zone_wplugs_pool = NULL;
free_hash:
kfree(disk->zone_wplugs_hash);
disk->zone_wplugs_hash = NULL;
disk->zone_wplugs_hash_bits = 0;
return -ENOMEM;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
}
static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk)
{
struct blk_zone_wplug *zwplug;
unsigned int i;
if (!disk->zone_wplugs_hash)
return;
/* Free all the zone write plugs we have. */
for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) {
while (!hlist_empty(&disk->zone_wplugs_hash[i])) {
zwplug = hlist_entry(disk->zone_wplugs_hash[i].first,
struct blk_zone_wplug, node);
atomic_inc(&zwplug->ref);
disk_remove_zone_wplug(disk, zwplug);
disk_put_zone_wplug(zwplug);
}
}
kfree(disk->zone_wplugs_hash);
disk->zone_wplugs_hash = NULL;
disk->zone_wplugs_hash_bits = 0;
}
void disk_free_zone_resources(struct gendisk *disk)
{
cancel_work_sync(&disk->zone_wplugs_work);
if (disk->zone_wplugs_wq) {
destroy_workqueue(disk->zone_wplugs_wq);
disk->zone_wplugs_wq = NULL;
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
disk_destroy_zone_wplugs_hash_table(disk);
/*
* Wait for the zone write plugs to be RCU-freed before
* destorying the mempool.
*/
rcu_barrier();
mempool_destroy(disk->zone_wplugs_pool);
disk->zone_wplugs_pool = NULL;
kfree(disk->conv_zones_bitmap);
disk->conv_zones_bitmap = NULL;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
disk->zone_capacity = 0;
disk->nr_zones = 0;
}
static inline bool disk_need_zone_resources(struct gendisk *disk)
{
/*
* All mq zoned devices need zone resources so that the block layer
* can automatically handle write BIO plugging. BIO-based device drivers
* (e.g. DM devices) are normally responsible for handling zone write
* ordering and do not need zone resources, unless the driver requires
* zone append emulation.
*/
return queue_is_mq(disk->queue) ||
queue_emulates_zone_append(disk->queue);
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
static int disk_revalidate_zone_resources(struct gendisk *disk,
unsigned int nr_zones)
{
struct queue_limits *lim = &disk->queue->limits;
unsigned int pool_size;
if (!disk_need_zone_resources(disk))
return 0;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
/*
* If the device has no limit on the maximum number of open and active
* zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE.
*/
pool_size = max(lim->max_open_zones, lim->max_active_zones);
if (!pool_size)
pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones);
if (!disk->zone_wplugs_hash)
return disk_alloc_zone_resources(disk, pool_size);
return 0;
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
}
struct blk_revalidate_zone_args {
struct gendisk *disk;
unsigned long *conv_zones_bitmap;
unsigned int nr_zones;
unsigned int zone_capacity;
sector_t sector;
};
/*
* Update the disk zone resources information and device queue limits.
* The disk queue is frozen when this is executed.
*/
static int disk_update_zone_resources(struct gendisk *disk,
struct blk_revalidate_zone_args *args)
{
struct request_queue *q = disk->queue;
unsigned int nr_seq_zones, nr_conv_zones = 0;
unsigned int pool_size;
struct queue_limits lim;
disk->nr_zones = args->nr_zones;
disk->zone_capacity = args->zone_capacity;
swap(disk->conv_zones_bitmap, args->conv_zones_bitmap);
if (disk->conv_zones_bitmap)
nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap,
disk->nr_zones);
if (nr_conv_zones >= disk->nr_zones) {
pr_warn("%s: Invalid number of conventional zones %u / %u\n",
disk->disk_name, nr_conv_zones, disk->nr_zones);
return -ENODEV;
}
if (!disk->zone_wplugs_pool)
return 0;
/*
* If the device has no limit on the maximum number of open and active
* zones, set its max open zone limit to the mempool size to indicate
* to the user that there is a potential performance impact due to
* dynamic zone write plug allocation when simultaneously writing to
* more zones than the size of the mempool.
*/
lim = queue_limits_start_update(q);
nr_seq_zones = disk->nr_zones - nr_conv_zones;
pool_size = max(lim.max_open_zones, lim.max_active_zones);
if (!pool_size)
pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones);
mempool_resize(disk->zone_wplugs_pool, pool_size);
if (!lim.max_open_zones && !lim.max_active_zones) {
if (pool_size < nr_seq_zones)
lim.max_open_zones = pool_size;
else
lim.max_open_zones = 0;
}
return queue_limits_commit_update(q, &lim);
}
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
/*
* Helper function to check the validity of zones of a zoned block device.
*/
static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx,
void *data)
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
{
struct blk_revalidate_zone_args *args = data;
struct gendisk *disk = args->disk;
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
struct request_queue *q = disk->queue;
sector_t capacity = get_capacity(disk);
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
sector_t zone_sectors = q->limits.chunk_sectors;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
struct blk_zone_wplug *zwplug;
unsigned long flags;
unsigned int wp_offset;
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
/* Check for bad zones and holes in the zone report */
if (zone->start != args->sector) {
pr_warn("%s: Zone gap at sectors %llu..%llu\n",
disk->disk_name, args->sector, zone->start);
return -ENODEV;
}
if (zone->start >= capacity || !zone->len) {
pr_warn("%s: Invalid zone start %llu, length %llu\n",
disk->disk_name, zone->start, zone->len);
return -ENODEV;
}
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
/*
* All zones must have the same size, with the exception on an eventual
* smaller last zone.
*/
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
if (zone->start + zone->len < capacity) {
if (zone->len != zone_sectors) {
pr_warn("%s: Invalid zoned device with non constant zone size\n",
disk->disk_name);
return -ENODEV;
}
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
} else if (zone->len > zone_sectors) {
pr_warn("%s: Invalid zoned device with larger last zone size\n",
disk->disk_name);
return -ENODEV;
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
}
if (!zone->capacity || zone->capacity > zone->len) {
pr_warn("%s: Invalid zone capacity\n",
disk->disk_name);
return -ENODEV;
}
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
/* Check zone type */
switch (zone->type) {
case BLK_ZONE_TYPE_CONVENTIONAL:
if (zone->capacity != zone->len) {
pr_warn("%s: Invalid conventional zone capacity\n",
disk->disk_name);
return -ENODEV;
}
if (!disk_need_zone_resources(disk))
break;
if (!args->conv_zones_bitmap) {
args->conv_zones_bitmap =
blk_alloc_zone_bitmap(q->node, args->nr_zones);
if (!args->conv_zones_bitmap)
return -ENOMEM;
}
set_bit(idx, args->conv_zones_bitmap);
break;
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
case BLK_ZONE_TYPE_SEQWRITE_REQ:
/*
* Remember the capacity of the first sequential zone and check
* if it is constant for all zones.
*/
if (!args->zone_capacity)
args->zone_capacity = zone->capacity;
if (zone->capacity != args->zone_capacity) {
pr_warn("%s: Invalid variable zone capacity\n",
disk->disk_name);
return -ENODEV;
}
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
/*
* We need to track the write pointer of all zones that are not
* empty nor full. So make sure we have a zone write plug for
* such zone if the device has a zone write plug hash table.
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
*/
if (!disk->zone_wplugs_hash)
break;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
wp_offset = blk_zone_wp_offset(zone);
if (wp_offset && wp_offset < zone->capacity) {
zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp,
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
GFP_NOIO, &flags);
if (!zwplug)
return -ENOMEM;
spin_unlock_irqrestore(&zwplug->lock, flags);
disk_put_zone_wplug(zwplug);
}
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
break;
case BLK_ZONE_TYPE_SEQWRITE_PREF:
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
default:
pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n",
disk->disk_name, (int)zone->type, zone->start);
return -ENODEV;
block: Enhance blk_revalidate_disk_zones() For ZBC and ZAC zoned devices, the scsi driver revalidation processing implemented by sd_revalidate_disk() includes a call to sd_zbc_read_zones() which executes a full disk zone report used to check that all zones of the disk are the same size. This processing is followed by a call to blk_revalidate_disk_zones(), used to initialize the device request queue zone bitmaps (zone type and zone write lock bitmaps). To do so, blk_revalidate_disk_zones() also executes a full device zone report to obtain zone types. As a result, the entire zoned block device revalidation process includes two full device zone report. By moving the zone size checks into blk_revalidate_disk_zones(), this process can be optimized to a single full device zone report, leading to shorter device scan and revalidation times. This patch implements this optimization, reducing the original full device zone report implemented in sd_zbc_check_zones() to a single, small, report zones command execution to obtain the size of the first zone of the device. Checks whether all zones of the device are the same size as the first zone size are moved to the generic blk_check_zone() function called from blk_revalidate_disk_zones(). This optimization also has the following benefits: 1) fewer memory allocations in the scsi layer during disk revalidation as the potentailly large buffer for zone report execution is not needed. 2) Implement zone checks in a generic manner, reducing the burden on device driver which only need to obtain the zone size and check that this size is a power of 2 number of LBAs. Any new type of zoned block device will benefit from this. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-11 02:39:22 +00:00
}
args->sector += zone->len;
return 0;
}
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
/**
* blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
* @disk: Target disk
*
* Helper function for low-level device drivers to check, (re) allocate and
* initialize resources used for managing zoned disks. This function should
* normally be called by blk-mq based drivers when a zoned gendisk is probed
* and when the zone configuration of the gendisk changes (e.g. after a format).
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
* Before calling this function, the device driver must already have set the
* device zone size (chunk_sector limit) and the max zone append limit.
* BIO based drivers can also use this function as long as the device queue
* can be safely frozen.
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
*/
int blk_revalidate_disk_zones(struct gendisk *disk)
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
{
struct request_queue *q = disk->queue;
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
sector_t zone_sectors = q->limits.chunk_sectors;
sector_t capacity = get_capacity(disk);
struct blk_revalidate_zone_args args = { };
unsigned int noio_flag;
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
int ret = -ENOMEM;
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
return -EIO;
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
if (!capacity)
return -ENODEV;
/*
* Checks that the device driver indicated a valid zone size and that
* the max zone append limit is set.
*/
if (!zone_sectors || !is_power_of_2(zone_sectors)) {
pr_warn("%s: Invalid non power of two zone size (%llu)\n",
disk->disk_name, zone_sectors);
return -ENODEV;
}
block: Allow zero value of max_zone_append_sectors queue limit In preparation for adding a generic zone append emulation using zone write plugging, allow device drivers supporting zoned block device to set a the max_zone_append_sectors queue limit of a device to 0 to indicate the lack of native support for zone append operations and that the block layer should emulate these operations using regular write operations. blk_queue_max_zone_append_sectors() is modified to allow passing 0 as the max_zone_append_sectors argument. The function queue_max_zone_append_sectors() is also modified to ensure that the minimum of the max_hw_sectors and chunk_sectors limit is used whenever the max_zone_append_sectors limit is 0. This minimum is consistent with the value set for the max_zone_append_sectors limit by the function blk_validate_zoned_limits() when limits for a queue are validated. The helper functions queue_emulates_zone_append() and bdev_emulates_zone_append() are added to test if a queue (or block device) emulates zone append operations. In order for blk_revalidate_disk_zones() to accept zoned block devices relying on zone append emulation, the direct check to the max_zone_append_sectors queue limit of the disk is replaced by a check using the value returned by queue_max_zone_append_sectors(). Similarly, queue_zone_append_max_show() is modified to use the same accessor so that the sysfs attribute advertizes the non-zero limit that will be used, regardless if it is for native or emulated commands. For stacking drivers, a top device should not need to care if the underlying devices have native or emulated zone append operations. blk_stack_limits() is thus modified to set the top device max_zone_append_sectors limit using the new accessor queue_limits_max_zone_append_sectors(). queue_max_zone_append_sectors() is modified to use this function as well. Stacking drivers that require zone append emulation, e.g. dm-crypt, can still request this feature by calling blk_queue_max_zone_append_sectors() with a 0 limit. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20240408014128.205141-10-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:09 +00:00
if (!queue_max_zone_append_sectors(q)) {
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
pr_warn("%s: Invalid 0 maximum zone append limit\n",
disk->disk_name);
return -ENODEV;
}
block: don't do revalidate zones on invalid devices When we loose a device for whatever reason while (re)scanning zones, we trip over a NULL pointer in blk_revalidate_zone_cb, like in the following log: sd 0:0:0:0: [sda] 3418095616 4096-byte logical blocks: (14.0 TB/12.7 TiB) sd 0:0:0:0: [sda] 52156 zones of 65536 logical blocks sd 0:0:0:0: [sda] Write Protect is off sd 0:0:0:0: [sda] Mode Sense: 37 00 00 08 sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sd 0:0:0:0: [sda] REPORT ZONES start lba 1065287680 failed sd 0:0:0:0: [sda] REPORT ZONES: Result: hostbyte=0x00 driverbyte=0x08 sd 0:0:0:0: [sda] Sense Key : 0xb [current] sd 0:0:0:0: [sda] ASC=0x0 ASCQ=0x6 sda: failed to revalidate zones sd 0:0:0:0: [sda] 0 4096-byte logical blocks: (0 B/0 B) sda: detected capacity change from 14000519643136 to 0 ================================================================== BUG: KASAN: null-ptr-deref in blk_revalidate_zone_cb+0x1b7/0x550 Write of size 8 at addr 0000000000000010 by task kworker/u4:1/58 CPU: 1 PID: 58 Comm: kworker/u4:1 Not tainted 5.8.0-rc1 #692 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014 Workqueue: events_unbound async_run_entry_fn Call Trace: dump_stack+0x7d/0xb0 ? blk_revalidate_zone_cb+0x1b7/0x550 kasan_report.cold+0x5/0x37 ? blk_revalidate_zone_cb+0x1b7/0x550 check_memory_region+0x145/0x1a0 blk_revalidate_zone_cb+0x1b7/0x550 sd_zbc_parse_report+0x1f1/0x370 ? blk_req_zone_write_trylock+0x200/0x200 ? sectors_to_logical+0x60/0x60 ? blk_req_zone_write_trylock+0x200/0x200 ? blk_req_zone_write_trylock+0x200/0x200 sd_zbc_report_zones+0x3c4/0x5e0 ? sd_dif_config_host+0x500/0x500 blk_revalidate_disk_zones+0x231/0x44d ? _raw_write_lock_irqsave+0xb0/0xb0 ? blk_queue_free_zone_bitmaps+0xd0/0xd0 sd_zbc_read_zones+0x8cf/0x11a0 sd_revalidate_disk+0x305c/0x64e0 ? __device_add_disk+0x776/0xf20 ? read_capacity_16.part.0+0x1080/0x1080 ? blk_alloc_devt+0x250/0x250 ? create_object.isra.0+0x595/0xa20 ? kasan_unpoison_shadow+0x33/0x40 sd_probe+0x8dc/0xcd2 really_probe+0x20e/0xaf0 __driver_attach_async_helper+0x249/0x2d0 async_run_entry_fn+0xbe/0x560 process_one_work+0x764/0x1290 ? _raw_read_unlock_irqrestore+0x30/0x30 worker_thread+0x598/0x12f0 ? __kthread_parkme+0xc6/0x1b0 ? schedule+0xed/0x2c0 ? process_one_work+0x1290/0x1290 kthread+0x36b/0x440 ? kthread_create_worker_on_cpu+0xa0/0xa0 ret_from_fork+0x22/0x30 ================================================================== When the device is already gone we end up with the following scenario: The device's capacity is 0 and thus the number of zones will be 0 as well. When allocating the bitmap for the conventional zones, we then trip over a NULL pointer. So if we encounter a zoned block device with a 0 capacity, don't dare to revalidate the zones sizes. Fixes: 6c6b35491422 ("block: set the zone size in blk_revalidate_disk_zones atomically") Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-07-30 11:25:17 +00:00
/*
* Ensure that all memory allocations in this context are done as if
* GFP_NOIO was specified.
*/
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
args.disk = disk;
args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors);
noio_flag = memalloc_noio_save();
block: Introduce zone write plugging Zone write plugging implements a per-zone "plug" for write operations to control the submission and execution order of write operations to sequential write required zones of a zoned block device. Per-zone plugging guarantees that at any time there is at most only one write request per zone being executed. This mechanism is intended to replace zone write locking which implements a similar per-zone write throttling at the scheduler level, but is implemented only by mq-deadline. Unlike zone write locking which operates on requests, zone write plugging operates on BIOs. A zone write plug is simply a BIO list that is atomically manipulated using a spinlock and a kblockd submission work. A write BIO to a zone is "plugged" to delay its execution if a write BIO for the same zone was already issued, that is, if a write request for the same zone is being executed. The next plugged BIO is unplugged and issued once the write request completes. This mechanism allows to: - Untangle zone write ordering from block IO schedulers. This allows removing the restriction on using mq-deadline for writing to zoned block devices. Any block IO scheduler, including "none" can be used. - Zone write plugging operates on BIOs instead of requests. Plugged BIOs waiting for execution thus do not hold scheduling tags and thus are not preventing other BIOs from executing (reads or writes to other zones). Depending on the workload, this can significantly improve the device use (higher queue depth operation) and performance. - Both blk-mq (request based) zoned devices and BIO-based zoned devices (e.g. device mapper) can use zone write plugging. It is mandatory for the former but optional for the latter. BIO-based drivers can use zone write plugging to implement write ordering guarantees, or the drivers can implement their own if needed. - The code is less invasive in the block layer and is mostly limited to blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and bio.c. Zone write plugging is implemented using struct blk_zone_wplug. This structure includes a spinlock, a BIO list and a work structure to handle the submission of plugged BIOs. Zone write plugs structures are managed using a per-disk hash table. Plugging of zone write BIOs is done using the function blk_zone_write_plug_bio() which returns false if a BIO execution does not need to be delayed and true otherwise. This function is called from blk_mq_submit_bio() after a BIO is split to avoid large BIOs spanning multiple zones which would cause mishandling of zone write plugs. This ichange enables by default zone write plugging for any mq request-based block device. BIO-based device drivers can also use zone write plugging by expliclty calling blk_zone_write_plug_bio() in their ->submit_bio method. For such devices, the driver must ensure that a BIO passed to blk_zone_write_plug_bio() is already split and not straddling zone boundaries. Only write and write zeroes BIOs are plugged. Zone write plugging does not introduce any significant overhead for other operations. A BIO that is being handled through zone write plugging is flagged using the new BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag. The completion of BIOs and requests flagged trigger respectively calls to the functions blk_zone_write_bio_endio() and blk_zone_write_complete_request(). The latter function is used to trigger submission of the next plugged BIO using the zone plug work. blk_zone_write_bio_endio() does the same for BIO-based devices. This ensures that at any time, at most one request (blk-mq devices) or one BIO (BIO-based devices) is being executed for any zone. The handling of zone write plugs using a per-zone plug spinlock maximizes parallelism and device usage by allowing multiple zones to be writen simultaneously without lock contention. Zone write plugging ignores flush BIOs without data. Hovever, any flush BIO that has data is always plugged so that the write part of the flush sequence is serialized with other regular writes. Given that any BIO handled through zone write plugging will be the only BIO in flight for the target zone when it is executed, the unplugging and submission of a BIO will have no chance of successfully merging with plugged requests or requests in the scheduler. To overcome this potential performance degradation, blk_mq_submit_bio() calls the function blk_zone_write_plug_attempt_merge() to try to merge other plugged BIOs with the one just unplugged and submitted. Successful merging is signaled using blk_zone_write_plug_bio_merged(), called from bio_attempt_back_merge(). Furthermore, to avoid recalculating the number of segments of plugged BIOs to attempt merging, the number of segments of a plugged BIO is saved using the new struct bio field __bi_nr_segments. To avoid growing the size of struct bio, this field is added as a union with the bio_cookie field. This is safe to do as polling is always disabled for plugged BIOs. When BIOs are plugged in a zone write plug, the device request queue usage counter is always incremented. This reference is kept and reused for blk-mq devices when the plugged BIO is unplugged and submitted again using submit_bio_noacct_nocheck(). For this case, the unplugged BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and blk_mq_submit_bio() proceeds directly to allocating a new request for the BIO, re-using the usage reference count taken when the BIO was plugged. This extra reference count is dropped in blk_zone_write_plug_attempt_merge() for any plugged BIO that is successfully merged. Given that BIO-based devices will not take this path, the extra reference is dropped after a plugged BIO is unplugged and submitted. Zone write plugs are dynamically allocated and managed using a hash table (an array of struct hlist_head) with RCU protection. A zone write plug is allocated when a write BIO is received for the zone and not freed until the zone is fully written, reset or finished. To detect when a zone write plug can be freed, the write state of each zone is tracked using a write pointer offset which corresponds to the offset of a zone write pointer relative to the zone start. Write operations always increment this write pointer offset. Zone reset operations set it to 0 and zone finish operations set it to the zone size. If a write error happens, the wp_offset value of a zone write plug may become incorrect and out of sync with the device managed write pointer. This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR. The function blk_zone_wplug_handle_error() is called from the new disk zone write plug work when this flag is set. This function executes a report zone to update the zone write pointer offset to the current value as indicated by the device. The disk zone write plug work is scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes with an error or when bio_zone_wplug_prepare_bio() detects an unaligned write. Once scheduled, the disk zone write plugs work keeps running until all zone errors are handled. To match the new data structures used for zoned disks, the function disk_free_zone_bitmaps() is renamed to the more generic disk_free_zone_resources(). The function disk_init_zone_resources() is also introduced to initialize zone write plugs resources when a gendisk is allocated. In order to guarantee that the user can simultaneously write up to a number of zones equal to a device max active zone limit or max open zone limit, zone write plugs are allocated using a mempool sized to the maximum of these 2 device limits. For a device that does not have active and open zone limits, 128 is used as the default mempool size. If a change to the device active and open zone limits is detected, the disk mempool is resized when blk_revalidate_disk_zones() is executed. This commit contains contributions from Christoph Hellwig <hch@lst.de>. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-08 01:41:07 +00:00
ret = disk_revalidate_zone_resources(disk, args.nr_zones);
if (ret) {
memalloc_noio_restore(noio_flag);
return ret;
}
ret = disk->fops->report_zones(disk, 0, UINT_MAX,
blk_revalidate_zone_cb, &args);
if (!ret) {
pr_warn("%s: No zones reported\n", disk->disk_name);
ret = -ENODEV;
}
memalloc_noio_restore(noio_flag);
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
/*
* If zones where reported, make sure that the entire disk capacity
* has been checked.
*/
scsi: block: Improve checks in blk_revalidate_disk_zones() blk_revalidate_disk_zones() implements checks of the zones of a zoned block device, verifying that the zone size is a power of 2 number of sectors, that all zones (except possibly the last one) have the same size and that zones cover the entire addressing space of the device. While these checks are appropriate to verify that well tested hardware devices have an adequate zone configurations, they lack in certain areas which may result in issues with emulated devices implemented with user drivers such as ublk or tcmu. Specifically, this function does not check if the device driver indicated support for the mandatory zone append writes, that is, if the device max_zone_append_sectors queue limit is set to a non-zero value. Additionally, invalid zones such as a zero length zone with a start sector equal to the device capacity will not be detected and result in out of bounds use of the zone bitmaps prepared with the callback function blk_revalidate_zone_cb(). Improve blk_revalidate_disk_zones() to address these inadequate checks, relying on the fact that all device drivers supporting zoned block devices must set the device zone size (chunk_sectors queue limit) and the max_zone_append_sectors queue limit before executing this function. The check for a non-zero max_zone_append_sectors value is done in blk_revalidate_disk_zones() before executing the zone report. The zone report callback function blk_revalidate_zone_cb() is also modified to add a check that a zone start is below the device capacity. The check that the zone size is a power of 2 number of sectors is moved to blk_revalidate_disk_zones() as the zone size is already known. Similarly, the number of zones of the device can be calculated in blk_revalidate_disk_zones() before executing the zone report. The kdoc comment for blk_revalidate_disk_zones() is also updated to mention that device drivers must set the device zone size and the max_zone_append_sectors queue limit before calling this function. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Link: https://lore.kernel.org/r/20230703024812.76778-6-dlemoal@kernel.org Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-03 02:48:12 +00:00
if (ret > 0 && args.sector != capacity) {
pr_warn("%s: Missing zones from sector %llu\n",
disk->disk_name, args.sector);
ret = -ENODEV;
}
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
/*
* Set the new disk zone parameters only once the queue is frozen and
* all I/Os are completed.
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
*/
blk_mq_freeze_queue(q);
if (ret > 0)
ret = disk_update_zone_resources(disk, &args);
else
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
pr_warn("%s: failed to revalidate zones\n", disk->disk_name);
if (ret)
disk_free_zone_resources(disk);
blk_mq_unfreeze_queue(q);
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
kfree(args.conv_zones_bitmap);
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 10:08:50 +00:00
return ret;
}
EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones);
#ifdef CONFIG_BLK_DEBUG_FS
int queue_zone_wplugs_show(void *data, struct seq_file *m)
{
struct request_queue *q = data;
struct gendisk *disk = q->disk;
struct blk_zone_wplug *zwplug;
unsigned int zwp_wp_offset, zwp_flags;
unsigned int zwp_zone_no, zwp_ref;
unsigned int zwp_bio_list_size, i;
unsigned long flags;
if (!disk->zone_wplugs_hash)
return 0;
rcu_read_lock();
for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) {
hlist_for_each_entry_rcu(zwplug,
&disk->zone_wplugs_hash[i], node) {
spin_lock_irqsave(&zwplug->lock, flags);
zwp_zone_no = zwplug->zone_no;
zwp_flags = zwplug->flags;
zwp_ref = atomic_read(&zwplug->ref);
zwp_wp_offset = zwplug->wp_offset;
zwp_bio_list_size = bio_list_size(&zwplug->bio_list);
spin_unlock_irqrestore(&zwplug->lock, flags);
seq_printf(m, "%u 0x%x %u %u %u\n",
zwp_zone_no, zwp_flags, zwp_ref,
zwp_wp_offset, zwp_bio_list_size);
}
}
rcu_read_unlock();
return 0;
}
#endif