mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
1673 lines
39 KiB
C
1673 lines
39 KiB
C
|
/*
|
||
|
* Generic ring buffer
|
||
|
*
|
||
|
* Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
|
||
|
*/
|
||
|
#include <linux/ring_buffer.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/sched.h> /* used for sched_clock() (for now) */
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/hash.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/fs.h>
|
||
|
|
||
|
/* Up this if you want to test the TIME_EXTENTS and normalization */
|
||
|
#define DEBUG_SHIFT 0
|
||
|
|
||
|
/* FIXME!!! */
|
||
|
u64 ring_buffer_time_stamp(int cpu)
|
||
|
{
|
||
|
/* shift to debug/test normalization and TIME_EXTENTS */
|
||
|
return sched_clock() << DEBUG_SHIFT;
|
||
|
}
|
||
|
|
||
|
void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
|
||
|
{
|
||
|
/* Just stupid testing the normalize function and deltas */
|
||
|
*ts >>= DEBUG_SHIFT;
|
||
|
}
|
||
|
|
||
|
#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
|
||
|
#define RB_ALIGNMENT_SHIFT 2
|
||
|
#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
|
||
|
#define RB_MAX_SMALL_DATA 28
|
||
|
|
||
|
enum {
|
||
|
RB_LEN_TIME_EXTEND = 8,
|
||
|
RB_LEN_TIME_STAMP = 16,
|
||
|
};
|
||
|
|
||
|
/* inline for ring buffer fast paths */
|
||
|
static inline unsigned
|
||
|
rb_event_length(struct ring_buffer_event *event)
|
||
|
{
|
||
|
unsigned length;
|
||
|
|
||
|
switch (event->type) {
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
/* undefined */
|
||
|
return -1;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
return RB_LEN_TIME_EXTEND;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
return RB_LEN_TIME_STAMP;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
if (event->len)
|
||
|
length = event->len << RB_ALIGNMENT_SHIFT;
|
||
|
else
|
||
|
length = event->array[0];
|
||
|
return length + RB_EVNT_HDR_SIZE;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
/* not hit */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_event_length - return the length of the event
|
||
|
* @event: the event to get the length of
|
||
|
*/
|
||
|
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
|
||
|
{
|
||
|
return rb_event_length(event);
|
||
|
}
|
||
|
|
||
|
/* inline for ring buffer fast paths */
|
||
|
static inline void *
|
||
|
rb_event_data(struct ring_buffer_event *event)
|
||
|
{
|
||
|
BUG_ON(event->type != RINGBUF_TYPE_DATA);
|
||
|
/* If length is in len field, then array[0] has the data */
|
||
|
if (event->len)
|
||
|
return (void *)&event->array[0];
|
||
|
/* Otherwise length is in array[0] and array[1] has the data */
|
||
|
return (void *)&event->array[1];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_event_data - return the data of the event
|
||
|
* @event: the event to get the data from
|
||
|
*/
|
||
|
void *ring_buffer_event_data(struct ring_buffer_event *event)
|
||
|
{
|
||
|
return rb_event_data(event);
|
||
|
}
|
||
|
|
||
|
#define for_each_buffer_cpu(buffer, cpu) \
|
||
|
for_each_cpu_mask(cpu, buffer->cpumask)
|
||
|
|
||
|
#define TS_SHIFT 27
|
||
|
#define TS_MASK ((1ULL << TS_SHIFT) - 1)
|
||
|
#define TS_DELTA_TEST (~TS_MASK)
|
||
|
|
||
|
/*
|
||
|
* This hack stolen from mm/slob.c.
|
||
|
* We can store per page timing information in the page frame of the page.
|
||
|
* Thanks to Peter Zijlstra for suggesting this idea.
|
||
|
*/
|
||
|
struct buffer_page {
|
||
|
union {
|
||
|
struct {
|
||
|
unsigned long flags; /* mandatory */
|
||
|
atomic_t _count; /* mandatory */
|
||
|
u64 time_stamp; /* page time stamp */
|
||
|
unsigned size; /* size of page data */
|
||
|
struct list_head list; /* list of free pages */
|
||
|
};
|
||
|
struct page page;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* We need to fit the time_stamp delta into 27 bits.
|
||
|
*/
|
||
|
static inline int test_time_stamp(u64 delta)
|
||
|
{
|
||
|
if (delta & TS_DELTA_TEST)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define BUF_PAGE_SIZE PAGE_SIZE
|
||
|
|
||
|
/*
|
||
|
* head_page == tail_page && head == tail then buffer is empty.
|
||
|
*/
|
||
|
struct ring_buffer_per_cpu {
|
||
|
int cpu;
|
||
|
struct ring_buffer *buffer;
|
||
|
spinlock_t lock;
|
||
|
struct lock_class_key lock_key;
|
||
|
struct list_head pages;
|
||
|
unsigned long head; /* read from head */
|
||
|
unsigned long tail; /* write to tail */
|
||
|
struct buffer_page *head_page;
|
||
|
struct buffer_page *tail_page;
|
||
|
unsigned long overrun;
|
||
|
unsigned long entries;
|
||
|
u64 write_stamp;
|
||
|
u64 read_stamp;
|
||
|
atomic_t record_disabled;
|
||
|
};
|
||
|
|
||
|
struct ring_buffer {
|
||
|
unsigned long size;
|
||
|
unsigned pages;
|
||
|
unsigned flags;
|
||
|
int cpus;
|
||
|
cpumask_t cpumask;
|
||
|
atomic_t record_disabled;
|
||
|
|
||
|
struct mutex mutex;
|
||
|
|
||
|
struct ring_buffer_per_cpu **buffers;
|
||
|
};
|
||
|
|
||
|
struct ring_buffer_iter {
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
unsigned long head;
|
||
|
struct buffer_page *head_page;
|
||
|
u64 read_stamp;
|
||
|
};
|
||
|
|
||
|
#define RB_WARN_ON(buffer, cond) \
|
||
|
if (unlikely(cond)) { \
|
||
|
atomic_inc(&buffer->record_disabled); \
|
||
|
WARN_ON(1); \
|
||
|
return -1; \
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* check_pages - integrity check of buffer pages
|
||
|
* @cpu_buffer: CPU buffer with pages to test
|
||
|
*
|
||
|
* As a safty measure we check to make sure the data pages have not
|
||
|
* been corrupted.
|
||
|
*/
|
||
|
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
struct list_head *head = &cpu_buffer->pages;
|
||
|
struct buffer_page *page, *tmp;
|
||
|
|
||
|
RB_WARN_ON(cpu_buffer, head->next->prev != head);
|
||
|
RB_WARN_ON(cpu_buffer, head->prev->next != head);
|
||
|
|
||
|
list_for_each_entry_safe(page, tmp, head, list) {
|
||
|
RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
|
||
|
RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
return cpu_buffer->head_page->size;
|
||
|
}
|
||
|
|
||
|
static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
unsigned nr_pages)
|
||
|
{
|
||
|
struct list_head *head = &cpu_buffer->pages;
|
||
|
struct buffer_page *page, *tmp;
|
||
|
unsigned long addr;
|
||
|
LIST_HEAD(pages);
|
||
|
unsigned i;
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
addr = __get_free_page(GFP_KERNEL);
|
||
|
if (!addr)
|
||
|
goto free_pages;
|
||
|
page = (struct buffer_page *)virt_to_page(addr);
|
||
|
list_add(&page->list, &pages);
|
||
|
}
|
||
|
|
||
|
list_splice(&pages, head);
|
||
|
|
||
|
rb_check_pages(cpu_buffer);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
free_pages:
|
||
|
list_for_each_entry_safe(page, tmp, &pages, list) {
|
||
|
list_del_init(&page->list);
|
||
|
__free_page(&page->page);
|
||
|
}
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static struct ring_buffer_per_cpu *
|
||
|
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
int ret;
|
||
|
|
||
|
cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
|
||
|
GFP_KERNEL, cpu_to_node(cpu));
|
||
|
if (!cpu_buffer)
|
||
|
return NULL;
|
||
|
|
||
|
cpu_buffer->cpu = cpu;
|
||
|
cpu_buffer->buffer = buffer;
|
||
|
spin_lock_init(&cpu_buffer->lock);
|
||
|
INIT_LIST_HEAD(&cpu_buffer->pages);
|
||
|
|
||
|
ret = rb_allocate_pages(cpu_buffer, buffer->pages);
|
||
|
if (ret < 0)
|
||
|
goto fail_free_buffer;
|
||
|
|
||
|
cpu_buffer->head_page
|
||
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
||
|
cpu_buffer->tail_page
|
||
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
||
|
|
||
|
return cpu_buffer;
|
||
|
|
||
|
fail_free_buffer:
|
||
|
kfree(cpu_buffer);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
struct list_head *head = &cpu_buffer->pages;
|
||
|
struct buffer_page *page, *tmp;
|
||
|
|
||
|
list_for_each_entry_safe(page, tmp, head, list) {
|
||
|
list_del_init(&page->list);
|
||
|
__free_page(&page->page);
|
||
|
}
|
||
|
kfree(cpu_buffer);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_alloc - allocate a new ring_buffer
|
||
|
* @size: the size in bytes that is needed.
|
||
|
* @flags: attributes to set for the ring buffer.
|
||
|
*
|
||
|
* Currently the only flag that is available is the RB_FL_OVERWRITE
|
||
|
* flag. This flag means that the buffer will overwrite old data
|
||
|
* when the buffer wraps. If this flag is not set, the buffer will
|
||
|
* drop data when the tail hits the head.
|
||
|
*/
|
||
|
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
|
||
|
{
|
||
|
struct ring_buffer *buffer;
|
||
|
int bsize;
|
||
|
int cpu;
|
||
|
|
||
|
/* keep it in its own cache line */
|
||
|
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
|
||
|
GFP_KERNEL);
|
||
|
if (!buffer)
|
||
|
return NULL;
|
||
|
|
||
|
buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
||
|
buffer->flags = flags;
|
||
|
|
||
|
/* need at least two pages */
|
||
|
if (buffer->pages == 1)
|
||
|
buffer->pages++;
|
||
|
|
||
|
buffer->cpumask = cpu_possible_map;
|
||
|
buffer->cpus = nr_cpu_ids;
|
||
|
|
||
|
bsize = sizeof(void *) * nr_cpu_ids;
|
||
|
buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
|
||
|
GFP_KERNEL);
|
||
|
if (!buffer->buffers)
|
||
|
goto fail_free_buffer;
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
buffer->buffers[cpu] =
|
||
|
rb_allocate_cpu_buffer(buffer, cpu);
|
||
|
if (!buffer->buffers[cpu])
|
||
|
goto fail_free_buffers;
|
||
|
}
|
||
|
|
||
|
mutex_init(&buffer->mutex);
|
||
|
|
||
|
return buffer;
|
||
|
|
||
|
fail_free_buffers:
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
if (buffer->buffers[cpu])
|
||
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
||
|
}
|
||
|
kfree(buffer->buffers);
|
||
|
|
||
|
fail_free_buffer:
|
||
|
kfree(buffer);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_free - free a ring buffer.
|
||
|
* @buffer: the buffer to free.
|
||
|
*/
|
||
|
void
|
||
|
ring_buffer_free(struct ring_buffer *buffer)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu)
|
||
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
||
|
|
||
|
kfree(buffer);
|
||
|
}
|
||
|
|
||
|
static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
|
||
|
|
||
|
static void
|
||
|
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
|
||
|
{
|
||
|
struct buffer_page *page;
|
||
|
struct list_head *p;
|
||
|
unsigned i;
|
||
|
|
||
|
atomic_inc(&cpu_buffer->record_disabled);
|
||
|
synchronize_sched();
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
BUG_ON(list_empty(&cpu_buffer->pages));
|
||
|
p = cpu_buffer->pages.next;
|
||
|
page = list_entry(p, struct buffer_page, list);
|
||
|
list_del_init(&page->list);
|
||
|
__free_page(&page->page);
|
||
|
}
|
||
|
BUG_ON(list_empty(&cpu_buffer->pages));
|
||
|
|
||
|
rb_reset_cpu(cpu_buffer);
|
||
|
|
||
|
rb_check_pages(cpu_buffer);
|
||
|
|
||
|
atomic_dec(&cpu_buffer->record_disabled);
|
||
|
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
struct list_head *pages, unsigned nr_pages)
|
||
|
{
|
||
|
struct buffer_page *page;
|
||
|
struct list_head *p;
|
||
|
unsigned i;
|
||
|
|
||
|
atomic_inc(&cpu_buffer->record_disabled);
|
||
|
synchronize_sched();
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
BUG_ON(list_empty(pages));
|
||
|
p = pages->next;
|
||
|
page = list_entry(p, struct buffer_page, list);
|
||
|
list_del_init(&page->list);
|
||
|
list_add_tail(&page->list, &cpu_buffer->pages);
|
||
|
}
|
||
|
rb_reset_cpu(cpu_buffer);
|
||
|
|
||
|
rb_check_pages(cpu_buffer);
|
||
|
|
||
|
atomic_dec(&cpu_buffer->record_disabled);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_resize - resize the ring buffer
|
||
|
* @buffer: the buffer to resize.
|
||
|
* @size: the new size.
|
||
|
*
|
||
|
* The tracer is responsible for making sure that the buffer is
|
||
|
* not being used while changing the size.
|
||
|
* Note: We may be able to change the above requirement by using
|
||
|
* RCU synchronizations.
|
||
|
*
|
||
|
* Minimum size is 2 * BUF_PAGE_SIZE.
|
||
|
*
|
||
|
* Returns -1 on failure.
|
||
|
*/
|
||
|
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
unsigned nr_pages, rm_pages, new_pages;
|
||
|
struct buffer_page *page, *tmp;
|
||
|
unsigned long buffer_size;
|
||
|
unsigned long addr;
|
||
|
LIST_HEAD(pages);
|
||
|
int i, cpu;
|
||
|
|
||
|
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
||
|
size *= BUF_PAGE_SIZE;
|
||
|
buffer_size = buffer->pages * BUF_PAGE_SIZE;
|
||
|
|
||
|
/* we need a minimum of two pages */
|
||
|
if (size < BUF_PAGE_SIZE * 2)
|
||
|
size = BUF_PAGE_SIZE * 2;
|
||
|
|
||
|
if (size == buffer_size)
|
||
|
return size;
|
||
|
|
||
|
mutex_lock(&buffer->mutex);
|
||
|
|
||
|
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
||
|
|
||
|
if (size < buffer_size) {
|
||
|
|
||
|
/* easy case, just free pages */
|
||
|
BUG_ON(nr_pages >= buffer->pages);
|
||
|
|
||
|
rm_pages = buffer->pages - nr_pages;
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
rb_remove_pages(cpu_buffer, rm_pages);
|
||
|
}
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is a bit more difficult. We only want to add pages
|
||
|
* when we can allocate enough for all CPUs. We do this
|
||
|
* by allocating all the pages and storing them on a local
|
||
|
* link list. If we succeed in our allocation, then we
|
||
|
* add these pages to the cpu_buffers. Otherwise we just free
|
||
|
* them all and return -ENOMEM;
|
||
|
*/
|
||
|
BUG_ON(nr_pages <= buffer->pages);
|
||
|
new_pages = nr_pages - buffer->pages;
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
for (i = 0; i < new_pages; i++) {
|
||
|
addr = __get_free_page(GFP_KERNEL);
|
||
|
if (!addr)
|
||
|
goto free_pages;
|
||
|
page = (struct buffer_page *)virt_to_page(addr);
|
||
|
list_add(&page->list, &pages);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
rb_insert_pages(cpu_buffer, &pages, new_pages);
|
||
|
}
|
||
|
|
||
|
BUG_ON(!list_empty(&pages));
|
||
|
|
||
|
out:
|
||
|
buffer->pages = nr_pages;
|
||
|
mutex_unlock(&buffer->mutex);
|
||
|
|
||
|
return size;
|
||
|
|
||
|
free_pages:
|
||
|
list_for_each_entry_safe(page, tmp, &pages, list) {
|
||
|
list_del_init(&page->list);
|
||
|
__free_page(&page->page);
|
||
|
}
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
return cpu_buffer->head_page == cpu_buffer->tail_page &&
|
||
|
cpu_buffer->head == cpu_buffer->tail;
|
||
|
}
|
||
|
|
||
|
static inline int rb_null_event(struct ring_buffer_event *event)
|
||
|
{
|
||
|
return event->type == RINGBUF_TYPE_PADDING;
|
||
|
}
|
||
|
|
||
|
static inline void *rb_page_index(struct buffer_page *page, unsigned index)
|
||
|
{
|
||
|
void *addr = page_address(&page->page);
|
||
|
|
||
|
return addr + index;
|
||
|
}
|
||
|
|
||
|
static inline struct ring_buffer_event *
|
||
|
rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
return rb_page_index(cpu_buffer->head_page,
|
||
|
cpu_buffer->head);
|
||
|
}
|
||
|
|
||
|
static inline struct ring_buffer_event *
|
||
|
rb_iter_head_event(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
return rb_page_index(iter->head_page,
|
||
|
iter->head);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When the tail hits the head and the buffer is in overwrite mode,
|
||
|
* the head jumps to the next page and all content on the previous
|
||
|
* page is discarded. But before doing so, we update the overrun
|
||
|
* variable of the buffer.
|
||
|
*/
|
||
|
static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
struct ring_buffer_event *event;
|
||
|
unsigned long head;
|
||
|
|
||
|
for (head = 0; head < rb_head_size(cpu_buffer);
|
||
|
head += rb_event_length(event)) {
|
||
|
|
||
|
event = rb_page_index(cpu_buffer->head_page, head);
|
||
|
BUG_ON(rb_null_event(event));
|
||
|
/* Only count data entries */
|
||
|
if (event->type != RINGBUF_TYPE_DATA)
|
||
|
continue;
|
||
|
cpu_buffer->overrun++;
|
||
|
cpu_buffer->entries--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
struct buffer_page **page)
|
||
|
{
|
||
|
struct list_head *p = (*page)->list.next;
|
||
|
|
||
|
if (p == &cpu_buffer->pages)
|
||
|
p = p->next;
|
||
|
|
||
|
*page = list_entry(p, struct buffer_page, list);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
|
||
|
{
|
||
|
cpu_buffer->tail_page->time_stamp = *ts;
|
||
|
cpu_buffer->write_stamp = *ts;
|
||
|
}
|
||
|
|
||
|
static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
|
||
|
cpu_buffer->head = 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rb_reset_iter_read_page(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
iter->read_stamp = iter->head_page->time_stamp;
|
||
|
iter->head = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_update_event - update event type and data
|
||
|
* @event: the even to update
|
||
|
* @type: the type of event
|
||
|
* @length: the size of the event field in the ring buffer
|
||
|
*
|
||
|
* Update the type and data fields of the event. The length
|
||
|
* is the actual size that is written to the ring buffer,
|
||
|
* and with this, we can determine what to place into the
|
||
|
* data field.
|
||
|
*/
|
||
|
static inline void
|
||
|
rb_update_event(struct ring_buffer_event *event,
|
||
|
unsigned type, unsigned length)
|
||
|
{
|
||
|
event->type = type;
|
||
|
|
||
|
switch (type) {
|
||
|
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
break;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
event->len =
|
||
|
(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
|
||
|
>> RB_ALIGNMENT_SHIFT;
|
||
|
break;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
event->len =
|
||
|
(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
|
||
|
>> RB_ALIGNMENT_SHIFT;
|
||
|
break;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
length -= RB_EVNT_HDR_SIZE;
|
||
|
if (length > RB_MAX_SMALL_DATA) {
|
||
|
event->len = 0;
|
||
|
event->array[0] = length;
|
||
|
} else
|
||
|
event->len =
|
||
|
(length + (RB_ALIGNMENT-1))
|
||
|
>> RB_ALIGNMENT_SHIFT;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline unsigned rb_calculate_event_length(unsigned length)
|
||
|
{
|
||
|
struct ring_buffer_event event; /* Used only for sizeof array */
|
||
|
|
||
|
/* zero length can cause confusions */
|
||
|
if (!length)
|
||
|
length = 1;
|
||
|
|
||
|
if (length > RB_MAX_SMALL_DATA)
|
||
|
length += sizeof(event.array[0]);
|
||
|
|
||
|
length += RB_EVNT_HDR_SIZE;
|
||
|
length = ALIGN(length, RB_ALIGNMENT);
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
static struct ring_buffer_event *
|
||
|
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
unsigned type, unsigned long length, u64 *ts)
|
||
|
{
|
||
|
struct buffer_page *head_page, *tail_page;
|
||
|
unsigned long tail;
|
||
|
struct ring_buffer *buffer = cpu_buffer->buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
|
||
|
tail_page = cpu_buffer->tail_page;
|
||
|
head_page = cpu_buffer->head_page;
|
||
|
tail = cpu_buffer->tail;
|
||
|
|
||
|
if (tail + length > BUF_PAGE_SIZE) {
|
||
|
struct buffer_page *next_page = tail_page;
|
||
|
|
||
|
rb_inc_page(cpu_buffer, &next_page);
|
||
|
|
||
|
if (next_page == head_page) {
|
||
|
if (!(buffer->flags & RB_FL_OVERWRITE))
|
||
|
return NULL;
|
||
|
|
||
|
/* count overflows */
|
||
|
rb_update_overflow(cpu_buffer);
|
||
|
|
||
|
rb_inc_page(cpu_buffer, &head_page);
|
||
|
cpu_buffer->head_page = head_page;
|
||
|
rb_reset_read_page(cpu_buffer);
|
||
|
}
|
||
|
|
||
|
if (tail != BUF_PAGE_SIZE) {
|
||
|
event = rb_page_index(tail_page, tail);
|
||
|
/* page padding */
|
||
|
event->type = RINGBUF_TYPE_PADDING;
|
||
|
}
|
||
|
|
||
|
tail_page->size = tail;
|
||
|
tail_page = next_page;
|
||
|
tail_page->size = 0;
|
||
|
tail = 0;
|
||
|
cpu_buffer->tail_page = tail_page;
|
||
|
cpu_buffer->tail = tail;
|
||
|
rb_add_stamp(cpu_buffer, ts);
|
||
|
}
|
||
|
|
||
|
BUG_ON(tail + length > BUF_PAGE_SIZE);
|
||
|
|
||
|
event = rb_page_index(tail_page, tail);
|
||
|
rb_update_event(event, type, length);
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
u64 *ts, u64 *delta)
|
||
|
{
|
||
|
struct ring_buffer_event *event;
|
||
|
static int once;
|
||
|
|
||
|
if (unlikely(*delta > (1ULL << 59) && !once++)) {
|
||
|
printk(KERN_WARNING "Delta way too big! %llu"
|
||
|
" ts=%llu write stamp = %llu\n",
|
||
|
*delta, *ts, cpu_buffer->write_stamp);
|
||
|
WARN_ON(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The delta is too big, we to add a
|
||
|
* new timestamp.
|
||
|
*/
|
||
|
event = __rb_reserve_next(cpu_buffer,
|
||
|
RINGBUF_TYPE_TIME_EXTEND,
|
||
|
RB_LEN_TIME_EXTEND,
|
||
|
ts);
|
||
|
if (!event)
|
||
|
return -1;
|
||
|
|
||
|
/* check to see if we went to the next page */
|
||
|
if (cpu_buffer->tail) {
|
||
|
/* Still on same page, update timestamp */
|
||
|
event->time_delta = *delta & TS_MASK;
|
||
|
event->array[0] = *delta >> TS_SHIFT;
|
||
|
/* commit the time event */
|
||
|
cpu_buffer->tail +=
|
||
|
rb_event_length(event);
|
||
|
cpu_buffer->write_stamp = *ts;
|
||
|
*delta = 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct ring_buffer_event *
|
||
|
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
unsigned type, unsigned long length)
|
||
|
{
|
||
|
struct ring_buffer_event *event;
|
||
|
u64 ts, delta;
|
||
|
|
||
|
ts = ring_buffer_time_stamp(cpu_buffer->cpu);
|
||
|
|
||
|
if (cpu_buffer->tail) {
|
||
|
delta = ts - cpu_buffer->write_stamp;
|
||
|
|
||
|
if (test_time_stamp(delta)) {
|
||
|
int ret;
|
||
|
|
||
|
ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
|
||
|
if (ret < 0)
|
||
|
return NULL;
|
||
|
}
|
||
|
} else {
|
||
|
rb_add_stamp(cpu_buffer, &ts);
|
||
|
delta = 0;
|
||
|
}
|
||
|
|
||
|
event = __rb_reserve_next(cpu_buffer, type, length, &ts);
|
||
|
if (!event)
|
||
|
return NULL;
|
||
|
|
||
|
/* If the reserve went to the next page, our delta is zero */
|
||
|
if (!cpu_buffer->tail)
|
||
|
delta = 0;
|
||
|
|
||
|
event->time_delta = delta;
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_lock_reserve - reserve a part of the buffer
|
||
|
* @buffer: the ring buffer to reserve from
|
||
|
* @length: the length of the data to reserve (excluding event header)
|
||
|
* @flags: a pointer to save the interrupt flags
|
||
|
*
|
||
|
* Returns a reseverd event on the ring buffer to copy directly to.
|
||
|
* The user of this interface will need to get the body to write into
|
||
|
* and can use the ring_buffer_event_data() interface.
|
||
|
*
|
||
|
* The length is the length of the data needed, not the event length
|
||
|
* which also includes the event header.
|
||
|
*
|
||
|
* Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
|
||
|
* If NULL is returned, then nothing has been allocated or locked.
|
||
|
*/
|
||
|
struct ring_buffer_event *
|
||
|
ring_buffer_lock_reserve(struct ring_buffer *buffer,
|
||
|
unsigned long length,
|
||
|
unsigned long *flags)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
int cpu;
|
||
|
|
||
|
if (atomic_read(&buffer->record_disabled))
|
||
|
return NULL;
|
||
|
|
||
|
raw_local_irq_save(*flags);
|
||
|
cpu = raw_smp_processor_id();
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
goto out_irq;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
spin_lock(&cpu_buffer->lock);
|
||
|
|
||
|
if (atomic_read(&cpu_buffer->record_disabled))
|
||
|
goto no_record;
|
||
|
|
||
|
length = rb_calculate_event_length(length);
|
||
|
if (length > BUF_PAGE_SIZE)
|
||
|
return NULL;
|
||
|
|
||
|
event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
|
||
|
if (!event)
|
||
|
goto no_record;
|
||
|
|
||
|
return event;
|
||
|
|
||
|
no_record:
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
out_irq:
|
||
|
local_irq_restore(*flags);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
struct ring_buffer_event *event)
|
||
|
{
|
||
|
cpu_buffer->tail += rb_event_length(event);
|
||
|
cpu_buffer->tail_page->size = cpu_buffer->tail;
|
||
|
cpu_buffer->write_stamp += event->time_delta;
|
||
|
cpu_buffer->entries++;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_unlock_commit - commit a reserved
|
||
|
* @buffer: The buffer to commit to
|
||
|
* @event: The event pointer to commit.
|
||
|
* @flags: the interrupt flags received from ring_buffer_lock_reserve.
|
||
|
*
|
||
|
* This commits the data to the ring buffer, and releases any locks held.
|
||
|
*
|
||
|
* Must be paired with ring_buffer_lock_reserve.
|
||
|
*/
|
||
|
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
|
||
|
struct ring_buffer_event *event,
|
||
|
unsigned long flags)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
int cpu = raw_smp_processor_id();
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
|
||
|
assert_spin_locked(&cpu_buffer->lock);
|
||
|
|
||
|
rb_commit(cpu_buffer, event);
|
||
|
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
raw_local_irq_restore(flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_write - write data to the buffer without reserving
|
||
|
* @buffer: The ring buffer to write to.
|
||
|
* @length: The length of the data being written (excluding the event header)
|
||
|
* @data: The data to write to the buffer.
|
||
|
*
|
||
|
* This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
|
||
|
* one function. If you already have the data to write to the buffer, it
|
||
|
* may be easier to simply call this function.
|
||
|
*
|
||
|
* Note, like ring_buffer_lock_reserve, the length is the length of the data
|
||
|
* and not the length of the event which would hold the header.
|
||
|
*/
|
||
|
int ring_buffer_write(struct ring_buffer *buffer,
|
||
|
unsigned long length,
|
||
|
void *data)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
unsigned long event_length, flags;
|
||
|
void *body;
|
||
|
int ret = -EBUSY;
|
||
|
int cpu;
|
||
|
|
||
|
if (atomic_read(&buffer->record_disabled))
|
||
|
return -EBUSY;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
cpu = raw_smp_processor_id();
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
goto out_irq;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
spin_lock(&cpu_buffer->lock);
|
||
|
|
||
|
if (atomic_read(&cpu_buffer->record_disabled))
|
||
|
goto out;
|
||
|
|
||
|
event_length = rb_calculate_event_length(length);
|
||
|
event = rb_reserve_next_event(cpu_buffer,
|
||
|
RINGBUF_TYPE_DATA, event_length);
|
||
|
if (!event)
|
||
|
goto out;
|
||
|
|
||
|
body = rb_event_data(event);
|
||
|
|
||
|
memcpy(body, data, length);
|
||
|
|
||
|
rb_commit(cpu_buffer, event);
|
||
|
|
||
|
ret = 0;
|
||
|
out:
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
out_irq:
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_lock - lock the ring buffer
|
||
|
* @buffer: The ring buffer to lock
|
||
|
* @flags: The place to store the interrupt flags
|
||
|
*
|
||
|
* This locks all the per CPU buffers.
|
||
|
*
|
||
|
* Must be unlocked by ring_buffer_unlock.
|
||
|
*/
|
||
|
void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
int cpu;
|
||
|
|
||
|
local_irq_save(*flags);
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
spin_lock(&cpu_buffer->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_unlock - unlock a locked buffer
|
||
|
* @buffer: The locked buffer to unlock
|
||
|
* @flags: The interrupt flags received by ring_buffer_lock
|
||
|
*/
|
||
|
void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
int cpu;
|
||
|
|
||
|
for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
continue;
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
}
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_record_disable - stop all writes into the buffer
|
||
|
* @buffer: The ring buffer to stop writes to.
|
||
|
*
|
||
|
* This prevents all writes to the buffer. Any attempt to write
|
||
|
* to the buffer after this will fail and return NULL.
|
||
|
*
|
||
|
* The caller should call synchronize_sched() after this.
|
||
|
*/
|
||
|
void ring_buffer_record_disable(struct ring_buffer *buffer)
|
||
|
{
|
||
|
atomic_inc(&buffer->record_disabled);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_record_enable - enable writes to the buffer
|
||
|
* @buffer: The ring buffer to enable writes
|
||
|
*
|
||
|
* Note, multiple disables will need the same number of enables
|
||
|
* to truely enable the writing (much like preempt_disable).
|
||
|
*/
|
||
|
void ring_buffer_record_enable(struct ring_buffer *buffer)
|
||
|
{
|
||
|
atomic_dec(&buffer->record_disabled);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
|
||
|
* @buffer: The ring buffer to stop writes to.
|
||
|
* @cpu: The CPU buffer to stop
|
||
|
*
|
||
|
* This prevents all writes to the buffer. Any attempt to write
|
||
|
* to the buffer after this will fail and return NULL.
|
||
|
*
|
||
|
* The caller should call synchronize_sched() after this.
|
||
|
*/
|
||
|
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
atomic_inc(&cpu_buffer->record_disabled);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_record_enable_cpu - enable writes to the buffer
|
||
|
* @buffer: The ring buffer to enable writes
|
||
|
* @cpu: The CPU to enable.
|
||
|
*
|
||
|
* Note, multiple disables will need the same number of enables
|
||
|
* to truely enable the writing (much like preempt_disable).
|
||
|
*/
|
||
|
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
atomic_dec(&cpu_buffer->record_disabled);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_entries_cpu - get the number of entries in a cpu buffer
|
||
|
* @buffer: The ring buffer
|
||
|
* @cpu: The per CPU buffer to get the entries from.
|
||
|
*/
|
||
|
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return 0;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
return cpu_buffer->entries;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
|
||
|
* @buffer: The ring buffer
|
||
|
* @cpu: The per CPU buffer to get the number of overruns from
|
||
|
*/
|
||
|
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return 0;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
return cpu_buffer->overrun;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_entries - get the number of entries in a buffer
|
||
|
* @buffer: The ring buffer
|
||
|
*
|
||
|
* Returns the total number of entries in the ring buffer
|
||
|
* (all CPU entries)
|
||
|
*/
|
||
|
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
unsigned long entries = 0;
|
||
|
int cpu;
|
||
|
|
||
|
/* if you care about this being correct, lock the buffer */
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
entries += cpu_buffer->entries;
|
||
|
}
|
||
|
|
||
|
return entries;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_overrun_cpu - get the number of overruns in buffer
|
||
|
* @buffer: The ring buffer
|
||
|
*
|
||
|
* Returns the total number of overruns in the ring buffer
|
||
|
* (all CPU entries)
|
||
|
*/
|
||
|
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
unsigned long overruns = 0;
|
||
|
int cpu;
|
||
|
|
||
|
/* if you care about this being correct, lock the buffer */
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
overruns += cpu_buffer->overrun;
|
||
|
}
|
||
|
|
||
|
return overruns;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_iter_reset - reset an iterator
|
||
|
* @iter: The iterator to reset
|
||
|
*
|
||
|
* Resets the iterator, so that it will start from the beginning
|
||
|
* again.
|
||
|
*/
|
||
|
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
||
|
|
||
|
iter->head_page = cpu_buffer->head_page;
|
||
|
iter->head = cpu_buffer->head;
|
||
|
rb_reset_iter_read_page(iter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_iter_empty - check if an iterator has no more to read
|
||
|
* @iter: The iterator to check
|
||
|
*/
|
||
|
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
cpu_buffer = iter->cpu_buffer;
|
||
|
|
||
|
return iter->head_page == cpu_buffer->tail_page &&
|
||
|
iter->head == cpu_buffer->tail;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
||
|
struct ring_buffer_event *event)
|
||
|
{
|
||
|
u64 delta;
|
||
|
|
||
|
switch (event->type) {
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
delta = event->array[0];
|
||
|
delta <<= TS_SHIFT;
|
||
|
delta += event->time_delta;
|
||
|
cpu_buffer->read_stamp += delta;
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
/* FIXME: not implemented */
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
cpu_buffer->read_stamp += event->time_delta;
|
||
|
return;
|
||
|
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
|
||
|
struct ring_buffer_event *event)
|
||
|
{
|
||
|
u64 delta;
|
||
|
|
||
|
switch (event->type) {
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
delta = event->array[0];
|
||
|
delta <<= TS_SHIFT;
|
||
|
delta += event->time_delta;
|
||
|
iter->read_stamp += delta;
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
/* FIXME: not implemented */
|
||
|
return;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
iter->read_stamp += event->time_delta;
|
||
|
return;
|
||
|
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
struct ring_buffer_event *event;
|
||
|
unsigned length;
|
||
|
|
||
|
/*
|
||
|
* Check if we are at the end of the buffer.
|
||
|
*/
|
||
|
if (cpu_buffer->head >= cpu_buffer->head_page->size) {
|
||
|
BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
|
||
|
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
||
|
rb_reset_read_page(cpu_buffer);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
event = rb_head_event(cpu_buffer);
|
||
|
|
||
|
if (event->type == RINGBUF_TYPE_DATA)
|
||
|
cpu_buffer->entries--;
|
||
|
|
||
|
length = rb_event_length(event);
|
||
|
|
||
|
/*
|
||
|
* This should not be called to advance the header if we are
|
||
|
* at the tail of the buffer.
|
||
|
*/
|
||
|
BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
|
||
|
(cpu_buffer->head + length > cpu_buffer->tail));
|
||
|
|
||
|
rb_update_read_stamp(cpu_buffer, event);
|
||
|
|
||
|
cpu_buffer->head += length;
|
||
|
|
||
|
/* check for end of page */
|
||
|
if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
|
||
|
(cpu_buffer->head_page != cpu_buffer->tail_page))
|
||
|
rb_advance_head(cpu_buffer);
|
||
|
}
|
||
|
|
||
|
static void rb_advance_iter(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
struct ring_buffer *buffer;
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
unsigned length;
|
||
|
|
||
|
cpu_buffer = iter->cpu_buffer;
|
||
|
buffer = cpu_buffer->buffer;
|
||
|
|
||
|
/*
|
||
|
* Check if we are at the end of the buffer.
|
||
|
*/
|
||
|
if (iter->head >= iter->head_page->size) {
|
||
|
BUG_ON(iter->head_page == cpu_buffer->tail_page);
|
||
|
rb_inc_page(cpu_buffer, &iter->head_page);
|
||
|
rb_reset_iter_read_page(iter);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
event = rb_iter_head_event(iter);
|
||
|
|
||
|
length = rb_event_length(event);
|
||
|
|
||
|
/*
|
||
|
* This should not be called to advance the header if we are
|
||
|
* at the tail of the buffer.
|
||
|
*/
|
||
|
BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
|
||
|
(iter->head + length > cpu_buffer->tail));
|
||
|
|
||
|
rb_update_iter_read_stamp(iter, event);
|
||
|
|
||
|
iter->head += length;
|
||
|
|
||
|
/* check for end of page padding */
|
||
|
if ((iter->head >= iter->head_page->size) &&
|
||
|
(iter->head_page != cpu_buffer->tail_page))
|
||
|
rb_advance_iter(iter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_peek - peek at the next event to be read
|
||
|
* @buffer: The ring buffer to read
|
||
|
* @cpu: The cpu to peak at
|
||
|
* @ts: The timestamp counter of this event.
|
||
|
*
|
||
|
* This will return the event that will be read next, but does
|
||
|
* not consume the data.
|
||
|
*/
|
||
|
struct ring_buffer_event *
|
||
|
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return NULL;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
|
||
|
again:
|
||
|
if (rb_per_cpu_empty(cpu_buffer))
|
||
|
return NULL;
|
||
|
|
||
|
event = rb_head_event(cpu_buffer);
|
||
|
|
||
|
switch (event->type) {
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
||
|
rb_reset_read_page(cpu_buffer);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
/* Internal data, OK to advance */
|
||
|
rb_advance_head(cpu_buffer);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
/* FIXME: not implemented */
|
||
|
rb_advance_head(cpu_buffer);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
if (ts) {
|
||
|
*ts = cpu_buffer->read_stamp + event->time_delta;
|
||
|
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
||
|
}
|
||
|
return event;
|
||
|
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_iter_peek - peek at the next event to be read
|
||
|
* @iter: The ring buffer iterator
|
||
|
* @ts: The timestamp counter of this event.
|
||
|
*
|
||
|
* This will return the event that will be read next, but does
|
||
|
* not increment the iterator.
|
||
|
*/
|
||
|
struct ring_buffer_event *
|
||
|
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
|
||
|
{
|
||
|
struct ring_buffer *buffer;
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
|
||
|
if (ring_buffer_iter_empty(iter))
|
||
|
return NULL;
|
||
|
|
||
|
cpu_buffer = iter->cpu_buffer;
|
||
|
buffer = cpu_buffer->buffer;
|
||
|
|
||
|
again:
|
||
|
if (rb_per_cpu_empty(cpu_buffer))
|
||
|
return NULL;
|
||
|
|
||
|
event = rb_iter_head_event(iter);
|
||
|
|
||
|
switch (event->type) {
|
||
|
case RINGBUF_TYPE_PADDING:
|
||
|
rb_inc_page(cpu_buffer, &iter->head_page);
|
||
|
rb_reset_iter_read_page(iter);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_EXTEND:
|
||
|
/* Internal data, OK to advance */
|
||
|
rb_advance_iter(iter);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_TIME_STAMP:
|
||
|
/* FIXME: not implemented */
|
||
|
rb_advance_iter(iter);
|
||
|
goto again;
|
||
|
|
||
|
case RINGBUF_TYPE_DATA:
|
||
|
if (ts) {
|
||
|
*ts = iter->read_stamp + event->time_delta;
|
||
|
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
||
|
}
|
||
|
return event;
|
||
|
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_consume - return an event and consume it
|
||
|
* @buffer: The ring buffer to get the next event from
|
||
|
*
|
||
|
* Returns the next event in the ring buffer, and that event is consumed.
|
||
|
* Meaning, that sequential reads will keep returning a different event,
|
||
|
* and eventually empty the ring buffer if the producer is slower.
|
||
|
*/
|
||
|
struct ring_buffer_event *
|
||
|
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_event *event;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return NULL;
|
||
|
|
||
|
event = ring_buffer_peek(buffer, cpu, ts);
|
||
|
if (!event)
|
||
|
return NULL;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
rb_advance_head(cpu_buffer);
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_read_start - start a non consuming read of the buffer
|
||
|
* @buffer: The ring buffer to read from
|
||
|
* @cpu: The cpu buffer to iterate over
|
||
|
*
|
||
|
* This starts up an iteration through the buffer. It also disables
|
||
|
* the recording to the buffer until the reading is finished.
|
||
|
* This prevents the reading from being corrupted. This is not
|
||
|
* a consuming read, so a producer is not expected.
|
||
|
*
|
||
|
* Must be paired with ring_buffer_finish.
|
||
|
*/
|
||
|
struct ring_buffer_iter *
|
||
|
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
struct ring_buffer_iter *iter;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return NULL;
|
||
|
|
||
|
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
|
||
|
if (!iter)
|
||
|
return NULL;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
|
||
|
iter->cpu_buffer = cpu_buffer;
|
||
|
|
||
|
atomic_inc(&cpu_buffer->record_disabled);
|
||
|
synchronize_sched();
|
||
|
|
||
|
spin_lock(&cpu_buffer->lock);
|
||
|
iter->head = cpu_buffer->head;
|
||
|
iter->head_page = cpu_buffer->head_page;
|
||
|
rb_reset_iter_read_page(iter);
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
|
||
|
return iter;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_finish - finish reading the iterator of the buffer
|
||
|
* @iter: The iterator retrieved by ring_buffer_start
|
||
|
*
|
||
|
* This re-enables the recording to the buffer, and frees the
|
||
|
* iterator.
|
||
|
*/
|
||
|
void
|
||
|
ring_buffer_read_finish(struct ring_buffer_iter *iter)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
||
|
|
||
|
atomic_dec(&cpu_buffer->record_disabled);
|
||
|
kfree(iter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_read - read the next item in the ring buffer by the iterator
|
||
|
* @iter: The ring buffer iterator
|
||
|
* @ts: The time stamp of the event read.
|
||
|
*
|
||
|
* This reads the next event in the ring buffer and increments the iterator.
|
||
|
*/
|
||
|
struct ring_buffer_event *
|
||
|
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
|
||
|
{
|
||
|
struct ring_buffer_event *event;
|
||
|
|
||
|
event = ring_buffer_iter_peek(iter, ts);
|
||
|
if (!event)
|
||
|
return NULL;
|
||
|
|
||
|
rb_advance_iter(iter);
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_size - return the size of the ring buffer (in bytes)
|
||
|
* @buffer: The ring buffer.
|
||
|
*/
|
||
|
unsigned long ring_buffer_size(struct ring_buffer *buffer)
|
||
|
{
|
||
|
return BUF_PAGE_SIZE * buffer->pages;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
|
||
|
{
|
||
|
cpu_buffer->head_page
|
||
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
||
|
cpu_buffer->tail_page
|
||
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
||
|
|
||
|
cpu_buffer->head = cpu_buffer->tail = 0;
|
||
|
cpu_buffer->overrun = 0;
|
||
|
cpu_buffer->entries = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
|
||
|
* @buffer: The ring buffer to reset a per cpu buffer of
|
||
|
* @cpu: The CPU buffer to be reset
|
||
|
*/
|
||
|
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return;
|
||
|
|
||
|
raw_local_irq_save(flags);
|
||
|
spin_lock(&cpu_buffer->lock);
|
||
|
|
||
|
rb_reset_cpu(cpu_buffer);
|
||
|
|
||
|
spin_unlock(&cpu_buffer->lock);
|
||
|
raw_local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_reset - reset a ring buffer
|
||
|
* @buffer: The ring buffer to reset all cpu buffers
|
||
|
*/
|
||
|
void ring_buffer_reset(struct ring_buffer *buffer)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int cpu;
|
||
|
|
||
|
ring_buffer_lock(buffer, &flags);
|
||
|
|
||
|
for_each_buffer_cpu(buffer, cpu)
|
||
|
rb_reset_cpu(buffer->buffers[cpu]);
|
||
|
|
||
|
ring_buffer_unlock(buffer, flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rind_buffer_empty - is the ring buffer empty?
|
||
|
* @buffer: The ring buffer to test
|
||
|
*/
|
||
|
int ring_buffer_empty(struct ring_buffer *buffer)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
int cpu;
|
||
|
|
||
|
/* yes this is racy, but if you don't like the race, lock the buffer */
|
||
|
for_each_buffer_cpu(buffer, cpu) {
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
if (!rb_per_cpu_empty(cpu_buffer))
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
|
||
|
* @buffer: The ring buffer
|
||
|
* @cpu: The CPU buffer to test
|
||
|
*/
|
||
|
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer->cpumask))
|
||
|
return 1;
|
||
|
|
||
|
cpu_buffer = buffer->buffers[cpu];
|
||
|
return rb_per_cpu_empty(cpu_buffer);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
|
||
|
* @buffer_a: One buffer to swap with
|
||
|
* @buffer_b: The other buffer to swap with
|
||
|
*
|
||
|
* This function is useful for tracers that want to take a "snapshot"
|
||
|
* of a CPU buffer and has another back up buffer lying around.
|
||
|
* it is expected that the tracer handles the cpu buffer not being
|
||
|
* used at the moment.
|
||
|
*/
|
||
|
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
|
||
|
struct ring_buffer *buffer_b, int cpu)
|
||
|
{
|
||
|
struct ring_buffer_per_cpu *cpu_buffer_a;
|
||
|
struct ring_buffer_per_cpu *cpu_buffer_b;
|
||
|
|
||
|
if (!cpu_isset(cpu, buffer_a->cpumask) ||
|
||
|
!cpu_isset(cpu, buffer_b->cpumask))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* At least make sure the two buffers are somewhat the same */
|
||
|
if (buffer_a->size != buffer_b->size ||
|
||
|
buffer_a->pages != buffer_b->pages)
|
||
|
return -EINVAL;
|
||
|
|
||
|
cpu_buffer_a = buffer_a->buffers[cpu];
|
||
|
cpu_buffer_b = buffer_b->buffers[cpu];
|
||
|
|
||
|
/*
|
||
|
* We can't do a synchronize_sched here because this
|
||
|
* function can be called in atomic context.
|
||
|
* Normally this will be called from the same CPU as cpu.
|
||
|
* If not it's up to the caller to protect this.
|
||
|
*/
|
||
|
atomic_inc(&cpu_buffer_a->record_disabled);
|
||
|
atomic_inc(&cpu_buffer_b->record_disabled);
|
||
|
|
||
|
buffer_a->buffers[cpu] = cpu_buffer_b;
|
||
|
buffer_b->buffers[cpu] = cpu_buffer_a;
|
||
|
|
||
|
cpu_buffer_b->buffer = buffer_a;
|
||
|
cpu_buffer_a->buffer = buffer_b;
|
||
|
|
||
|
atomic_dec(&cpu_buffer_a->record_disabled);
|
||
|
atomic_dec(&cpu_buffer_b->record_disabled);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|