linux-next/net/sched/act_api.c

2280 lines
53 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_api.c Packet action API.
*
* Author: Jamal Hadi Salim
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/err.h>
#include <linux/module.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_pedit.h>
#include <net/act_api.h>
#include <net/netlink.h>
#include <net/flow_offload.h>
#include <net/tc_wrapper.h>
#ifdef CONFIG_INET
DEFINE_STATIC_KEY_FALSE(tcf_frag_xmit_count);
EXPORT_SYMBOL_GPL(tcf_frag_xmit_count);
#endif
int tcf_dev_queue_xmit(struct sk_buff *skb, int (*xmit)(struct sk_buff *skb))
{
#ifdef CONFIG_INET
if (static_branch_unlikely(&tcf_frag_xmit_count))
return sch_frag_xmit_hook(skb, xmit);
#endif
return xmit(skb);
}
EXPORT_SYMBOL_GPL(tcf_dev_queue_xmit);
static void tcf_action_goto_chain_exec(const struct tc_action *a,
struct tcf_result *res)
{
const struct tcf_chain *chain = rcu_dereference_bh(a->goto_chain);
res->goto_tp = rcu_dereference_bh(chain->filter_chain);
}
static void tcf_free_cookie_rcu(struct rcu_head *p)
{
struct tc_cookie *cookie = container_of(p, struct tc_cookie, rcu);
kfree(cookie->data);
kfree(cookie);
}
static void tcf_set_action_cookie(struct tc_cookie __rcu **old_cookie,
struct tc_cookie *new_cookie)
{
struct tc_cookie *old;
old = unrcu_pointer(xchg(old_cookie, RCU_INITIALIZER(new_cookie)));
if (old)
call_rcu(&old->rcu, tcf_free_cookie_rcu);
}
net/sched: prepare TC actions to properly validate the control action - pass a pointer to struct tcf_proto in each actions's init() handler, to allow validating the control action, checking whether the chain exists and (eventually) refcounting it. - remove code that validates the control action after a successful call to the action's init() handler, and replace it with a test that forbids addition of actions having 'goto_chain' and NULL goto_chain pointer at the same time. - add tcf_action_check_ctrlact(), that will validate the control action and eventually allocate the action 'goto_chain' within the init() handler. - add tcf_action_set_ctrlact(), that will assign the control action and swap the current 'goto_chain' pointer with the new given one. This disallows 'goto_chain' on actions that don't initialize it properly in their init() handler, i.e. calling tcf_action_check_ctrlact() after successful IDR reservation and then calling tcf_action_set_ctrlact() to assign 'goto_chain' and 'tcf_action' consistently. By doing this, the kernel does not leak anymore refcounts when a valid 'goto chain' handle is replaced in TC actions, causing kmemleak splats like the following one: # tc chain add dev dd0 chain 42 ingress protocol ip flower \ > ip_proto tcp action drop # tc chain add dev dd0 chain 43 ingress protocol ip flower \ > ip_proto udp action drop # tc filter add dev dd0 ingress matchall \ > action gact goto chain 42 index 66 # tc filter replace dev dd0 ingress matchall \ > action gact goto chain 43 index 66 # echo scan >/sys/kernel/debug/kmemleak <...> unreferenced object 0xffff93c0ee09f000 (size 1024): comm "tc", pid 2565, jiffies 4295339808 (age 65.426s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 08 00 06 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000009b63f92d>] tc_ctl_chain+0x3d2/0x4c0 [<00000000683a8d72>] rtnetlink_rcv_msg+0x263/0x2d0 [<00000000ddd88f8e>] netlink_rcv_skb+0x4a/0x110 [<000000006126a348>] netlink_unicast+0x1a0/0x250 [<00000000b3340877>] netlink_sendmsg+0x2c1/0x3c0 [<00000000a25a2171>] sock_sendmsg+0x36/0x40 [<00000000f19ee1ec>] ___sys_sendmsg+0x280/0x2f0 [<00000000d0422042>] __sys_sendmsg+0x5e/0xa0 [<000000007a6c61f9>] do_syscall_64+0x5b/0x180 [<00000000ccd07542>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000013eaa334>] 0xffffffffffffffff Fixes: db50514f9a9c ("net: sched: add termination action to allow goto chain") Fixes: 97763dc0f401 ("net_sched: reject unknown tcfa_action values") Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-20 13:59:59 +00:00
int tcf_action_check_ctrlact(int action, struct tcf_proto *tp,
struct tcf_chain **newchain,
struct netlink_ext_ack *extack)
{
int opcode = TC_ACT_EXT_OPCODE(action), ret = -EINVAL;
u32 chain_index;
if (!opcode)
ret = action > TC_ACT_VALUE_MAX ? -EINVAL : 0;
else if (opcode <= TC_ACT_EXT_OPCODE_MAX || action == TC_ACT_UNSPEC)
ret = 0;
if (ret) {
NL_SET_ERR_MSG(extack, "invalid control action");
goto end;
}
if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN)) {
chain_index = action & TC_ACT_EXT_VAL_MASK;
if (!tp || !newchain) {
ret = -EINVAL;
NL_SET_ERR_MSG(extack,
"can't goto NULL proto/chain");
goto end;
}
*newchain = tcf_chain_get_by_act(tp->chain->block, chain_index);
if (!*newchain) {
ret = -ENOMEM;
NL_SET_ERR_MSG(extack,
"can't allocate goto_chain");
}
}
end:
return ret;
}
EXPORT_SYMBOL(tcf_action_check_ctrlact);
struct tcf_chain *tcf_action_set_ctrlact(struct tc_action *a, int action,
struct tcf_chain *goto_chain)
net/sched: prepare TC actions to properly validate the control action - pass a pointer to struct tcf_proto in each actions's init() handler, to allow validating the control action, checking whether the chain exists and (eventually) refcounting it. - remove code that validates the control action after a successful call to the action's init() handler, and replace it with a test that forbids addition of actions having 'goto_chain' and NULL goto_chain pointer at the same time. - add tcf_action_check_ctrlact(), that will validate the control action and eventually allocate the action 'goto_chain' within the init() handler. - add tcf_action_set_ctrlact(), that will assign the control action and swap the current 'goto_chain' pointer with the new given one. This disallows 'goto_chain' on actions that don't initialize it properly in their init() handler, i.e. calling tcf_action_check_ctrlact() after successful IDR reservation and then calling tcf_action_set_ctrlact() to assign 'goto_chain' and 'tcf_action' consistently. By doing this, the kernel does not leak anymore refcounts when a valid 'goto chain' handle is replaced in TC actions, causing kmemleak splats like the following one: # tc chain add dev dd0 chain 42 ingress protocol ip flower \ > ip_proto tcp action drop # tc chain add dev dd0 chain 43 ingress protocol ip flower \ > ip_proto udp action drop # tc filter add dev dd0 ingress matchall \ > action gact goto chain 42 index 66 # tc filter replace dev dd0 ingress matchall \ > action gact goto chain 43 index 66 # echo scan >/sys/kernel/debug/kmemleak <...> unreferenced object 0xffff93c0ee09f000 (size 1024): comm "tc", pid 2565, jiffies 4295339808 (age 65.426s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 08 00 06 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000009b63f92d>] tc_ctl_chain+0x3d2/0x4c0 [<00000000683a8d72>] rtnetlink_rcv_msg+0x263/0x2d0 [<00000000ddd88f8e>] netlink_rcv_skb+0x4a/0x110 [<000000006126a348>] netlink_unicast+0x1a0/0x250 [<00000000b3340877>] netlink_sendmsg+0x2c1/0x3c0 [<00000000a25a2171>] sock_sendmsg+0x36/0x40 [<00000000f19ee1ec>] ___sys_sendmsg+0x280/0x2f0 [<00000000d0422042>] __sys_sendmsg+0x5e/0xa0 [<000000007a6c61f9>] do_syscall_64+0x5b/0x180 [<00000000ccd07542>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000013eaa334>] 0xffffffffffffffff Fixes: db50514f9a9c ("net: sched: add termination action to allow goto chain") Fixes: 97763dc0f401 ("net_sched: reject unknown tcfa_action values") Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-20 13:59:59 +00:00
{
a->tcfa_action = action;
goto_chain = rcu_replace_pointer(a->goto_chain, goto_chain, 1);
return goto_chain;
net/sched: prepare TC actions to properly validate the control action - pass a pointer to struct tcf_proto in each actions's init() handler, to allow validating the control action, checking whether the chain exists and (eventually) refcounting it. - remove code that validates the control action after a successful call to the action's init() handler, and replace it with a test that forbids addition of actions having 'goto_chain' and NULL goto_chain pointer at the same time. - add tcf_action_check_ctrlact(), that will validate the control action and eventually allocate the action 'goto_chain' within the init() handler. - add tcf_action_set_ctrlact(), that will assign the control action and swap the current 'goto_chain' pointer with the new given one. This disallows 'goto_chain' on actions that don't initialize it properly in their init() handler, i.e. calling tcf_action_check_ctrlact() after successful IDR reservation and then calling tcf_action_set_ctrlact() to assign 'goto_chain' and 'tcf_action' consistently. By doing this, the kernel does not leak anymore refcounts when a valid 'goto chain' handle is replaced in TC actions, causing kmemleak splats like the following one: # tc chain add dev dd0 chain 42 ingress protocol ip flower \ > ip_proto tcp action drop # tc chain add dev dd0 chain 43 ingress protocol ip flower \ > ip_proto udp action drop # tc filter add dev dd0 ingress matchall \ > action gact goto chain 42 index 66 # tc filter replace dev dd0 ingress matchall \ > action gact goto chain 43 index 66 # echo scan >/sys/kernel/debug/kmemleak <...> unreferenced object 0xffff93c0ee09f000 (size 1024): comm "tc", pid 2565, jiffies 4295339808 (age 65.426s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 08 00 06 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000009b63f92d>] tc_ctl_chain+0x3d2/0x4c0 [<00000000683a8d72>] rtnetlink_rcv_msg+0x263/0x2d0 [<00000000ddd88f8e>] netlink_rcv_skb+0x4a/0x110 [<000000006126a348>] netlink_unicast+0x1a0/0x250 [<00000000b3340877>] netlink_sendmsg+0x2c1/0x3c0 [<00000000a25a2171>] sock_sendmsg+0x36/0x40 [<00000000f19ee1ec>] ___sys_sendmsg+0x280/0x2f0 [<00000000d0422042>] __sys_sendmsg+0x5e/0xa0 [<000000007a6c61f9>] do_syscall_64+0x5b/0x180 [<00000000ccd07542>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000013eaa334>] 0xffffffffffffffff Fixes: db50514f9a9c ("net: sched: add termination action to allow goto chain") Fixes: 97763dc0f401 ("net_sched: reject unknown tcfa_action values") Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-20 13:59:59 +00:00
}
EXPORT_SYMBOL(tcf_action_set_ctrlact);
/* XXX: For standalone actions, we don't need a RCU grace period either, because
* actions are always connected to filters and filters are already destroyed in
* RCU callbacks, so after a RCU grace period actions are already disconnected
* from filters. Readers later can not find us.
*/
static void free_tcf(struct tc_action *p)
{
struct tcf_chain *chain = rcu_dereference_protected(p->goto_chain, 1);
net/sched: prepare TC actions to properly validate the control action - pass a pointer to struct tcf_proto in each actions's init() handler, to allow validating the control action, checking whether the chain exists and (eventually) refcounting it. - remove code that validates the control action after a successful call to the action's init() handler, and replace it with a test that forbids addition of actions having 'goto_chain' and NULL goto_chain pointer at the same time. - add tcf_action_check_ctrlact(), that will validate the control action and eventually allocate the action 'goto_chain' within the init() handler. - add tcf_action_set_ctrlact(), that will assign the control action and swap the current 'goto_chain' pointer with the new given one. This disallows 'goto_chain' on actions that don't initialize it properly in their init() handler, i.e. calling tcf_action_check_ctrlact() after successful IDR reservation and then calling tcf_action_set_ctrlact() to assign 'goto_chain' and 'tcf_action' consistently. By doing this, the kernel does not leak anymore refcounts when a valid 'goto chain' handle is replaced in TC actions, causing kmemleak splats like the following one: # tc chain add dev dd0 chain 42 ingress protocol ip flower \ > ip_proto tcp action drop # tc chain add dev dd0 chain 43 ingress protocol ip flower \ > ip_proto udp action drop # tc filter add dev dd0 ingress matchall \ > action gact goto chain 42 index 66 # tc filter replace dev dd0 ingress matchall \ > action gact goto chain 43 index 66 # echo scan >/sys/kernel/debug/kmemleak <...> unreferenced object 0xffff93c0ee09f000 (size 1024): comm "tc", pid 2565, jiffies 4295339808 (age 65.426s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 08 00 06 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000009b63f92d>] tc_ctl_chain+0x3d2/0x4c0 [<00000000683a8d72>] rtnetlink_rcv_msg+0x263/0x2d0 [<00000000ddd88f8e>] netlink_rcv_skb+0x4a/0x110 [<000000006126a348>] netlink_unicast+0x1a0/0x250 [<00000000b3340877>] netlink_sendmsg+0x2c1/0x3c0 [<00000000a25a2171>] sock_sendmsg+0x36/0x40 [<00000000f19ee1ec>] ___sys_sendmsg+0x280/0x2f0 [<00000000d0422042>] __sys_sendmsg+0x5e/0xa0 [<000000007a6c61f9>] do_syscall_64+0x5b/0x180 [<00000000ccd07542>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000013eaa334>] 0xffffffffffffffff Fixes: db50514f9a9c ("net: sched: add termination action to allow goto chain") Fixes: 97763dc0f401 ("net_sched: reject unknown tcfa_action values") Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-20 13:59:59 +00:00
free_percpu(p->cpu_bstats);
free_percpu(p->cpu_bstats_hw);
free_percpu(p->cpu_qstats);
tcf_set_action_cookie(&p->user_cookie, NULL);
net/sched: prepare TC actions to properly validate the control action - pass a pointer to struct tcf_proto in each actions's init() handler, to allow validating the control action, checking whether the chain exists and (eventually) refcounting it. - remove code that validates the control action after a successful call to the action's init() handler, and replace it with a test that forbids addition of actions having 'goto_chain' and NULL goto_chain pointer at the same time. - add tcf_action_check_ctrlact(), that will validate the control action and eventually allocate the action 'goto_chain' within the init() handler. - add tcf_action_set_ctrlact(), that will assign the control action and swap the current 'goto_chain' pointer with the new given one. This disallows 'goto_chain' on actions that don't initialize it properly in their init() handler, i.e. calling tcf_action_check_ctrlact() after successful IDR reservation and then calling tcf_action_set_ctrlact() to assign 'goto_chain' and 'tcf_action' consistently. By doing this, the kernel does not leak anymore refcounts when a valid 'goto chain' handle is replaced in TC actions, causing kmemleak splats like the following one: # tc chain add dev dd0 chain 42 ingress protocol ip flower \ > ip_proto tcp action drop # tc chain add dev dd0 chain 43 ingress protocol ip flower \ > ip_proto udp action drop # tc filter add dev dd0 ingress matchall \ > action gact goto chain 42 index 66 # tc filter replace dev dd0 ingress matchall \ > action gact goto chain 43 index 66 # echo scan >/sys/kernel/debug/kmemleak <...> unreferenced object 0xffff93c0ee09f000 (size 1024): comm "tc", pid 2565, jiffies 4295339808 (age 65.426s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 08 00 06 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000009b63f92d>] tc_ctl_chain+0x3d2/0x4c0 [<00000000683a8d72>] rtnetlink_rcv_msg+0x263/0x2d0 [<00000000ddd88f8e>] netlink_rcv_skb+0x4a/0x110 [<000000006126a348>] netlink_unicast+0x1a0/0x250 [<00000000b3340877>] netlink_sendmsg+0x2c1/0x3c0 [<00000000a25a2171>] sock_sendmsg+0x36/0x40 [<00000000f19ee1ec>] ___sys_sendmsg+0x280/0x2f0 [<00000000d0422042>] __sys_sendmsg+0x5e/0xa0 [<000000007a6c61f9>] do_syscall_64+0x5b/0x180 [<00000000ccd07542>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000013eaa334>] 0xffffffffffffffff Fixes: db50514f9a9c ("net: sched: add termination action to allow goto chain") Fixes: 97763dc0f401 ("net_sched: reject unknown tcfa_action values") Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-20 13:59:59 +00:00
if (chain)
tcf_chain_put_by_act(chain);
kfree(p);
}
static void offload_action_hw_count_set(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count = hw_count;
}
static void offload_action_hw_count_inc(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count += hw_count;
}
static void offload_action_hw_count_dec(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count = act->in_hw_count > hw_count ?
act->in_hw_count - hw_count : 0;
}
static unsigned int tcf_offload_act_num_actions_single(struct tc_action *act)
{
if (is_tcf_pedit(act))
return tcf_pedit_nkeys(act);
else
return 1;
}
static bool tc_act_skip_hw(u32 flags)
{
return (flags & TCA_ACT_FLAGS_SKIP_HW) ? true : false;
}
static bool tc_act_skip_sw(u32 flags)
{
return (flags & TCA_ACT_FLAGS_SKIP_SW) ? true : false;
}
/* SKIP_HW and SKIP_SW are mutually exclusive flags. */
static bool tc_act_flags_valid(u32 flags)
{
flags &= TCA_ACT_FLAGS_SKIP_HW | TCA_ACT_FLAGS_SKIP_SW;
return flags ^ (TCA_ACT_FLAGS_SKIP_HW | TCA_ACT_FLAGS_SKIP_SW);
}
static int offload_action_init(struct flow_offload_action *fl_action,
struct tc_action *act,
enum offload_act_command cmd,
struct netlink_ext_ack *extack)
{
flow_offload: fix suspicious RCU usage when offloading tc action Fix suspicious rcu_dereference_protected() usage when offloading tc action. We should hold tcfa_lock to offload tc action in action initiation. Without these changes, the following warning will be observed: WARNING: suspicious RCU usage 5.16.0-rc5-net-next-01504-g7d1f236dcffa-dirty #50 Tainted: G I ----------------------------- include/net/tc_act/tc_tunnel_key.h:33 suspicious rcu_dereference_protected() usage! 1 lock held by tc/12108: CPU: 4 PID: 12108 Comm: tc Tainted: G Hardware name: Dell Inc. PowerEdge R740/07WCGN, BIOS 1.6.11 11/20/2018 Call Trace: <TASK> dump_stack_lvl+0x49/0x5e dump_stack+0x10/0x12 lockdep_rcu_suspicious+0xed/0xf8 tcf_tunnel_key_offload_act_setup+0x1de/0x300 [act_tunnel_key] tcf_action_offload_add_ex+0xc0/0x1f0 tcf_action_init+0x26a/0x2f0 tcf_action_add+0xa9/0x1f0 tc_ctl_action+0xfb/0x170 rtnetlink_rcv_msg+0x169/0x510 ? sched_clock+0x9/0x10 ? rtnl_newlink+0x70/0x70 netlink_rcv_skb+0x55/0x100 rtnetlink_rcv+0x15/0x20 netlink_unicast+0x1a8/0x270 netlink_sendmsg+0x245/0x490 sock_sendmsg+0x65/0x70 ____sys_sendmsg+0x219/0x260 ? __import_iovec+0x2c/0x150 ___sys_sendmsg+0xb7/0x100 ? __lock_acquire+0x3d5/0x1f40 ? __this_cpu_preempt_check+0x13/0x20 ? lock_is_held_type+0xe4/0x140 ? sched_clock+0x9/0x10 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? __this_cpu_preempt_check+0x13/0x20 ? lockdep_hardirqs_on+0x7e/0x100 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? trace_hardirqs_on+0x2a/0xf0 __sys_sendmsg+0x5a/0xa0 ? syscall_trace_enter.constprop.0+0x1dd/0x220 __x64_sys_sendmsg+0x1f/0x30 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f4db7bb7a60 Fixes: 8cbfe939abe9 ("flow_offload: allow user to offload tc action to net device") Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com> Signed-off-by: Louis Peens <louis.peens@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-22 04:25:46 +00:00
int err;
fl_action->extack = extack;
fl_action->command = cmd;
fl_action->index = act->tcfa_index;
fl_action->cookie = (unsigned long)act;
flow_offload: fix suspicious RCU usage when offloading tc action Fix suspicious rcu_dereference_protected() usage when offloading tc action. We should hold tcfa_lock to offload tc action in action initiation. Without these changes, the following warning will be observed: WARNING: suspicious RCU usage 5.16.0-rc5-net-next-01504-g7d1f236dcffa-dirty #50 Tainted: G I ----------------------------- include/net/tc_act/tc_tunnel_key.h:33 suspicious rcu_dereference_protected() usage! 1 lock held by tc/12108: CPU: 4 PID: 12108 Comm: tc Tainted: G Hardware name: Dell Inc. PowerEdge R740/07WCGN, BIOS 1.6.11 11/20/2018 Call Trace: <TASK> dump_stack_lvl+0x49/0x5e dump_stack+0x10/0x12 lockdep_rcu_suspicious+0xed/0xf8 tcf_tunnel_key_offload_act_setup+0x1de/0x300 [act_tunnel_key] tcf_action_offload_add_ex+0xc0/0x1f0 tcf_action_init+0x26a/0x2f0 tcf_action_add+0xa9/0x1f0 tc_ctl_action+0xfb/0x170 rtnetlink_rcv_msg+0x169/0x510 ? sched_clock+0x9/0x10 ? rtnl_newlink+0x70/0x70 netlink_rcv_skb+0x55/0x100 rtnetlink_rcv+0x15/0x20 netlink_unicast+0x1a8/0x270 netlink_sendmsg+0x245/0x490 sock_sendmsg+0x65/0x70 ____sys_sendmsg+0x219/0x260 ? __import_iovec+0x2c/0x150 ___sys_sendmsg+0xb7/0x100 ? __lock_acquire+0x3d5/0x1f40 ? __this_cpu_preempt_check+0x13/0x20 ? lock_is_held_type+0xe4/0x140 ? sched_clock+0x9/0x10 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? __this_cpu_preempt_check+0x13/0x20 ? lockdep_hardirqs_on+0x7e/0x100 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? trace_hardirqs_on+0x2a/0xf0 __sys_sendmsg+0x5a/0xa0 ? syscall_trace_enter.constprop.0+0x1dd/0x220 __x64_sys_sendmsg+0x1f/0x30 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f4db7bb7a60 Fixes: 8cbfe939abe9 ("flow_offload: allow user to offload tc action to net device") Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com> Signed-off-by: Louis Peens <louis.peens@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-22 04:25:46 +00:00
if (act->ops->offload_act_setup) {
spin_lock_bh(&act->tcfa_lock);
err = act->ops->offload_act_setup(act, fl_action, NULL,
false, extack);
flow_offload: fix suspicious RCU usage when offloading tc action Fix suspicious rcu_dereference_protected() usage when offloading tc action. We should hold tcfa_lock to offload tc action in action initiation. Without these changes, the following warning will be observed: WARNING: suspicious RCU usage 5.16.0-rc5-net-next-01504-g7d1f236dcffa-dirty #50 Tainted: G I ----------------------------- include/net/tc_act/tc_tunnel_key.h:33 suspicious rcu_dereference_protected() usage! 1 lock held by tc/12108: CPU: 4 PID: 12108 Comm: tc Tainted: G Hardware name: Dell Inc. PowerEdge R740/07WCGN, BIOS 1.6.11 11/20/2018 Call Trace: <TASK> dump_stack_lvl+0x49/0x5e dump_stack+0x10/0x12 lockdep_rcu_suspicious+0xed/0xf8 tcf_tunnel_key_offload_act_setup+0x1de/0x300 [act_tunnel_key] tcf_action_offload_add_ex+0xc0/0x1f0 tcf_action_init+0x26a/0x2f0 tcf_action_add+0xa9/0x1f0 tc_ctl_action+0xfb/0x170 rtnetlink_rcv_msg+0x169/0x510 ? sched_clock+0x9/0x10 ? rtnl_newlink+0x70/0x70 netlink_rcv_skb+0x55/0x100 rtnetlink_rcv+0x15/0x20 netlink_unicast+0x1a8/0x270 netlink_sendmsg+0x245/0x490 sock_sendmsg+0x65/0x70 ____sys_sendmsg+0x219/0x260 ? __import_iovec+0x2c/0x150 ___sys_sendmsg+0xb7/0x100 ? __lock_acquire+0x3d5/0x1f40 ? __this_cpu_preempt_check+0x13/0x20 ? lock_is_held_type+0xe4/0x140 ? sched_clock+0x9/0x10 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? __this_cpu_preempt_check+0x13/0x20 ? lockdep_hardirqs_on+0x7e/0x100 ? ktime_get_coarse_real_ts64+0xbe/0xd0 ? trace_hardirqs_on+0x2a/0xf0 __sys_sendmsg+0x5a/0xa0 ? syscall_trace_enter.constprop.0+0x1dd/0x220 __x64_sys_sendmsg+0x1f/0x30 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f4db7bb7a60 Fixes: 8cbfe939abe9 ("flow_offload: allow user to offload tc action to net device") Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com> Signed-off-by: Louis Peens <louis.peens@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-22 04:25:46 +00:00
spin_unlock_bh(&act->tcfa_lock);
return err;
}
return -EOPNOTSUPP;
}
static int tcf_action_offload_cmd_ex(struct flow_offload_action *fl_act,
u32 *hw_count)
{
int err;
err = flow_indr_dev_setup_offload(NULL, NULL, TC_SETUP_ACT,
fl_act, NULL, NULL);
if (err < 0)
return err;
if (hw_count)
*hw_count = err;
return 0;
}
static int tcf_action_offload_cmd_cb_ex(struct flow_offload_action *fl_act,
u32 *hw_count,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
int err;
err = cb(NULL, NULL, cb_priv, TC_SETUP_ACT, NULL, fl_act, NULL);
if (err < 0)
return err;
if (hw_count)
*hw_count = 1;
return 0;
}
static int tcf_action_offload_cmd(struct flow_offload_action *fl_act,
u32 *hw_count,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
return cb ? tcf_action_offload_cmd_cb_ex(fl_act, hw_count,
cb, cb_priv) :
tcf_action_offload_cmd_ex(fl_act, hw_count);
}
static int tcf_action_offload_add_ex(struct tc_action *action,
struct netlink_ext_ack *extack,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
bool skip_sw = tc_act_skip_sw(action->tcfa_flags);
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {
[0] = action,
};
struct flow_offload_action *fl_action;
u32 in_hw_count = 0;
int num, err = 0;
if (tc_act_skip_hw(action->tcfa_flags))
return 0;
num = tcf_offload_act_num_actions_single(action);
fl_action = offload_action_alloc(num);
if (!fl_action)
return -ENOMEM;
err = offload_action_init(fl_action, action, FLOW_ACT_REPLACE, extack);
if (err)
goto fl_err;
err = tc_setup_action(&fl_action->action, actions, 0, extack);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to setup tc actions for offload");
goto fl_err;
}
err = tcf_action_offload_cmd(fl_action, &in_hw_count, cb, cb_priv);
if (!err)
cb ? offload_action_hw_count_inc(action, in_hw_count) :
offload_action_hw_count_set(action, in_hw_count);
if (skip_sw && !tc_act_in_hw(action))
err = -EINVAL;
tc_cleanup_offload_action(&fl_action->action);
fl_err:
kfree(fl_action);
return err;
}
/* offload the tc action after it is inserted */
static int tcf_action_offload_add(struct tc_action *action,
struct netlink_ext_ack *extack)
{
return tcf_action_offload_add_ex(action, extack, NULL, NULL);
}
int tcf_action_update_hw_stats(struct tc_action *action)
{
struct flow_offload_action fl_act = {};
int err;
err = offload_action_init(&fl_act, action, FLOW_ACT_STATS, NULL);
if (err)
return err;
err = tcf_action_offload_cmd(&fl_act, NULL, NULL, NULL);
if (!err) {
preempt_disable();
tcf_action_stats_update(action, fl_act.stats.bytes,
fl_act.stats.pkts,
fl_act.stats.drops,
fl_act.stats.lastused,
true);
preempt_enable();
action->used_hw_stats = fl_act.stats.used_hw_stats;
action->used_hw_stats_valid = true;
} else {
return -EOPNOTSUPP;
}
return 0;
}
EXPORT_SYMBOL(tcf_action_update_hw_stats);
static int tcf_action_offload_del_ex(struct tc_action *action,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
struct flow_offload_action fl_act = {};
u32 in_hw_count = 0;
int err = 0;
if (!tc_act_in_hw(action))
return 0;
err = offload_action_init(&fl_act, action, FLOW_ACT_DESTROY, NULL);
if (err)
return err;
err = tcf_action_offload_cmd(&fl_act, &in_hw_count, cb, cb_priv);
if (err < 0)
return err;
if (!cb && action->in_hw_count != in_hw_count)
return -EINVAL;
/* do not need to update hw state when deleting action */
if (cb && in_hw_count)
offload_action_hw_count_dec(action, in_hw_count);
return 0;
}
static int tcf_action_offload_del(struct tc_action *action)
{
return tcf_action_offload_del_ex(action, NULL, NULL);
}
static void tcf_action_cleanup(struct tc_action *p)
{
tcf_action_offload_del(p);
if (p->ops->cleanup)
p->ops->cleanup(p);
gen_kill_estimator(&p->tcfa_rate_est);
free_tcf(p);
}
static int __tcf_action_put(struct tc_action *p, bool bind)
{
struct tcf_idrinfo *idrinfo = p->idrinfo;
if (refcount_dec_and_mutex_lock(&p->tcfa_refcnt, &idrinfo->lock)) {
if (bind)
atomic_dec(&p->tcfa_bindcnt);
idr_remove(&idrinfo->action_idr, p->tcfa_index);
mutex_unlock(&idrinfo->lock);
tcf_action_cleanup(p);
return 1;
}
if (bind)
atomic_dec(&p->tcfa_bindcnt);
return 0;
}
net: sched: fix err handler in tcf_action_init() With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-07 15:36:04 +00:00
static int __tcf_idr_release(struct tc_action *p, bool bind, bool strict)
{
int ret = 0;
/* Release with strict==1 and bind==0 is only called through act API
* interface (classifiers always bind). Only case when action with
* positive reference count and zero bind count can exist is when it was
* also created with act API (unbinding last classifier will destroy the
* action if it was created by classifier). So only case when bind count
* can be changed after initial check is when unbound action is
* destroyed by act API while classifier binds to action with same id
* concurrently. This result either creation of new action(same behavior
* as before), or reusing existing action if concurrent process
* increments reference count before action is deleted. Both scenarios
* are acceptable.
*/
if (p) {
if (!bind && strict && atomic_read(&p->tcfa_bindcnt) > 0)
return -EPERM;
if (__tcf_action_put(p, bind))
ret = ACT_P_DELETED;
}
net: sched: fix refcount imbalance in actions Since commit 55334a5db5cd ("net_sched: act: refuse to remove bound action outside"), we end up with a wrong reference count for a tc action. Test case 1: FOO="1,6 0 0 4294967295," BAR="1,6 0 0 4294967294," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 \ action bpf bytecode "$FOO" tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 1 bind 1 tc actions replace action bpf bytecode "$BAR" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967294' default-action pipe index 1 ref 2 bind 1 tc actions replace action bpf bytecode "$FOO" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 3 bind 1 Test case 2: FOO="1,6 0 0 4294967295," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 action ok tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 1 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 2 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 3 bind 1 What happens is that in tcf_hash_check(), we check tcf_common for a given index and increase tcfc_refcnt and conditionally tcfc_bindcnt when we've found an existing action. Now there are the following cases: 1) We do a late binding of an action. In that case, we leave the tcfc_refcnt/tcfc_bindcnt increased and are done with the ->init() handler. This is correctly handeled. 2) We replace the given action, or we try to add one without replacing and find out that the action at a specific index already exists (thus, we go out with error in that case). In case of 2), we have to undo the reference count increase from tcf_hash_check() in the tcf_hash_check() function. Currently, we fail to do so because of the 'tcfc_bindcnt > 0' check which bails out early with an -EPERM error. Now, while commit 55334a5db5cd prevents 'tc actions del action ...' on an already classifier-bound action to drop the reference count (which could then become negative, wrap around etc), this restriction only accounts for invocations outside a specific action's ->init() handler. One possible solution would be to add a flag thus we possibly trigger the -EPERM ony in situations where it is indeed relevant. After the patch, above test cases have correct reference count again. Fixes: 55334a5db5cd ("net_sched: act: refuse to remove bound action outside") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-29 21:35:25 +00:00
return ret;
}
net: sched: fix err handler in tcf_action_init() With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-07 15:36:04 +00:00
int tcf_idr_release(struct tc_action *a, bool bind)
{
const struct tc_action_ops *ops = a->ops;
int ret;
ret = __tcf_idr_release(a, bind, false);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
return ret;
}
EXPORT_SYMBOL(tcf_idr_release);
static size_t tcf_action_shared_attrs_size(const struct tc_action *act)
{
struct tc_cookie *user_cookie;
u32 cookie_len = 0;
rcu_read_lock();
user_cookie = rcu_dereference(act->user_cookie);
if (user_cookie)
cookie_len = nla_total_size(user_cookie->len);
rcu_read_unlock();
return nla_total_size(0) /* action number nested */
+ nla_total_size(IFNAMSIZ) /* TCA_ACT_KIND */
+ cookie_len /* TCA_ACT_COOKIE */
+ nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_HW_STATS */
+ nla_total_size(0) /* TCA_ACT_STATS nested */
+ nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_FLAGS */
/* TCA_STATS_BASIC */
+ nla_total_size_64bit(sizeof(struct gnet_stats_basic))
/* TCA_STATS_PKT64 */
+ nla_total_size_64bit(sizeof(u64))
/* TCA_STATS_QUEUE */
+ nla_total_size_64bit(sizeof(struct gnet_stats_queue))
+ nla_total_size(0) /* TCA_ACT_OPTIONS nested */
+ nla_total_size(sizeof(struct tcf_t)); /* TCA_GACT_TM */
}
static size_t tcf_action_full_attrs_size(size_t sz)
{
return NLMSG_HDRLEN /* struct nlmsghdr */
+ sizeof(struct tcamsg)
+ nla_total_size(0) /* TCA_ACT_TAB nested */
+ sz;
}
static size_t tcf_action_fill_size(const struct tc_action *act)
{
size_t sz = tcf_action_shared_attrs_size(act);
if (act->ops->get_fill_size)
return act->ops->get_fill_size(act) + sz;
return sz;
}
static int
tcf_action_dump_terse(struct sk_buff *skb, struct tc_action *a, bool from_act)
{
unsigned char *b = skb_tail_pointer(skb);
struct tc_cookie *cookie;
if (nla_put_string(skb, TCA_ACT_KIND, a->ops->kind))
goto nla_put_failure;
if (tcf_action_copy_stats(skb, a, 0))
goto nla_put_failure;
if (from_act && nla_put_u32(skb, TCA_ACT_INDEX, a->tcfa_index))
goto nla_put_failure;
rcu_read_lock();
cookie = rcu_dereference(a->user_cookie);
if (cookie) {
if (nla_put(skb, TCA_ACT_COOKIE, cookie->len, cookie->data)) {
rcu_read_unlock();
goto nla_put_failure;
}
}
rcu_read_unlock();
return 0;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int
tcf_action_dump_1(struct sk_buff *skb, struct tc_action *a, int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
int err = -EINVAL;
u32 flags;
if (tcf_action_dump_terse(skb, a, false))
goto nla_put_failure;
if (a->hw_stats != TCA_ACT_HW_STATS_ANY &&
nla_put_bitfield32(skb, TCA_ACT_HW_STATS,
a->hw_stats, TCA_ACT_HW_STATS_ANY))
goto nla_put_failure;
if (a->used_hw_stats_valid &&
nla_put_bitfield32(skb, TCA_ACT_USED_HW_STATS,
a->used_hw_stats, TCA_ACT_HW_STATS_ANY))
goto nla_put_failure;
flags = a->tcfa_flags & TCA_ACT_FLAGS_USER_MASK;
if (flags &&
nla_put_bitfield32(skb, TCA_ACT_FLAGS,
flags, flags))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_ACT_IN_HW_COUNT, a->in_hw_count))
goto nla_put_failure;
nest = nla_nest_start_noflag(skb, TCA_ACT_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
err = tcf_action_dump_old(skb, a, bind, ref);
if (err > 0) {
nla_nest_end(skb, nest);
return err;
}
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int tcf_dump_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb,
struct netlink_callback *cb)
{
int err = 0, index = -1, s_i = 0, n_i = 0;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
u32 act_flags = cb->args[2];
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
unsigned long jiffy_since = cb->args[3];
struct nlattr *nest;
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
unsigned long id = 1;
unsigned long tmp;
mutex_lock(&idrinfo->lock);
s_i = cb->args[0];
idr_for_each_entry_ul(idr, p, tmp, id) {
index++;
if (index < s_i)
continue;
if (IS_ERR(p))
continue;
if (jiffy_since &&
time_after(jiffy_since,
(unsigned long)p->tcfa_tm.lastuse))
continue;
tcf_action_update_hw_stats(p);
nest = nla_nest_start_noflag(skb, n_i);
net sched actions: fix dumping which requires several messages to user space Fixes a bug in the tcf_dump_walker function that can cause some actions to not be reported when dumping a large number of actions. This issue became more aggrevated when cookies feature was added. In particular this issue is manifest when large cookie values are assigned to the actions and when enough actions are created that the resulting table must be dumped in multiple batches. The number of actions returned in each batch is limited by the total number of actions and the memory buffer size. With small cookies the numeric limit is reached before the buffer size limit, which avoids the code path triggering this bug. When large cookies are used buffer fills before the numeric limit, and the erroneous code path is hit. For example after creating 32 csum actions with the cookie aaaabbbbccccdddd $ tc actions ls action csum total acts 26 action order 0: csum (tcp) action continue index 1 ref 1 bind 0 cookie aaaabbbbccccdddd ..... action order 25: csum (tcp) action continue index 26 ref 1 bind 0 cookie aaaabbbbccccdddd total acts 6 action order 0: csum (tcp) action continue index 28 ref 1 bind 0 cookie aaaabbbbccccdddd ...... action order 5: csum (tcp) action continue index 32 ref 1 bind 0 cookie aaaabbbbccccdddd Note that the action with index 27 is omitted from the report. Fixes: 4b3550ef530c ("[NET_SCHED]: Use nla_nest_start/nla_nest_end")" Signed-off-by: Craig Dillabaugh <cdillaba@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-26 18:58:32 +00:00
if (!nest) {
index--;
goto nla_put_failure;
net sched actions: fix dumping which requires several messages to user space Fixes a bug in the tcf_dump_walker function that can cause some actions to not be reported when dumping a large number of actions. This issue became more aggrevated when cookies feature was added. In particular this issue is manifest when large cookie values are assigned to the actions and when enough actions are created that the resulting table must be dumped in multiple batches. The number of actions returned in each batch is limited by the total number of actions and the memory buffer size. With small cookies the numeric limit is reached before the buffer size limit, which avoids the code path triggering this bug. When large cookies are used buffer fills before the numeric limit, and the erroneous code path is hit. For example after creating 32 csum actions with the cookie aaaabbbbccccdddd $ tc actions ls action csum total acts 26 action order 0: csum (tcp) action continue index 1 ref 1 bind 0 cookie aaaabbbbccccdddd ..... action order 25: csum (tcp) action continue index 26 ref 1 bind 0 cookie aaaabbbbccccdddd total acts 6 action order 0: csum (tcp) action continue index 28 ref 1 bind 0 cookie aaaabbbbccccdddd ...... action order 5: csum (tcp) action continue index 32 ref 1 bind 0 cookie aaaabbbbccccdddd Note that the action with index 27 is omitted from the report. Fixes: 4b3550ef530c ("[NET_SCHED]: Use nla_nest_start/nla_nest_end")" Signed-off-by: Craig Dillabaugh <cdillaba@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-26 18:58:32 +00:00
}
err = (act_flags & TCA_ACT_FLAG_TERSE_DUMP) ?
tcf_action_dump_terse(skb, p, true) :
tcf_action_dump_1(skb, p, 0, 0);
if (err < 0) {
index--;
nlmsg_trim(skb, nest);
goto done;
}
nla_nest_end(skb, nest);
n_i++;
if (!(act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON) &&
n_i >= TCA_ACT_MAX_PRIO)
goto done;
}
done:
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
if (index >= 0)
cb->args[0] = index + 1;
mutex_unlock(&idrinfo->lock);
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
if (n_i) {
if (act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON)
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
cb->args[1] = n_i;
}
return n_i;
nla_put_failure:
nla_nest_cancel(skb, nest);
goto done;
}
static int tcf_idr_release_unsafe(struct tc_action *p)
{
if (atomic_read(&p->tcfa_bindcnt) > 0)
return -EPERM;
if (refcount_dec_and_test(&p->tcfa_refcnt)) {
idr_remove(&p->idrinfo->action_idr, p->tcfa_index);
tcf_action_cleanup(p);
return ACT_P_DELETED;
}
return 0;
}
static int tcf_del_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct nlattr *nest;
int n_i = 0;
int ret = -EINVAL;
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
unsigned long id = 1;
unsigned long tmp;
nest = nla_nest_start_noflag(skb, 0);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_string(skb, TCA_ACT_KIND, ops->kind))
goto nla_put_failure;
ret = 0;
mutex_lock(&idrinfo->lock);
idr_for_each_entry_ul(idr, p, tmp, id) {
if (IS_ERR(p))
continue;
ret = tcf_idr_release_unsafe(p);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
break;
n_i++;
}
mutex_unlock(&idrinfo->lock);
if (ret < 0) {
if (n_i)
NL_SET_ERR_MSG(extack, "Unable to flush all TC actions");
else
goto nla_put_failure;
}
ret = nla_put_u32(skb, TCA_FCNT, n_i);
if (ret)
goto nla_put_failure;
nla_nest_end(skb, nest);
return n_i;
nla_put_failure:
nla_nest_cancel(skb, nest);
return ret;
}
int tcf_generic_walker(struct tc_action_net *tn, struct sk_buff *skb,
struct netlink_callback *cb, int type,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
if (type == RTM_DELACTION) {
return tcf_del_walker(idrinfo, skb, ops, extack);
} else if (type == RTM_GETACTION) {
return tcf_dump_walker(idrinfo, skb, cb);
} else {
WARN(1, "tcf_generic_walker: unknown command %d\n", type);
NL_SET_ERR_MSG(extack, "tcf_generic_walker: unknown command");
return -EINVAL;
}
}
EXPORT_SYMBOL(tcf_generic_walker);
int tcf_idr_search(struct tc_action_net *tn, struct tc_action **a, u32 index)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
struct tc_action *p;
mutex_lock(&idrinfo->lock);
p = idr_find(&idrinfo->action_idr, index);
if (IS_ERR(p))
p = NULL;
else if (p)
refcount_inc(&p->tcfa_refcnt);
mutex_unlock(&idrinfo->lock);
if (p) {
*a = p;
return true;
}
return false;
}
EXPORT_SYMBOL(tcf_idr_search);
static int __tcf_generic_walker(struct net *net, struct sk_buff *skb,
struct netlink_callback *cb, int type,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, ops->net_id);
if (unlikely(ops->walk))
return ops->walk(net, skb, cb, type, ops, extack);
return tcf_generic_walker(tn, skb, cb, type, ops, extack);
}
static int __tcf_idr_search(struct net *net,
const struct tc_action_ops *ops,
struct tc_action **a, u32 index)
{
struct tc_action_net *tn = net_generic(net, ops->net_id);
if (unlikely(ops->lookup))
return ops->lookup(net, a, index);
return tcf_idr_search(tn, a, index);
}
static int tcf_idr_delete_index(struct tcf_idrinfo *idrinfo, u32 index)
{
struct tc_action *p;
int ret = 0;
mutex_lock(&idrinfo->lock);
p = idr_find(&idrinfo->action_idr, index);
if (!p) {
mutex_unlock(&idrinfo->lock);
return -ENOENT;
}
if (!atomic_read(&p->tcfa_bindcnt)) {
if (refcount_dec_and_test(&p->tcfa_refcnt)) {
struct module *owner = p->ops->owner;
WARN_ON(p != idr_remove(&idrinfo->action_idr,
p->tcfa_index));
mutex_unlock(&idrinfo->lock);
tcf_action_cleanup(p);
module_put(owner);
return 0;
}
ret = 0;
} else {
ret = -EPERM;
}
mutex_unlock(&idrinfo->lock);
return ret;
}
int tcf_idr_create(struct tc_action_net *tn, u32 index, struct nlattr *est,
struct tc_action **a, const struct tc_action_ops *ops,
int bind, bool cpustats, u32 flags)
{
struct tc_action *p = kzalloc(ops->size, GFP_KERNEL);
struct tcf_idrinfo *idrinfo = tn->idrinfo;
int err = -ENOMEM;
if (unlikely(!p))
return -ENOMEM;
refcount_set(&p->tcfa_refcnt, 1);
if (bind)
atomic_set(&p->tcfa_bindcnt, 1);
if (cpustats) {
p->cpu_bstats = netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
if (!p->cpu_bstats)
goto err1;
p->cpu_bstats_hw = netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
if (!p->cpu_bstats_hw)
goto err2;
p->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
if (!p->cpu_qstats)
goto err3;
}
gnet_stats_basic_sync_init(&p->tcfa_bstats);
gnet_stats_basic_sync_init(&p->tcfa_bstats_hw);
spin_lock_init(&p->tcfa_lock);
p->tcfa_index = index;
p->tcfa_tm.install = jiffies;
p->tcfa_tm.lastuse = jiffies;
p->tcfa_tm.firstuse = 0;
p->tcfa_flags = flags;
if (est) {
err = gen_new_estimator(&p->tcfa_bstats, p->cpu_bstats,
&p->tcfa_rate_est,
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 08:49:10 +00:00
&p->tcfa_lock, false, est);
if (err)
goto err4;
}
p->idrinfo = idrinfo;
net: sched: fix err handler in tcf_action_init() With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-07 15:36:04 +00:00
__module_get(ops->owner);
p->ops = ops;
*a = p;
return 0;
err4:
free_percpu(p->cpu_qstats);
err3:
free_percpu(p->cpu_bstats_hw);
err2:
free_percpu(p->cpu_bstats);
err1:
kfree(p);
return err;
}
EXPORT_SYMBOL(tcf_idr_create);
int tcf_idr_create_from_flags(struct tc_action_net *tn, u32 index,
struct nlattr *est, struct tc_action **a,
const struct tc_action_ops *ops, int bind,
u32 flags)
{
/* Set cpustats according to actions flags. */
return tcf_idr_create(tn, index, est, a, ops, bind,
!(flags & TCA_ACT_FLAGS_NO_PERCPU_STATS), flags);
}
EXPORT_SYMBOL(tcf_idr_create_from_flags);
/* Cleanup idr index that was allocated but not initialized. */
void tcf_idr_cleanup(struct tc_action_net *tn, u32 index)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
mutex_lock(&idrinfo->lock);
/* Remove ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc */
WARN_ON(!IS_ERR(idr_remove(&idrinfo->action_idr, index)));
mutex_unlock(&idrinfo->lock);
}
EXPORT_SYMBOL(tcf_idr_cleanup);
/* Check if action with specified index exists. If actions is found, increments
* its reference and bind counters, and return 1. Otherwise insert temporary
* error pointer (to prevent concurrent users from inserting actions with same
* index) and return 0.
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
*
* May return -EAGAIN for binding actions in case of a parallel add/delete on
* the requested index.
*/
int tcf_idr_check_alloc(struct tc_action_net *tn, u32 *index,
struct tc_action **a, int bind)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
struct tc_action *p;
int ret;
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
u32 max;
if (*index) {
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
rcu_read_lock();
p = idr_find(&idrinfo->action_idr, *index);
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
if (IS_ERR(p)) {
/* This means that another process allocated
* index but did not assign the pointer yet.
*/
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
rcu_read_unlock();
net/sched: act_api: fix possible infinite loop in tcf_idr_check_alloc() syzbot found hanging tasks waiting on rtnl_lock [1] A reproducer is available in the syzbot bug. When a request to add multiple actions with the same index is sent, the second request will block forever on the first request. This holds rtnl_lock, and causes tasks to hang. Return -EAGAIN to prevent infinite looping, while keeping documented behavior. [1] INFO: task kworker/1:0:5088 blocked for more than 143 seconds. Not tainted 6.9.0-rc4-syzkaller-00173-g3cdb45594619 #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/1:0 state:D stack:23744 pid:5088 tgid:5088 ppid:2 flags:0x00004000 Workqueue: events_power_efficient reg_check_chans_work Call Trace: <TASK> context_switch kernel/sched/core.c:5409 [inline] __schedule+0xf15/0x5d00 kernel/sched/core.c:6746 __schedule_loop kernel/sched/core.c:6823 [inline] schedule+0xe7/0x350 kernel/sched/core.c:6838 schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:6895 __mutex_lock_common kernel/locking/mutex.c:684 [inline] __mutex_lock+0x5b8/0x9c0 kernel/locking/mutex.c:752 wiphy_lock include/net/cfg80211.h:5953 [inline] reg_leave_invalid_chans net/wireless/reg.c:2466 [inline] reg_check_chans_work+0x10a/0x10e0 net/wireless/reg.c:2481 Fixes: 0190c1d452a9 ("net: sched: atomically check-allocate action") Reported-by: syzbot+b87c222546179f4513a7@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=b87c222546179f4513a7 Signed-off-by: David Ruth <druth@chromium.org> Reviewed-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20240614190326.1349786-1-druth@chromium.org Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-06-14 19:03:26 +00:00
return -EAGAIN;
}
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
if (!p) {
/* Empty slot, try to allocate it */
max = *index;
rcu_read_unlock();
goto new;
}
if (!refcount_inc_not_zero(&p->tcfa_refcnt)) {
/* Action was deleted in parallel */
rcu_read_unlock();
return -EAGAIN;
}
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
if (bind)
atomic_inc(&p->tcfa_bindcnt);
*a = p;
rcu_read_unlock();
return 1;
} else {
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
/* Find a slot */
*index = 1;
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
max = UINT_MAX;
}
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
new:
*a = NULL;
mutex_lock(&idrinfo->lock);
ret = idr_alloc_u32(&idrinfo->action_idr, ERR_PTR(-EBUSY), index, max,
GFP_KERNEL);
mutex_unlock(&idrinfo->lock);
net/sched: act_api: rely on rcu in tcf_idr_check_alloc Instead of relying only on the idrinfo->lock mutex for bind/alloc logic, rely on a combination of rcu + mutex + atomics to better scale the case where multiple rtnl-less filters are binding to the same action object. Action binding happens when an action index is specified explicitly and an action exists which such index exists. Example: tc actions add action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter add ... matchall action drop index 1 tc filter ls ... filter protocol all pref 49150 matchall chain 0 filter protocol all pref 49150 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49151 matchall chain 0 filter protocol all pref 49151 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 filter protocol all pref 49152 matchall chain 0 filter protocol all pref 49152 matchall chain 0 handle 0x1 not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 4 bind 3 When no index is specified, as before, grab the mutex and allocate in the idr the next available id. In this version, as opposed to before, it's simplified to store the -EBUSY pointer instead of the previous alloc + replace combination. When an index is specified, rely on rcu to find if there's an object in such index. If there's none, fallback to the above, serializing on the mutex and reserving the specified id. If there's one, it can be an -EBUSY pointer, in which case we just try again until it's an action, or an action. Given the rcu guarantees, the action found could be dead and therefore we need to bump the refcount if it's not 0, handling the case it's in fact 0. As bind and the action refcount are already atomics, these increments can happen without the mutex protection while many tcf_idr_check_alloc race to bind to the same action instance. In case binding encounters a parallel delete or add, it will return -EAGAIN in order to try again. Both filter and action apis already have the retry machinery in-place. In case it's an unlocked filter it retries under the rtnl lock. Signed-off-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Link: https://lore.kernel.org/r/20231211181807.96028-2-pctammela@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-11 18:18:06 +00:00
/* N binds raced for action allocation,
* retry for all the ones that failed.
*/
if (ret == -ENOSPC && *index == max)
ret = -EAGAIN;
return ret;
}
EXPORT_SYMBOL(tcf_idr_check_alloc);
void tcf_idrinfo_destroy(const struct tc_action_ops *ops,
struct tcf_idrinfo *idrinfo)
{
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
int ret;
unsigned long id = 1;
unsigned long tmp;
idr_for_each_entry_ul(idr, p, tmp, id) {
ret = __tcf_idr_release(p, false, true);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
return;
}
idr_destroy(&idrinfo->action_idr);
}
EXPORT_SYMBOL(tcf_idrinfo_destroy);
static LIST_HEAD(act_base);
static DEFINE_RWLOCK(act_mod_lock);
/* since act ops id is stored in pernet subsystem list,
* then there is no way to walk through only all the action
* subsystem, so we keep tc action pernet ops id for
* reoffload to walk through.
*/
static LIST_HEAD(act_pernet_id_list);
static DEFINE_MUTEX(act_id_mutex);
struct tc_act_pernet_id {
struct list_head list;
unsigned int id;
};
static int tcf_pernet_add_id_list(unsigned int id)
{
struct tc_act_pernet_id *id_ptr;
int ret = 0;
mutex_lock(&act_id_mutex);
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
if (id_ptr->id == id) {
ret = -EEXIST;
goto err_out;
}
}
id_ptr = kzalloc(sizeof(*id_ptr), GFP_KERNEL);
if (!id_ptr) {
ret = -ENOMEM;
goto err_out;
}
id_ptr->id = id;
list_add_tail(&id_ptr->list, &act_pernet_id_list);
err_out:
mutex_unlock(&act_id_mutex);
return ret;
}
static void tcf_pernet_del_id_list(unsigned int id)
{
struct tc_act_pernet_id *id_ptr;
mutex_lock(&act_id_mutex);
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
if (id_ptr->id == id) {
list_del(&id_ptr->list);
kfree(id_ptr);
break;
}
}
mutex_unlock(&act_id_mutex);
}
int tcf_register_action(struct tc_action_ops *act,
struct pernet_operations *ops)
{
struct tc_action_ops *a;
int ret;
if (!act->act || !act->dump || !act->init)
return -EINVAL;
/* We have to register pernet ops before making the action ops visible,
* otherwise tcf_action_init_1() could get a partially initialized
* netns.
*/
ret = register_pernet_subsys(ops);
if (ret)
return ret;
if (ops->id) {
ret = tcf_pernet_add_id_list(*ops->id);
if (ret)
goto err_id;
}
write_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (act->id == a->id || (strcmp(act->kind, a->kind) == 0)) {
ret = -EEXIST;
goto err_out;
}
}
list_add_tail(&act->head, &act_base);
write_unlock(&act_mod_lock);
return 0;
err_out:
write_unlock(&act_mod_lock);
if (ops->id)
tcf_pernet_del_id_list(*ops->id);
err_id:
unregister_pernet_subsys(ops);
return ret;
}
EXPORT_SYMBOL(tcf_register_action);
int tcf_unregister_action(struct tc_action_ops *act,
struct pernet_operations *ops)
{
struct tc_action_ops *a;
int err = -ENOENT;
write_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (a == act) {
list_del(&act->head);
err = 0;
break;
}
}
write_unlock(&act_mod_lock);
if (!err) {
unregister_pernet_subsys(ops);
if (ops->id)
tcf_pernet_del_id_list(*ops->id);
}
return err;
}
EXPORT_SYMBOL(tcf_unregister_action);
/* lookup by name */
static struct tc_action_ops *tc_lookup_action_n(char *kind)
{
struct tc_action_ops *a, *res = NULL;
if (kind) {
read_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (strcmp(kind, a->kind) == 0) {
if (try_module_get(a->owner))
res = a;
break;
}
}
read_unlock(&act_mod_lock);
}
return res;
}
/* lookup by nlattr */
static struct tc_action_ops *tc_lookup_action(struct nlattr *kind)
{
struct tc_action_ops *a, *res = NULL;
if (kind) {
read_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (nla_strcmp(kind, a->kind) == 0) {
if (try_module_get(a->owner))
res = a;
break;
}
}
read_unlock(&act_mod_lock);
}
return res;
}
/*TCA_ACT_MAX_PRIO is 32, there count up to 32 */
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
#define TCA_ACT_MAX_PRIO_MASK 0x1FF
int tcf_action_exec(struct sk_buff *skb, struct tc_action **actions,
int nr_actions, struct tcf_result *res)
{
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
u32 jmp_prgcnt = 0;
u32 jmp_ttl = TCA_ACT_MAX_PRIO; /*matches actions per filter */
int i;
int ret = TC_ACT_OK;
if (skb_skip_tc_classify(skb))
return TC_ACT_OK;
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
restart_act_graph:
for (i = 0; i < nr_actions; i++) {
const struct tc_action *a = actions[i];
net: sched: limit TC_ACT_REPEAT loops We have been living dangerously, at the mercy of malicious users, abusing TC_ACT_REPEAT, as shown by this syzpot report [1]. Add an arbitrary limit (32) to the number of times an action can return TC_ACT_REPEAT. v2: switch the limit to 32 instead of 10. Use net_warn_ratelimited() instead of pr_err_once(). [1] (C repro available on demand) rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 1-...!: (10500 ticks this GP) idle=021/1/0x4000000000000000 softirq=5592/5592 fqs=0 (t=10502 jiffies g=5305 q=190) rcu: rcu_preempt kthread timer wakeup didn't happen for 10502 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 rcu: Possible timer handling issue on cpu=0 timer-softirq=3527 rcu: rcu_preempt kthread starved for 10505 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=0 rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior. rcu: RCU grace-period kthread stack dump: task:rcu_preempt state:I stack:29344 pid: 14 ppid: 2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:4986 [inline] __schedule+0xab2/0x4db0 kernel/sched/core.c:6295 schedule+0xd2/0x260 kernel/sched/core.c:6368 schedule_timeout+0x14a/0x2a0 kernel/time/timer.c:1881 rcu_gp_fqs_loop+0x186/0x810 kernel/rcu/tree.c:1963 rcu_gp_kthread+0x1de/0x320 kernel/rcu/tree.c:2136 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> rcu: Stack dump where RCU GP kthread last ran: Sending NMI from CPU 1 to CPUs 0: NMI backtrace for cpu 0 CPU: 0 PID: 3646 Comm: syz-executor358 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rep_nop arch/x86/include/asm/vdso/processor.h:13 [inline] RIP: 0010:cpu_relax arch/x86/include/asm/vdso/processor.h:18 [inline] RIP: 0010:pv_wait_head_or_lock kernel/locking/qspinlock_paravirt.h:437 [inline] RIP: 0010:__pv_queued_spin_lock_slowpath+0x3b8/0xb40 kernel/locking/qspinlock.c:508 Code: 48 89 eb c6 45 01 01 41 bc 00 80 00 00 48 c1 e9 03 83 e3 07 41 be 01 00 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8d 2c 01 eb 0c <f3> 90 41 83 ec 01 0f 84 72 04 00 00 41 0f b6 45 00 38 d8 7f 08 84 RSP: 0018:ffffc9000283f1b0 EFLAGS: 00000206 RAX: 0000000000000003 RBX: 0000000000000000 RCX: 1ffff1100fc0071e RDX: 0000000000000001 RSI: 0000000000000201 RDI: 0000000000000000 RBP: ffff88807e0038f0 R08: 0000000000000001 R09: ffffffff8ffbf9ff R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000004c1e R13: ffffed100fc0071e R14: 0000000000000001 R15: ffff8880b9c3aa80 FS: 00005555562bf300(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffdbfef12b8 CR3: 00000000723c2000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> pv_queued_spin_lock_slowpath arch/x86/include/asm/paravirt.h:591 [inline] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:51 [inline] queued_spin_lock include/asm-generic/qspinlock.h:85 [inline] do_raw_spin_lock+0x200/0x2b0 kernel/locking/spinlock_debug.c:115 spin_lock_bh include/linux/spinlock.h:354 [inline] sch_tree_lock include/net/sch_generic.h:610 [inline] sch_tree_lock include/net/sch_generic.h:605 [inline] prio_tune+0x3b9/0xb50 net/sched/sch_prio.c:211 prio_init+0x5c/0x80 net/sched/sch_prio.c:244 qdisc_create.constprop.0+0x44a/0x10f0 net/sched/sch_api.c:1253 tc_modify_qdisc+0x4c5/0x1980 net/sched/sch_api.c:1660 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5594 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2494 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline] netlink_unicast+0x539/0x7e0 net/netlink/af_netlink.c:1343 netlink_sendmsg+0x904/0xe00 net/netlink/af_netlink.c:1919 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:725 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2413 ___sys_sendmsg+0xf3/0x170 net/socket.c:2467 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2496 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f7ee98aae99 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdbfef12d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007ffdbfef1300 RCX: 00007f7ee98aae99 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000003 RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d R10: 000000000000000d R11: 0000000000000246 R12: 00007ffdbfef12f0 R13: 00000000000f4240 R14: 000000000004ca47 R15: 00007ffdbfef12e4 </TASK> INFO: NMI handler (nmi_cpu_backtrace_handler) took too long to run: 2.293 msecs NMI backtrace for cpu 1 CPU: 1 PID: 3260 Comm: kworker/1:3 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 nmi_cpu_backtrace.cold+0x47/0x144 lib/nmi_backtrace.c:111 nmi_trigger_cpumask_backtrace+0x1b3/0x230 lib/nmi_backtrace.c:62 trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline] rcu_dump_cpu_stacks+0x25e/0x3f0 kernel/rcu/tree_stall.h:343 print_cpu_stall kernel/rcu/tree_stall.h:604 [inline] check_cpu_stall kernel/rcu/tree_stall.h:688 [inline] rcu_pending kernel/rcu/tree.c:3919 [inline] rcu_sched_clock_irq.cold+0x5c/0x759 kernel/rcu/tree.c:2617 update_process_times+0x16d/0x200 kernel/time/timer.c:1785 tick_sched_handle+0x9b/0x180 kernel/time/tick-sched.c:226 tick_sched_timer+0x1b0/0x2d0 kernel/time/tick-sched.c:1428 __run_hrtimer kernel/time/hrtimer.c:1685 [inline] __hrtimer_run_queues+0x1c0/0xe50 kernel/time/hrtimer.c:1749 hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline] __sysvec_apic_timer_interrupt+0x146/0x530 arch/x86/kernel/apic/apic.c:1103 sysvec_apic_timer_interrupt+0x8e/0xc0 arch/x86/kernel/apic/apic.c:1097 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638 RIP: 0010:__sanitizer_cov_trace_const_cmp4+0xc/0x70 kernel/kcov.c:286 Code: 00 00 00 48 89 7c 30 e8 48 89 4c 30 f0 4c 89 54 d8 20 48 89 10 5b c3 0f 1f 80 00 00 00 00 41 89 f8 bf 03 00 00 00 4c 8b 14 24 <89> f1 65 48 8b 34 25 00 70 02 00 e8 14 f9 ff ff 84 c0 74 4b 48 8b RSP: 0018:ffffc90002c5eea8 EFLAGS: 00000246 RAX: 0000000000000007 RBX: ffff88801c625800 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: ffff8880137d3100 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff874fcd88 R11: 0000000000000000 R12: ffff88801d692dc0 R13: ffff8880137d3104 R14: 0000000000000000 R15: ffff88801d692de8 tcf_police_act+0x358/0x11d0 net/sched/act_police.c:256 tcf_action_exec net/sched/act_api.c:1049 [inline] tcf_action_exec+0x1a6/0x530 net/sched/act_api.c:1026 tcf_exts_exec include/net/pkt_cls.h:326 [inline] route4_classify+0xef0/0x1400 net/sched/cls_route.c:179 __tcf_classify net/sched/cls_api.c:1549 [inline] tcf_classify+0x3e8/0x9d0 net/sched/cls_api.c:1615 prio_classify net/sched/sch_prio.c:42 [inline] prio_enqueue+0x3a7/0x790 net/sched/sch_prio.c:75 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3668 __dev_xmit_skb net/core/dev.c:3756 [inline] __dev_queue_xmit+0x1f61/0x3660 net/core/dev.c:4081 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip_finish_output2+0x14dc/0x2170 net/ipv4/ip_output.c:228 __ip_finish_output net/ipv4/ip_output.c:306 [inline] __ip_finish_output+0x396/0x650 net/ipv4/ip_output.c:288 ip_finish_output+0x32/0x200 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip_output+0x196/0x310 net/ipv4/ip_output.c:430 dst_output include/net/dst.h:451 [inline] ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:126 iptunnel_xmit+0x628/0xa50 net/ipv4/ip_tunnel_core.c:82 geneve_xmit_skb drivers/net/geneve.c:966 [inline] geneve_xmit+0x10c8/0x3530 drivers/net/geneve.c:1077 __netdev_start_xmit include/linux/netdevice.h:4683 [inline] netdev_start_xmit include/linux/netdevice.h:4697 [inline] xmit_one net/core/dev.c:3473 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3489 __dev_queue_xmit+0x2985/0x3660 net/core/dev.c:4116 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip6_finish_output2+0xf7a/0x14f0 net/ipv6/ip6_output.c:126 __ip6_finish_output net/ipv6/ip6_output.c:191 [inline] __ip6_finish_output+0x61e/0xe90 net/ipv6/ip6_output.c:170 ip6_finish_output+0x32/0x200 net/ipv6/ip6_output.c:201 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:224 dst_output include/net/dst.h:451 [inline] NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] mld_sendpack+0x9a3/0xe40 net/ipv6/mcast.c:1826 mld_send_cr net/ipv6/mcast.c:2127 [inline] mld_ifc_work+0x71c/0xdc0 net/ipv6/mcast.c:2659 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> ---------------- Code disassembly (best guess): 0: 48 89 eb mov %rbp,%rbx 3: c6 45 01 01 movb $0x1,0x1(%rbp) 7: 41 bc 00 80 00 00 mov $0x8000,%r12d d: 48 c1 e9 03 shr $0x3,%rcx 11: 83 e3 07 and $0x7,%ebx 14: 41 be 01 00 00 00 mov $0x1,%r14d 1a: 48 b8 00 00 00 00 00 movabs $0xdffffc0000000000,%rax 21: fc ff df 24: 4c 8d 2c 01 lea (%rcx,%rax,1),%r13 28: eb 0c jmp 0x36 * 2a: f3 90 pause <-- trapping instruction 2c: 41 83 ec 01 sub $0x1,%r12d 30: 0f 84 72 04 00 00 je 0x4a8 36: 41 0f b6 45 00 movzbl 0x0(%r13),%eax 3b: 38 d8 cmp %bl,%al 3d: 7f 08 jg 0x47 3f: 84 .byte 0x84 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Jiri Pirko <jiri@resnulli.us> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220215235305.3272331-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-15 23:53:05 +00:00
int repeat_ttl;
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
if (jmp_prgcnt > 0) {
jmp_prgcnt -= 1;
continue;
}
if (tc_act_skip_sw(a->tcfa_flags))
continue;
net: sched: limit TC_ACT_REPEAT loops We have been living dangerously, at the mercy of malicious users, abusing TC_ACT_REPEAT, as shown by this syzpot report [1]. Add an arbitrary limit (32) to the number of times an action can return TC_ACT_REPEAT. v2: switch the limit to 32 instead of 10. Use net_warn_ratelimited() instead of pr_err_once(). [1] (C repro available on demand) rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 1-...!: (10500 ticks this GP) idle=021/1/0x4000000000000000 softirq=5592/5592 fqs=0 (t=10502 jiffies g=5305 q=190) rcu: rcu_preempt kthread timer wakeup didn't happen for 10502 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 rcu: Possible timer handling issue on cpu=0 timer-softirq=3527 rcu: rcu_preempt kthread starved for 10505 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=0 rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior. rcu: RCU grace-period kthread stack dump: task:rcu_preempt state:I stack:29344 pid: 14 ppid: 2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:4986 [inline] __schedule+0xab2/0x4db0 kernel/sched/core.c:6295 schedule+0xd2/0x260 kernel/sched/core.c:6368 schedule_timeout+0x14a/0x2a0 kernel/time/timer.c:1881 rcu_gp_fqs_loop+0x186/0x810 kernel/rcu/tree.c:1963 rcu_gp_kthread+0x1de/0x320 kernel/rcu/tree.c:2136 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> rcu: Stack dump where RCU GP kthread last ran: Sending NMI from CPU 1 to CPUs 0: NMI backtrace for cpu 0 CPU: 0 PID: 3646 Comm: syz-executor358 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rep_nop arch/x86/include/asm/vdso/processor.h:13 [inline] RIP: 0010:cpu_relax arch/x86/include/asm/vdso/processor.h:18 [inline] RIP: 0010:pv_wait_head_or_lock kernel/locking/qspinlock_paravirt.h:437 [inline] RIP: 0010:__pv_queued_spin_lock_slowpath+0x3b8/0xb40 kernel/locking/qspinlock.c:508 Code: 48 89 eb c6 45 01 01 41 bc 00 80 00 00 48 c1 e9 03 83 e3 07 41 be 01 00 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8d 2c 01 eb 0c <f3> 90 41 83 ec 01 0f 84 72 04 00 00 41 0f b6 45 00 38 d8 7f 08 84 RSP: 0018:ffffc9000283f1b0 EFLAGS: 00000206 RAX: 0000000000000003 RBX: 0000000000000000 RCX: 1ffff1100fc0071e RDX: 0000000000000001 RSI: 0000000000000201 RDI: 0000000000000000 RBP: ffff88807e0038f0 R08: 0000000000000001 R09: ffffffff8ffbf9ff R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000004c1e R13: ffffed100fc0071e R14: 0000000000000001 R15: ffff8880b9c3aa80 FS: 00005555562bf300(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffdbfef12b8 CR3: 00000000723c2000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> pv_queued_spin_lock_slowpath arch/x86/include/asm/paravirt.h:591 [inline] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:51 [inline] queued_spin_lock include/asm-generic/qspinlock.h:85 [inline] do_raw_spin_lock+0x200/0x2b0 kernel/locking/spinlock_debug.c:115 spin_lock_bh include/linux/spinlock.h:354 [inline] sch_tree_lock include/net/sch_generic.h:610 [inline] sch_tree_lock include/net/sch_generic.h:605 [inline] prio_tune+0x3b9/0xb50 net/sched/sch_prio.c:211 prio_init+0x5c/0x80 net/sched/sch_prio.c:244 qdisc_create.constprop.0+0x44a/0x10f0 net/sched/sch_api.c:1253 tc_modify_qdisc+0x4c5/0x1980 net/sched/sch_api.c:1660 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5594 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2494 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline] netlink_unicast+0x539/0x7e0 net/netlink/af_netlink.c:1343 netlink_sendmsg+0x904/0xe00 net/netlink/af_netlink.c:1919 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:725 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2413 ___sys_sendmsg+0xf3/0x170 net/socket.c:2467 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2496 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f7ee98aae99 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdbfef12d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007ffdbfef1300 RCX: 00007f7ee98aae99 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000003 RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d R10: 000000000000000d R11: 0000000000000246 R12: 00007ffdbfef12f0 R13: 00000000000f4240 R14: 000000000004ca47 R15: 00007ffdbfef12e4 </TASK> INFO: NMI handler (nmi_cpu_backtrace_handler) took too long to run: 2.293 msecs NMI backtrace for cpu 1 CPU: 1 PID: 3260 Comm: kworker/1:3 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 nmi_cpu_backtrace.cold+0x47/0x144 lib/nmi_backtrace.c:111 nmi_trigger_cpumask_backtrace+0x1b3/0x230 lib/nmi_backtrace.c:62 trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline] rcu_dump_cpu_stacks+0x25e/0x3f0 kernel/rcu/tree_stall.h:343 print_cpu_stall kernel/rcu/tree_stall.h:604 [inline] check_cpu_stall kernel/rcu/tree_stall.h:688 [inline] rcu_pending kernel/rcu/tree.c:3919 [inline] rcu_sched_clock_irq.cold+0x5c/0x759 kernel/rcu/tree.c:2617 update_process_times+0x16d/0x200 kernel/time/timer.c:1785 tick_sched_handle+0x9b/0x180 kernel/time/tick-sched.c:226 tick_sched_timer+0x1b0/0x2d0 kernel/time/tick-sched.c:1428 __run_hrtimer kernel/time/hrtimer.c:1685 [inline] __hrtimer_run_queues+0x1c0/0xe50 kernel/time/hrtimer.c:1749 hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline] __sysvec_apic_timer_interrupt+0x146/0x530 arch/x86/kernel/apic/apic.c:1103 sysvec_apic_timer_interrupt+0x8e/0xc0 arch/x86/kernel/apic/apic.c:1097 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638 RIP: 0010:__sanitizer_cov_trace_const_cmp4+0xc/0x70 kernel/kcov.c:286 Code: 00 00 00 48 89 7c 30 e8 48 89 4c 30 f0 4c 89 54 d8 20 48 89 10 5b c3 0f 1f 80 00 00 00 00 41 89 f8 bf 03 00 00 00 4c 8b 14 24 <89> f1 65 48 8b 34 25 00 70 02 00 e8 14 f9 ff ff 84 c0 74 4b 48 8b RSP: 0018:ffffc90002c5eea8 EFLAGS: 00000246 RAX: 0000000000000007 RBX: ffff88801c625800 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: ffff8880137d3100 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff874fcd88 R11: 0000000000000000 R12: ffff88801d692dc0 R13: ffff8880137d3104 R14: 0000000000000000 R15: ffff88801d692de8 tcf_police_act+0x358/0x11d0 net/sched/act_police.c:256 tcf_action_exec net/sched/act_api.c:1049 [inline] tcf_action_exec+0x1a6/0x530 net/sched/act_api.c:1026 tcf_exts_exec include/net/pkt_cls.h:326 [inline] route4_classify+0xef0/0x1400 net/sched/cls_route.c:179 __tcf_classify net/sched/cls_api.c:1549 [inline] tcf_classify+0x3e8/0x9d0 net/sched/cls_api.c:1615 prio_classify net/sched/sch_prio.c:42 [inline] prio_enqueue+0x3a7/0x790 net/sched/sch_prio.c:75 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3668 __dev_xmit_skb net/core/dev.c:3756 [inline] __dev_queue_xmit+0x1f61/0x3660 net/core/dev.c:4081 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip_finish_output2+0x14dc/0x2170 net/ipv4/ip_output.c:228 __ip_finish_output net/ipv4/ip_output.c:306 [inline] __ip_finish_output+0x396/0x650 net/ipv4/ip_output.c:288 ip_finish_output+0x32/0x200 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip_output+0x196/0x310 net/ipv4/ip_output.c:430 dst_output include/net/dst.h:451 [inline] ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:126 iptunnel_xmit+0x628/0xa50 net/ipv4/ip_tunnel_core.c:82 geneve_xmit_skb drivers/net/geneve.c:966 [inline] geneve_xmit+0x10c8/0x3530 drivers/net/geneve.c:1077 __netdev_start_xmit include/linux/netdevice.h:4683 [inline] netdev_start_xmit include/linux/netdevice.h:4697 [inline] xmit_one net/core/dev.c:3473 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3489 __dev_queue_xmit+0x2985/0x3660 net/core/dev.c:4116 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip6_finish_output2+0xf7a/0x14f0 net/ipv6/ip6_output.c:126 __ip6_finish_output net/ipv6/ip6_output.c:191 [inline] __ip6_finish_output+0x61e/0xe90 net/ipv6/ip6_output.c:170 ip6_finish_output+0x32/0x200 net/ipv6/ip6_output.c:201 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:224 dst_output include/net/dst.h:451 [inline] NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] mld_sendpack+0x9a3/0xe40 net/ipv6/mcast.c:1826 mld_send_cr net/ipv6/mcast.c:2127 [inline] mld_ifc_work+0x71c/0xdc0 net/ipv6/mcast.c:2659 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> ---------------- Code disassembly (best guess): 0: 48 89 eb mov %rbp,%rbx 3: c6 45 01 01 movb $0x1,0x1(%rbp) 7: 41 bc 00 80 00 00 mov $0x8000,%r12d d: 48 c1 e9 03 shr $0x3,%rcx 11: 83 e3 07 and $0x7,%ebx 14: 41 be 01 00 00 00 mov $0x1,%r14d 1a: 48 b8 00 00 00 00 00 movabs $0xdffffc0000000000,%rax 21: fc ff df 24: 4c 8d 2c 01 lea (%rcx,%rax,1),%r13 28: eb 0c jmp 0x36 * 2a: f3 90 pause <-- trapping instruction 2c: 41 83 ec 01 sub $0x1,%r12d 30: 0f 84 72 04 00 00 je 0x4a8 36: 41 0f b6 45 00 movzbl 0x0(%r13),%eax 3b: 38 d8 cmp %bl,%al 3d: 7f 08 jg 0x47 3f: 84 .byte 0x84 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Jiri Pirko <jiri@resnulli.us> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220215235305.3272331-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-15 23:53:05 +00:00
repeat_ttl = 32;
repeat:
ret = tc_act(skb, a, res);
net: sched: limit TC_ACT_REPEAT loops We have been living dangerously, at the mercy of malicious users, abusing TC_ACT_REPEAT, as shown by this syzpot report [1]. Add an arbitrary limit (32) to the number of times an action can return TC_ACT_REPEAT. v2: switch the limit to 32 instead of 10. Use net_warn_ratelimited() instead of pr_err_once(). [1] (C repro available on demand) rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 1-...!: (10500 ticks this GP) idle=021/1/0x4000000000000000 softirq=5592/5592 fqs=0 (t=10502 jiffies g=5305 q=190) rcu: rcu_preempt kthread timer wakeup didn't happen for 10502 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 rcu: Possible timer handling issue on cpu=0 timer-softirq=3527 rcu: rcu_preempt kthread starved for 10505 jiffies! g5305 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=0 rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior. rcu: RCU grace-period kthread stack dump: task:rcu_preempt state:I stack:29344 pid: 14 ppid: 2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:4986 [inline] __schedule+0xab2/0x4db0 kernel/sched/core.c:6295 schedule+0xd2/0x260 kernel/sched/core.c:6368 schedule_timeout+0x14a/0x2a0 kernel/time/timer.c:1881 rcu_gp_fqs_loop+0x186/0x810 kernel/rcu/tree.c:1963 rcu_gp_kthread+0x1de/0x320 kernel/rcu/tree.c:2136 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> rcu: Stack dump where RCU GP kthread last ran: Sending NMI from CPU 1 to CPUs 0: NMI backtrace for cpu 0 CPU: 0 PID: 3646 Comm: syz-executor358 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rep_nop arch/x86/include/asm/vdso/processor.h:13 [inline] RIP: 0010:cpu_relax arch/x86/include/asm/vdso/processor.h:18 [inline] RIP: 0010:pv_wait_head_or_lock kernel/locking/qspinlock_paravirt.h:437 [inline] RIP: 0010:__pv_queued_spin_lock_slowpath+0x3b8/0xb40 kernel/locking/qspinlock.c:508 Code: 48 89 eb c6 45 01 01 41 bc 00 80 00 00 48 c1 e9 03 83 e3 07 41 be 01 00 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8d 2c 01 eb 0c <f3> 90 41 83 ec 01 0f 84 72 04 00 00 41 0f b6 45 00 38 d8 7f 08 84 RSP: 0018:ffffc9000283f1b0 EFLAGS: 00000206 RAX: 0000000000000003 RBX: 0000000000000000 RCX: 1ffff1100fc0071e RDX: 0000000000000001 RSI: 0000000000000201 RDI: 0000000000000000 RBP: ffff88807e0038f0 R08: 0000000000000001 R09: ffffffff8ffbf9ff R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000004c1e R13: ffffed100fc0071e R14: 0000000000000001 R15: ffff8880b9c3aa80 FS: 00005555562bf300(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffdbfef12b8 CR3: 00000000723c2000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> pv_queued_spin_lock_slowpath arch/x86/include/asm/paravirt.h:591 [inline] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:51 [inline] queued_spin_lock include/asm-generic/qspinlock.h:85 [inline] do_raw_spin_lock+0x200/0x2b0 kernel/locking/spinlock_debug.c:115 spin_lock_bh include/linux/spinlock.h:354 [inline] sch_tree_lock include/net/sch_generic.h:610 [inline] sch_tree_lock include/net/sch_generic.h:605 [inline] prio_tune+0x3b9/0xb50 net/sched/sch_prio.c:211 prio_init+0x5c/0x80 net/sched/sch_prio.c:244 qdisc_create.constprop.0+0x44a/0x10f0 net/sched/sch_api.c:1253 tc_modify_qdisc+0x4c5/0x1980 net/sched/sch_api.c:1660 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5594 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2494 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline] netlink_unicast+0x539/0x7e0 net/netlink/af_netlink.c:1343 netlink_sendmsg+0x904/0xe00 net/netlink/af_netlink.c:1919 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:725 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2413 ___sys_sendmsg+0xf3/0x170 net/socket.c:2467 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2496 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f7ee98aae99 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdbfef12d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007ffdbfef1300 RCX: 00007f7ee98aae99 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000003 RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d R10: 000000000000000d R11: 0000000000000246 R12: 00007ffdbfef12f0 R13: 00000000000f4240 R14: 000000000004ca47 R15: 00007ffdbfef12e4 </TASK> INFO: NMI handler (nmi_cpu_backtrace_handler) took too long to run: 2.293 msecs NMI backtrace for cpu 1 CPU: 1 PID: 3260 Comm: kworker/1:3 Not tainted 5.17.0-rc3-syzkaller-00149-gbf8e59fd315f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 nmi_cpu_backtrace.cold+0x47/0x144 lib/nmi_backtrace.c:111 nmi_trigger_cpumask_backtrace+0x1b3/0x230 lib/nmi_backtrace.c:62 trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline] rcu_dump_cpu_stacks+0x25e/0x3f0 kernel/rcu/tree_stall.h:343 print_cpu_stall kernel/rcu/tree_stall.h:604 [inline] check_cpu_stall kernel/rcu/tree_stall.h:688 [inline] rcu_pending kernel/rcu/tree.c:3919 [inline] rcu_sched_clock_irq.cold+0x5c/0x759 kernel/rcu/tree.c:2617 update_process_times+0x16d/0x200 kernel/time/timer.c:1785 tick_sched_handle+0x9b/0x180 kernel/time/tick-sched.c:226 tick_sched_timer+0x1b0/0x2d0 kernel/time/tick-sched.c:1428 __run_hrtimer kernel/time/hrtimer.c:1685 [inline] __hrtimer_run_queues+0x1c0/0xe50 kernel/time/hrtimer.c:1749 hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline] __sysvec_apic_timer_interrupt+0x146/0x530 arch/x86/kernel/apic/apic.c:1103 sysvec_apic_timer_interrupt+0x8e/0xc0 arch/x86/kernel/apic/apic.c:1097 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638 RIP: 0010:__sanitizer_cov_trace_const_cmp4+0xc/0x70 kernel/kcov.c:286 Code: 00 00 00 48 89 7c 30 e8 48 89 4c 30 f0 4c 89 54 d8 20 48 89 10 5b c3 0f 1f 80 00 00 00 00 41 89 f8 bf 03 00 00 00 4c 8b 14 24 <89> f1 65 48 8b 34 25 00 70 02 00 e8 14 f9 ff ff 84 c0 74 4b 48 8b RSP: 0018:ffffc90002c5eea8 EFLAGS: 00000246 RAX: 0000000000000007 RBX: ffff88801c625800 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: ffff8880137d3100 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff874fcd88 R11: 0000000000000000 R12: ffff88801d692dc0 R13: ffff8880137d3104 R14: 0000000000000000 R15: ffff88801d692de8 tcf_police_act+0x358/0x11d0 net/sched/act_police.c:256 tcf_action_exec net/sched/act_api.c:1049 [inline] tcf_action_exec+0x1a6/0x530 net/sched/act_api.c:1026 tcf_exts_exec include/net/pkt_cls.h:326 [inline] route4_classify+0xef0/0x1400 net/sched/cls_route.c:179 __tcf_classify net/sched/cls_api.c:1549 [inline] tcf_classify+0x3e8/0x9d0 net/sched/cls_api.c:1615 prio_classify net/sched/sch_prio.c:42 [inline] prio_enqueue+0x3a7/0x790 net/sched/sch_prio.c:75 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3668 __dev_xmit_skb net/core/dev.c:3756 [inline] __dev_queue_xmit+0x1f61/0x3660 net/core/dev.c:4081 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip_finish_output2+0x14dc/0x2170 net/ipv4/ip_output.c:228 __ip_finish_output net/ipv4/ip_output.c:306 [inline] __ip_finish_output+0x396/0x650 net/ipv4/ip_output.c:288 ip_finish_output+0x32/0x200 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip_output+0x196/0x310 net/ipv4/ip_output.c:430 dst_output include/net/dst.h:451 [inline] ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:126 iptunnel_xmit+0x628/0xa50 net/ipv4/ip_tunnel_core.c:82 geneve_xmit_skb drivers/net/geneve.c:966 [inline] geneve_xmit+0x10c8/0x3530 drivers/net/geneve.c:1077 __netdev_start_xmit include/linux/netdevice.h:4683 [inline] netdev_start_xmit include/linux/netdevice.h:4697 [inline] xmit_one net/core/dev.c:3473 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3489 __dev_queue_xmit+0x2985/0x3660 net/core/dev.c:4116 neigh_hh_output include/net/neighbour.h:533 [inline] neigh_output include/net/neighbour.h:547 [inline] ip6_finish_output2+0xf7a/0x14f0 net/ipv6/ip6_output.c:126 __ip6_finish_output net/ipv6/ip6_output.c:191 [inline] __ip6_finish_output+0x61e/0xe90 net/ipv6/ip6_output.c:170 ip6_finish_output+0x32/0x200 net/ipv6/ip6_output.c:201 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:224 dst_output include/net/dst.h:451 [inline] NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] mld_sendpack+0x9a3/0xe40 net/ipv6/mcast.c:1826 mld_send_cr net/ipv6/mcast.c:2127 [inline] mld_ifc_work+0x71c/0xdc0 net/ipv6/mcast.c:2659 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> ---------------- Code disassembly (best guess): 0: 48 89 eb mov %rbp,%rbx 3: c6 45 01 01 movb $0x1,0x1(%rbp) 7: 41 bc 00 80 00 00 mov $0x8000,%r12d d: 48 c1 e9 03 shr $0x3,%rcx 11: 83 e3 07 and $0x7,%ebx 14: 41 be 01 00 00 00 mov $0x1,%r14d 1a: 48 b8 00 00 00 00 00 movabs $0xdffffc0000000000,%rax 21: fc ff df 24: 4c 8d 2c 01 lea (%rcx,%rax,1),%r13 28: eb 0c jmp 0x36 * 2a: f3 90 pause <-- trapping instruction 2c: 41 83 ec 01 sub $0x1,%r12d 30: 0f 84 72 04 00 00 je 0x4a8 36: 41 0f b6 45 00 movzbl 0x0(%r13),%eax 3b: 38 d8 cmp %bl,%al 3d: 7f 08 jg 0x47 3f: 84 .byte 0x84 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Jiri Pirko <jiri@resnulli.us> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220215235305.3272331-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-15 23:53:05 +00:00
if (unlikely(ret == TC_ACT_REPEAT)) {
if (--repeat_ttl != 0)
goto repeat;
/* suspicious opcode, stop pipeline */
net_warn_ratelimited("TC_ACT_REPEAT abuse ?\n");
return TC_ACT_OK;
}
if (TC_ACT_EXT_CMP(ret, TC_ACT_JUMP)) {
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
jmp_prgcnt = ret & TCA_ACT_MAX_PRIO_MASK;
if (!jmp_prgcnt || (jmp_prgcnt > nr_actions)) {
/* faulty opcode, stop pipeline */
return TC_ACT_OK;
} else {
jmp_ttl -= 1;
if (jmp_ttl > 0)
goto restart_act_graph;
else /* faulty graph, stop pipeline */
return TC_ACT_OK;
}
} else if (TC_ACT_EXT_CMP(ret, TC_ACT_GOTO_CHAIN)) {
if (unlikely(!rcu_access_pointer(a->goto_chain))) {
tcf_set_drop_reason(skb,
SKB_DROP_REASON_TC_CHAIN_NOTFOUND);
return TC_ACT_SHOT;
}
tcf_action_goto_chain_exec(a, res);
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
}
if (ret != TC_ACT_PIPE)
break;
}
net sched actions: Complete the JUMPX opcode per discussion at netconf/netdev: When we have an action that is capable of branching (example a policer), we can achieve a continuation of the action graph by programming a "continue" where we find an exact replica of the same filter rule with a lower priority and the remainder of the action graph. When you have 100s of thousands of filters which require such a feature it gets very inefficient to do two lookups. This patch completes a leftover feature of action codes. Its time has come. Example below where a user labels packets with a different skbmark on ingress of a port depending on whether they have/not exceeded the configured rate. This mark is then used to make further decisions on some egress port. #rate control, very low so we can easily see the effect sudo $TC actions add action police rate 1kbit burst 90k \ conform-exceed pipe/jump 2 index 10 # skbedit index 11 will be used if the user conforms sudo $TC actions add action skbedit mark 11 ok index 11 # skbedit index 12 will be used if the user does not conform sudo $TC actions add action skbedit mark 12 ok index 12 #lets bind the user .. sudo $TC filter add dev $ETH parent ffff: protocol ip prio 8 u32 \ match ip dst 127.0.0.8/32 flowid 1:10 \ action police index 10 \ action skbedit index 11 \ action skbedit index 12 #run a ping -f and see what happens.. # jhs@foobar:~$ sudo $TC -s filter ls dev $ETH parent ffff: protocol ip filter pref 8 u32 filter pref 8 u32 fh 800: ht divisor 1 filter pref 8 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2800 success 1005) match 7f000008/ffffffff at 16 (success 1005 ) action order 1: police 0xa rate 1Kbit burst 23440b mtu 2Kb action pipe/jump 2 overhead 0b ref 2 bind 1 installed 207 sec used 122 sec Action statistics: Sent 84420 bytes 1005 pkt (dropped 0, overlimits 721 requeues 0) backlog 0b 0p requeues 0 action order 2: skbedit mark 11 pass index 11 ref 2 bind 1 installed 204 sec used 122 sec Action statistics: Sent 60564 bytes 721 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 3: skbedit mark 12 pass index 12 ref 2 bind 1 installed 201 sec used 122 sec Action statistics: Sent 23856 bytes 284 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Not bad, about 28% non-conforming packets.. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-23 17:17:28 +00:00
return ret;
}
EXPORT_SYMBOL(tcf_action_exec);
int tcf_action_destroy(struct tc_action *actions[], int bind)
{
const struct tc_action_ops *ops;
struct tc_action *a;
int ret = 0, i;
tcf_act_for_each_action(i, a, actions) {
actions[i] = NULL;
ops = a->ops;
ret = __tcf_idr_release(a, bind, true);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
return ret;
}
return ret;
}
static int tcf_action_put(struct tc_action *p)
{
return __tcf_action_put(p, false);
}
static void tcf_action_put_many(struct tc_action *actions[])
{
struct tc_action *a;
int i;
tcf_act_for_each_action(i, a, actions) {
const struct tc_action_ops *ops = a->ops;
if (tcf_action_put(a))
module_put(ops->owner);
}
}
static void tca_put_bound_many(struct tc_action *actions[], int init_res[])
{
struct tc_action *a;
int i;
tcf_act_for_each_action(i, a, actions) {
const struct tc_action_ops *ops = a->ops;
if (init_res[i] == ACT_P_CREATED)
continue;
if (tcf_action_put(a))
module_put(ops->owner);
}
}
int
tcf_action_dump_old(struct sk_buff *skb, struct tc_action *a, int bind, int ref)
{
return a->ops->dump(skb, a, bind, ref);
}
int tcf_action_dump(struct sk_buff *skb, struct tc_action *actions[],
int bind, int ref, bool terse)
{
struct tc_action *a;
int err = -EINVAL, i;
struct nlattr *nest;
tcf_act_for_each_action(i, a, actions) {
nest = nla_nest_start_noflag(skb, i + 1);
if (nest == NULL)
goto nla_put_failure;
err = terse ? tcf_action_dump_terse(skb, a, false) :
tcf_action_dump_1(skb, a, bind, ref);
if (err < 0)
goto errout;
nla_nest_end(skb, nest);
}
return 0;
nla_put_failure:
err = -EINVAL;
errout:
nla_nest_cancel(skb, nest);
return err;
}
static struct tc_cookie *nla_memdup_cookie(struct nlattr **tb)
{
struct tc_cookie *c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return NULL;
c->data = nla_memdup(tb[TCA_ACT_COOKIE], GFP_KERNEL);
if (!c->data) {
kfree(c);
return NULL;
}
c->len = nla_len(tb[TCA_ACT_COOKIE]);
return c;
}
static u8 tcf_action_hw_stats_get(struct nlattr *hw_stats_attr)
{
struct nla_bitfield32 hw_stats_bf;
/* If the user did not pass the attr, that means he does
* not care about the type. Return "any" in that case
* which is setting on all supported types.
*/
if (!hw_stats_attr)
return TCA_ACT_HW_STATS_ANY;
hw_stats_bf = nla_get_bitfield32(hw_stats_attr);
return hw_stats_bf.value;
}
static const struct nla_policy tcf_action_policy[TCA_ACT_MAX + 1] = {
[TCA_ACT_KIND] = { .type = NLA_STRING },
[TCA_ACT_INDEX] = { .type = NLA_U32 },
[TCA_ACT_COOKIE] = { .type = NLA_BINARY,
.len = TC_COOKIE_MAX_SIZE },
[TCA_ACT_OPTIONS] = { .type = NLA_NESTED },
[TCA_ACT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAGS_NO_PERCPU_STATS |
TCA_ACT_FLAGS_SKIP_HW |
TCA_ACT_FLAGS_SKIP_SW),
[TCA_ACT_HW_STATS] = NLA_POLICY_BITFIELD32(TCA_ACT_HW_STATS_ANY),
};
void tcf_idr_insert_many(struct tc_action *actions[], int init_res[])
{
struct tc_action *a;
int i;
tcf_act_for_each_action(i, a, actions) {
struct tcf_idrinfo *idrinfo;
if (init_res[i] == ACT_P_BOUND)
continue;
idrinfo = a->idrinfo;
mutex_lock(&idrinfo->lock);
/* Replace ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc */
idr_replace(&idrinfo->action_idr, a, a->tcfa_index);
mutex_unlock(&idrinfo->lock);
}
}
struct tc_action_ops *tc_action_load_ops(struct nlattr *nla, u32 flags,
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
struct netlink_ext_ack *extack)
{
bool police = flags & TCA_ACT_FLAGS_POLICE;
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
struct nlattr *tb[TCA_ACT_MAX + 1];
struct tc_action_ops *a_o;
char act_name[IFNAMSIZ];
struct nlattr *kind;
int err;
if (!police) {
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return ERR_PTR(err);
err = -EINVAL;
kind = tb[TCA_ACT_KIND];
if (!kind) {
NL_SET_ERR_MSG(extack, "TC action kind must be specified");
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return ERR_PTR(err);
}
if (nla_strscpy(act_name, kind, IFNAMSIZ) < 0) {
NL_SET_ERR_MSG(extack, "TC action name too long");
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return ERR_PTR(err);
}
} else {
if (strscpy(act_name, "police", IFNAMSIZ) < 0) {
NL_SET_ERR_MSG(extack, "TC action name too long");
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return ERR_PTR(-EINVAL);
}
}
a_o = tc_lookup_action_n(act_name);
if (a_o == NULL) {
#ifdef CONFIG_MODULES
bool rtnl_held = !(flags & TCA_ACT_FLAGS_NO_RTNL);
if (rtnl_held)
rtnl_unlock();
request_module(NET_ACT_ALIAS_PREFIX "%s", act_name);
if (rtnl_held)
rtnl_lock();
a_o = tc_lookup_action_n(act_name);
/* We dropped the RTNL semaphore in order to
* perform the module load. So, even if we
* succeeded in loading the module we have to
* tell the caller to replay the request. We
* indicate this using -EAGAIN.
*/
if (a_o != NULL) {
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
module_put(a_o->owner);
return ERR_PTR(-EAGAIN);
}
#endif
NL_SET_ERR_MSG(extack, "Failed to load TC action module");
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return ERR_PTR(-ENOENT);
}
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
return a_o;
}
struct tc_action *tcf_action_init_1(struct net *net, struct tcf_proto *tp,
struct nlattr *nla, struct nlattr *est,
struct tc_action_ops *a_o, int *init_res,
u32 flags, struct netlink_ext_ack *extack)
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
{
bool police = flags & TCA_ACT_FLAGS_POLICE;
struct nla_bitfield32 userflags = { 0, 0 };
struct tc_cookie *user_cookie = NULL;
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
u8 hw_stats = TCA_ACT_HW_STATS_ANY;
struct nlattr *tb[TCA_ACT_MAX + 1];
struct tc_action *a;
int err;
/* backward compatibility for policer */
if (!police) {
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
return ERR_PTR(err);
if (tb[TCA_ACT_COOKIE]) {
user_cookie = nla_memdup_cookie(tb);
if (!user_cookie) {
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
NL_SET_ERR_MSG(extack, "No memory to generate TC cookie");
err = -ENOMEM;
goto err_out;
}
}
hw_stats = tcf_action_hw_stats_get(tb[TCA_ACT_HW_STATS]);
if (tb[TCA_ACT_FLAGS]) {
userflags = nla_get_bitfield32(tb[TCA_ACT_FLAGS]);
if (!tc_act_flags_valid(userflags.value)) {
err = -EINVAL;
goto err_out;
}
}
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
err = a_o->init(net, tb[TCA_ACT_OPTIONS], est, &a, tp,
userflags.value | flags, extack);
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
} else {
err = a_o->init(net, nla, est, &a, tp, userflags.value | flags,
extack);
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
}
if (err < 0)
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
goto err_out;
*init_res = err;
if (!police && tb[TCA_ACT_COOKIE])
tcf_set_action_cookie(&a->user_cookie, user_cookie);
if (!police)
a->hw_stats = hw_stats;
return a;
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
err_out:
if (user_cookie) {
kfree(user_cookie->data);
kfree(user_cookie);
}
return ERR_PTR(err);
}
static bool tc_act_bind(u32 flags)
{
return !!(flags & TCA_ACT_FLAGS_BIND);
}
/* Returns numbers of initialized actions or negative error. */
int tcf_action_init(struct net *net, struct tcf_proto *tp, struct nlattr *nla,
struct nlattr *est, struct tc_action *actions[],
int init_res[], size_t *attr_size,
u32 flags, u32 fl_flags,
struct netlink_ext_ack *extack)
{
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
struct tc_action_ops *ops[TCA_ACT_MAX_PRIO] = {};
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct tc_action *act;
size_t sz = 0;
int err;
int i;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL,
extack);
if (err < 0)
return err;
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
struct tc_action_ops *a_o;
a_o = tc_action_load_ops(tb[i], flags, extack);
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
if (IS_ERR(a_o)) {
err = PTR_ERR(a_o);
goto err_mod;
}
ops[i - 1] = a_o;
}
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
act = tcf_action_init_1(net, tp, tb[i], est, ops[i - 1],
&init_res[i - 1], flags, extack);
if (IS_ERR(act)) {
err = PTR_ERR(act);
goto err;
}
sz += tcf_action_fill_size(act);
/* Start from index 0 */
actions[i - 1] = act;
if (tc_act_bind(flags)) {
bool skip_sw = tc_skip_sw(fl_flags);
bool skip_hw = tc_skip_hw(fl_flags);
net/sched: act_api: deny mismatched skip_sw/skip_hw flags for actions created by classifiers tcf_action_init() has logic for checking mismatches between action and filter offload flags (skip_sw/skip_hw). AFAIU, this is intended to run on the transition between the new tc_act_bind(flags) returning true (aka now gets bound to classifier) and tc_act_bind(act->tcfa_flags) returning false (aka action was not bound to classifier before). Otherwise, the check is skipped. For the case where an action is not standalone, but rather it was created by a classifier and is bound to it, tcf_action_init() skips the check entirely, and this means it allows mismatched flags to occur. Taking the matchall classifier code path as an example (with mirred as an action), the reason is the following: 1 | mall_change() 2 | -> mall_replace_hw_filter() 3 | -> tcf_exts_validate_ex() 4 | -> flags |= TCA_ACT_FLAGS_BIND; 5 | -> tcf_action_init() 6 | -> tcf_action_init_1() 7 | -> a_o->init() 8 | -> tcf_mirred_init() 9 | -> tcf_idr_create_from_flags() 10 | -> tcf_idr_create() 11 | -> p->tcfa_flags = flags; 12 | -> tc_act_bind(flags)) 13 | -> tc_act_bind(act->tcfa_flags) When invoked from tcf_exts_validate_ex() like matchall does (but other classifiers validate their extensions as well), tcf_action_init() runs in a call path where "flags" always contains TCA_ACT_FLAGS_BIND (set by line 4). So line 12 is always true, and line 13 is always true as well. No transition ever takes place, and the check is skipped. The code was added in this form in commit c86e0209dc77 ("flow_offload: validate flags of filter and actions"), but I'm attributing the blame even earlier in that series, to when TCA_ACT_FLAGS_SKIP_HW and TCA_ACT_FLAGS_SKIP_SW were added to the UAPI. Following the development process of this change, the check did not always exist in this form. A change took place between v3 [1] and v4 [2], AFAIU due to review feedback that it doesn't make sense for action flags to be different than classifier flags. I think I agree with that feedback, but it was translated into code that omits enforcing this for "classic" actions created at the same time with the filters themselves. There are 3 more important cases to discuss. First there is this command: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 which should be allowed, because prior to the concept of dedicated action flags, it used to work and it used to mean the action inherited the skip_sw/skip_hw flags from the classifier. It's not a mismatch. Then we have this command: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 skip_hw where there is a mismatch and it should be rejected. Finally, we have: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 skip_sw where the offload flags coincide, and this should be treated the same as the first command based on inheritance, and accepted. [1]: https://lore.kernel.org/netdev/20211028110646.13791-9-simon.horman@corigine.com/ [2]: https://lore.kernel.org/netdev/20211118130805.23897-10-simon.horman@corigine.com/ Fixes: 7adc57651211 ("flow_offload: add skip_hw and skip_sw to control if offload the action") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Simon Horman <horms@kernel.org> Reviewed-by: Ido Schimmel <idosch@nvidia.com> Tested-by: Ido Schimmel <idosch@nvidia.com> Link: https://patch.msgid.link/20241017161049.3570037-1-vladimir.oltean@nxp.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-10-17 16:10:48 +00:00
if (tc_act_bind(act->tcfa_flags)) {
/* Action is created by classifier and is not
* standalone. Check that the user did not set
* any action flags different than the
* classifier flags, and inherit the flags from
* the classifier for the compatibility case
* where no flags were specified at all.
*/
if ((tc_act_skip_sw(act->tcfa_flags) && !skip_sw) ||
(tc_act_skip_hw(act->tcfa_flags) && !skip_hw)) {
NL_SET_ERR_MSG(extack,
"Mismatch between action and filter offload flags");
err = -EINVAL;
goto err;
}
if (skip_sw)
act->tcfa_flags |= TCA_ACT_FLAGS_SKIP_SW;
if (skip_hw)
act->tcfa_flags |= TCA_ACT_FLAGS_SKIP_HW;
continue;
net/sched: act_api: deny mismatched skip_sw/skip_hw flags for actions created by classifiers tcf_action_init() has logic for checking mismatches between action and filter offload flags (skip_sw/skip_hw). AFAIU, this is intended to run on the transition between the new tc_act_bind(flags) returning true (aka now gets bound to classifier) and tc_act_bind(act->tcfa_flags) returning false (aka action was not bound to classifier before). Otherwise, the check is skipped. For the case where an action is not standalone, but rather it was created by a classifier and is bound to it, tcf_action_init() skips the check entirely, and this means it allows mismatched flags to occur. Taking the matchall classifier code path as an example (with mirred as an action), the reason is the following: 1 | mall_change() 2 | -> mall_replace_hw_filter() 3 | -> tcf_exts_validate_ex() 4 | -> flags |= TCA_ACT_FLAGS_BIND; 5 | -> tcf_action_init() 6 | -> tcf_action_init_1() 7 | -> a_o->init() 8 | -> tcf_mirred_init() 9 | -> tcf_idr_create_from_flags() 10 | -> tcf_idr_create() 11 | -> p->tcfa_flags = flags; 12 | -> tc_act_bind(flags)) 13 | -> tc_act_bind(act->tcfa_flags) When invoked from tcf_exts_validate_ex() like matchall does (but other classifiers validate their extensions as well), tcf_action_init() runs in a call path where "flags" always contains TCA_ACT_FLAGS_BIND (set by line 4). So line 12 is always true, and line 13 is always true as well. No transition ever takes place, and the check is skipped. The code was added in this form in commit c86e0209dc77 ("flow_offload: validate flags of filter and actions"), but I'm attributing the blame even earlier in that series, to when TCA_ACT_FLAGS_SKIP_HW and TCA_ACT_FLAGS_SKIP_SW were added to the UAPI. Following the development process of this change, the check did not always exist in this form. A change took place between v3 [1] and v4 [2], AFAIU due to review feedback that it doesn't make sense for action flags to be different than classifier flags. I think I agree with that feedback, but it was translated into code that omits enforcing this for "classic" actions created at the same time with the filters themselves. There are 3 more important cases to discuss. First there is this command: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 which should be allowed, because prior to the concept of dedicated action flags, it used to work and it used to mean the action inherited the skip_sw/skip_hw flags from the classifier. It's not a mismatch. Then we have this command: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 skip_hw where there is a mismatch and it should be rejected. Finally, we have: $ tc qdisc add dev eth0 clasct $ tc filter add dev eth0 ingress matchall skip_sw \ action mirred ingress mirror dev eth1 skip_sw where the offload flags coincide, and this should be treated the same as the first command based on inheritance, and accepted. [1]: https://lore.kernel.org/netdev/20211028110646.13791-9-simon.horman@corigine.com/ [2]: https://lore.kernel.org/netdev/20211118130805.23897-10-simon.horman@corigine.com/ Fixes: 7adc57651211 ("flow_offload: add skip_hw and skip_sw to control if offload the action") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Simon Horman <horms@kernel.org> Reviewed-by: Ido Schimmel <idosch@nvidia.com> Tested-by: Ido Schimmel <idosch@nvidia.com> Link: https://patch.msgid.link/20241017161049.3570037-1-vladimir.oltean@nxp.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-10-17 16:10:48 +00:00
}
/* Action is standalone */
if (skip_sw != tc_act_skip_sw(act->tcfa_flags) ||
skip_hw != tc_act_skip_hw(act->tcfa_flags)) {
NL_SET_ERR_MSG(extack,
"Mismatch between action and filter offload flags");
err = -EINVAL;
goto err;
}
} else {
err = tcf_action_offload_add(act, extack);
if (tc_act_skip_sw(act->tcfa_flags) && err)
goto err;
}
}
/* We have to commit them all together, because if any error happened in
* between, we could not handle the failure gracefully.
*/
tcf_idr_insert_many(actions, init_res);
*attr_size = tcf_action_full_attrs_size(sz);
net: sched: fix err handler in tcf_action_init() With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-07 15:36:04 +00:00
err = i - 1;
goto err_mod;
err:
tcf_action_destroy(actions, flags & TCA_ACT_FLAGS_BIND);
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 00:56:57 +00:00
err_mod:
for (i = 0; i < TCA_ACT_MAX_PRIO && ops[i]; i++)
module_put(ops[i]->owner);
return err;
}
void tcf_action_update_stats(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, bool hw)
{
if (a->cpu_bstats) {
_bstats_update(this_cpu_ptr(a->cpu_bstats), bytes, packets);
this_cpu_ptr(a->cpu_qstats)->drops += drops;
if (hw)
_bstats_update(this_cpu_ptr(a->cpu_bstats_hw),
bytes, packets);
return;
}
_bstats_update(&a->tcfa_bstats, bytes, packets);
a->tcfa_qstats.drops += drops;
if (hw)
_bstats_update(&a->tcfa_bstats_hw, bytes, packets);
}
EXPORT_SYMBOL(tcf_action_update_stats);
int tcf_action_copy_stats(struct sk_buff *skb, struct tc_action *p,
int compat_mode)
{
int err = 0;
struct gnet_dump d;
if (p == NULL)
goto errout;
/* compat_mode being true specifies a call that is supposed
* to add additional backward compatibility statistic TLVs.
*/
if (compat_mode) {
if (p->type == TCA_OLD_COMPAT)
err = gnet_stats_start_copy_compat(skb, 0,
TCA_STATS,
TCA_XSTATS,
&p->tcfa_lock, &d,
TCA_PAD);
else
return 0;
} else
err = gnet_stats_start_copy(skb, TCA_ACT_STATS,
&p->tcfa_lock, &d, TCA_ACT_PAD);
if (err < 0)
goto errout;
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 08:49:10 +00:00
if (gnet_stats_copy_basic(&d, p->cpu_bstats,
&p->tcfa_bstats, false) < 0 ||
gnet_stats_copy_basic_hw(&d, p->cpu_bstats_hw,
&p->tcfa_bstats_hw, false) < 0 ||
gnet_stats_copy_rate_est(&d, &p->tcfa_rate_est) < 0 ||
gnet_stats_copy_queue(&d, p->cpu_qstats,
&p->tcfa_qstats,
p->tcfa_qstats.qlen) < 0)
goto errout;
if (gnet_stats_finish_copy(&d) < 0)
goto errout;
return 0;
errout:
return -1;
}
static int tca_get_fill(struct sk_buff *skb, struct tc_action *actions[],
u32 portid, u32 seq, u16 flags, int event, int bind,
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
int ref, struct netlink_ext_ack *extack)
{
struct tcamsg *t;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*t), flags);
if (!nlh)
goto out_nlmsg_trim;
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
if (extack && extack->_msg &&
nla_put_string(skb, TCA_ROOT_EXT_WARN_MSG, extack->_msg))
goto out_nlmsg_trim;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (!nest)
goto out_nlmsg_trim;
if (tcf_action_dump(skb, actions, bind, ref, false) < 0)
goto out_nlmsg_trim;
nla_nest_end(skb, nest);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
return skb->len;
out_nlmsg_trim:
nlmsg_trim(skb, b);
return -1;
}
static int
tcf_get_notify(struct net *net, u32 portid, struct nlmsghdr *n,
struct tc_action *actions[], int event,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, event,
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
0, 1, NULL) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action");
kfree_skb(skb);
return -EINVAL;
}
return rtnl_unicast(skb, net, portid);
}
static struct tc_action *tcf_action_get_1(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_ACT_MAX + 1];
const struct tc_action_ops *ops;
struct tc_action *a;
int index;
int err;
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
goto err_out;
err = -EINVAL;
if (tb[TCA_ACT_INDEX] == NULL ||
nla_len(tb[TCA_ACT_INDEX]) < sizeof(index)) {
NL_SET_ERR_MSG(extack, "Invalid TC action index value");
goto err_out;
}
index = nla_get_u32(tb[TCA_ACT_INDEX]);
err = -EINVAL;
ops = tc_lookup_action(tb[TCA_ACT_KIND]);
if (!ops) { /* could happen in batch of actions */
NL_SET_ERR_MSG(extack, "Specified TC action kind not found");
goto err_out;
}
err = -ENOENT;
if (__tcf_idr_search(net, ops, &a, index) == 0) {
NL_SET_ERR_MSG(extack, "TC action with specified index not found");
goto err_mod;
}
module_put(ops->owner);
return a;
err_mod:
module_put(ops->owner);
err_out:
return ERR_PTR(err);
}
static int tca_action_flush(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
unsigned char *b;
struct nlmsghdr *nlh;
struct tcamsg *t;
struct netlink_callback dcb;
struct nlattr *nest;
struct nlattr *tb[TCA_ACT_MAX + 1];
const struct tc_action_ops *ops;
struct nlattr *kind;
int err = -ENOMEM;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return err;
b = skb_tail_pointer(skb);
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
goto err_out;
err = -EINVAL;
kind = tb[TCA_ACT_KIND];
ops = tc_lookup_action(kind);
if (!ops) { /*some idjot trying to flush unknown action */
NL_SET_ERR_MSG(extack, "Cannot flush unknown TC action");
goto err_out;
}
nlh = nlmsg_put(skb, portid, n->nlmsg_seq, RTM_DELACTION,
sizeof(*t), 0);
if (!nlh) {
NL_SET_ERR_MSG(extack, "Failed to create TC action flush notification");
goto out_module_put;
}
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (!nest) {
NL_SET_ERR_MSG(extack, "Failed to add new netlink message");
goto out_module_put;
}
err = __tcf_generic_walker(net, skb, &dcb, RTM_DELACTION, ops, extack);
if (err <= 0) {
nla_nest_cancel(skb, nest);
goto out_module_put;
}
nla_nest_end(skb, nest);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
nlh->nlmsg_flags |= NLM_F_ROOT;
module_put(ops->owner);
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send TC action flush notification");
return err;
out_module_put:
module_put(ops->owner);
err_out:
kfree_skb(skb);
return err;
}
static int tcf_action_delete(struct net *net, struct tc_action *actions[])
{
struct tc_action *a;
int i;
tcf_act_for_each_action(i, a, actions) {
const struct tc_action_ops *ops = a->ops;
/* Actions can be deleted concurrently so we must save their
* type and id to search again after reference is released.
*/
struct tcf_idrinfo *idrinfo = a->idrinfo;
u32 act_index = a->tcfa_index;
net: sched: null actions array pointer before releasing action Currently, tcf_action_delete() nulls actions array pointer after putting and deleting it. However, if tcf_idr_delete_index() returns an error, pointer to action is not set to null. That results it being released second time in error handling code of tca_action_gd(). Kasan error: [ 807.367755] ================================================================== [ 807.375844] BUG: KASAN: use-after-free in tc_setup_cb_call+0x14e/0x250 [ 807.382763] Read of size 8 at addr ffff88033e636000 by task tc/2732 [ 807.391289] CPU: 0 PID: 2732 Comm: tc Tainted: G W 4.19.0-rc1+ #799 [ 807.399542] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 807.407948] Call Trace: [ 807.410763] dump_stack+0x92/0xeb [ 807.414456] print_address_description+0x70/0x360 [ 807.419549] kasan_report+0x14d/0x300 [ 807.423582] ? tc_setup_cb_call+0x14e/0x250 [ 807.428150] tc_setup_cb_call+0x14e/0x250 [ 807.432539] ? nla_put+0x65/0xe0 [ 807.436146] fl_dump+0x394/0x3f0 [cls_flower] [ 807.440890] ? fl_tmplt_dump+0x140/0x140 [cls_flower] [ 807.446327] ? lock_downgrade+0x320/0x320 [ 807.450702] ? lock_acquire+0xe2/0x220 [ 807.454819] ? is_bpf_text_address+0x5/0x140 [ 807.459475] ? memcpy+0x34/0x50 [ 807.462980] ? nla_put+0x65/0xe0 [ 807.466582] tcf_fill_node+0x341/0x430 [ 807.470717] ? tcf_block_put+0xe0/0xe0 [ 807.474859] tcf_node_dump+0xdb/0xf0 [ 807.478821] fl_walk+0x8e/0x170 [cls_flower] [ 807.483474] tcf_chain_dump+0x35a/0x4d0 [ 807.487703] ? tfilter_notify+0x170/0x170 [ 807.492091] ? tcf_fill_node+0x430/0x430 [ 807.496411] tc_dump_tfilter+0x362/0x3f0 [ 807.500712] ? tc_del_tfilter+0x850/0x850 [ 807.505104] ? kasan_unpoison_shadow+0x30/0x40 [ 807.509940] ? __mutex_unlock_slowpath+0xcf/0x410 [ 807.515031] netlink_dump+0x263/0x4f0 [ 807.519077] __netlink_dump_start+0x2a0/0x300 [ 807.523817] ? tc_del_tfilter+0x850/0x850 [ 807.528198] rtnetlink_rcv_msg+0x46a/0x6d0 [ 807.532671] ? rtnl_fdb_del+0x3f0/0x3f0 [ 807.536878] ? tc_del_tfilter+0x850/0x850 [ 807.541280] netlink_rcv_skb+0x18d/0x200 [ 807.545570] ? rtnl_fdb_del+0x3f0/0x3f0 [ 807.549773] ? netlink_ack+0x500/0x500 [ 807.553913] netlink_unicast+0x2d0/0x370 [ 807.558212] ? netlink_attachskb+0x340/0x340 [ 807.562855] ? _copy_from_iter_full+0xe9/0x3e0 [ 807.567677] ? import_iovec+0x11e/0x1c0 [ 807.571890] netlink_sendmsg+0x3b9/0x6a0 [ 807.576192] ? netlink_unicast+0x370/0x370 [ 807.580684] ? netlink_unicast+0x370/0x370 [ 807.585154] sock_sendmsg+0x6b/0x80 [ 807.589015] ___sys_sendmsg+0x4a1/0x520 [ 807.593230] ? copy_msghdr_from_user+0x210/0x210 [ 807.598232] ? do_wp_page+0x174/0x880 [ 807.602276] ? __handle_mm_fault+0x749/0x1c10 [ 807.607021] ? __handle_mm_fault+0x1046/0x1c10 [ 807.611849] ? __pmd_alloc+0x320/0x320 [ 807.615973] ? check_chain_key+0x140/0x1f0 [ 807.620450] ? check_chain_key+0x140/0x1f0 [ 807.624929] ? __fget_light+0xbc/0xd0 [ 807.628970] ? __sys_sendmsg+0xd7/0x150 [ 807.633172] __sys_sendmsg+0xd7/0x150 [ 807.637201] ? __ia32_sys_shutdown+0x30/0x30 [ 807.641846] ? up_read+0x53/0x90 [ 807.645442] ? __do_page_fault+0x484/0x780 [ 807.649949] ? do_syscall_64+0x1e/0x2c0 [ 807.654164] do_syscall_64+0x72/0x2c0 [ 807.658198] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 807.663625] RIP: 0033:0x7f42e9870150 [ 807.667568] Code: 8b 15 3c 7d 2b 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb cd 66 0f 1f 44 00 00 83 3d b9 d5 2b 00 00 75 10 b8 2e 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 be cd 00 00 48 89 04 24 [ 807.687328] RSP: 002b:00007ffdbf595b58 EFLAGS: 00000246 ORIG_RAX: 000000000000002e [ 807.695564] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f42e9870150 [ 807.703083] RDX: 0000000000000000 RSI: 00007ffdbf595b80 RDI: 0000000000000003 [ 807.710605] RBP: 00007ffdbf599d90 R08: 0000000000679bc0 R09: 000000000000000f [ 807.718127] R10: 00000000000005e7 R11: 0000000000000246 R12: 00007ffdbf599d88 [ 807.725651] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 807.735048] Allocated by task 2687: [ 807.738902] kasan_kmalloc+0xa0/0xd0 [ 807.742852] __kmalloc+0x118/0x2d0 [ 807.746615] tcf_idr_create+0x44/0x320 [ 807.750738] tcf_nat_init+0x41e/0x530 [act_nat] [ 807.755638] tcf_action_init_1+0x4e0/0x650 [ 807.760104] tcf_action_init+0x1ce/0x2d0 [ 807.764395] tcf_exts_validate+0x1d8/0x200 [ 807.768861] fl_change+0x55a/0x26b4 [cls_flower] [ 807.773845] tc_new_tfilter+0x748/0xa20 [ 807.778051] rtnetlink_rcv_msg+0x56a/0x6d0 [ 807.782517] netlink_rcv_skb+0x18d/0x200 [ 807.786804] netlink_unicast+0x2d0/0x370 [ 807.791095] netlink_sendmsg+0x3b9/0x6a0 [ 807.795387] sock_sendmsg+0x6b/0x80 [ 807.799240] ___sys_sendmsg+0x4a1/0x520 [ 807.803445] __sys_sendmsg+0xd7/0x150 [ 807.807473] do_syscall_64+0x72/0x2c0 [ 807.811506] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 807.818776] Freed by task 2728: [ 807.822283] __kasan_slab_free+0x122/0x180 [ 807.826752] kfree+0xf4/0x2f0 [ 807.830080] __tcf_action_put+0x5a/0xb0 [ 807.834281] tcf_action_put_many+0x46/0x70 [ 807.838747] tca_action_gd+0x232/0xc40 [ 807.842862] tc_ctl_action+0x215/0x230 [ 807.846977] rtnetlink_rcv_msg+0x56a/0x6d0 [ 807.851444] netlink_rcv_skb+0x18d/0x200 [ 807.855731] netlink_unicast+0x2d0/0x370 [ 807.860021] netlink_sendmsg+0x3b9/0x6a0 [ 807.864312] sock_sendmsg+0x6b/0x80 [ 807.868166] ___sys_sendmsg+0x4a1/0x520 [ 807.872372] __sys_sendmsg+0xd7/0x150 [ 807.876401] do_syscall_64+0x72/0x2c0 [ 807.880431] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 807.887704] The buggy address belongs to the object at ffff88033e636000 which belongs to the cache kmalloc-256 of size 256 [ 807.900909] The buggy address is located 0 bytes inside of 256-byte region [ffff88033e636000, ffff88033e636100) [ 807.913155] The buggy address belongs to the page: [ 807.918322] page:ffffea000cf98d80 count:1 mapcount:0 mapping:ffff88036f80ee00 index:0x0 compound_mapcount: 0 [ 807.928831] flags: 0x5fff8000008100(slab|head) [ 807.933647] raw: 005fff8000008100 ffffea000db44f00 0000000400000004 ffff88036f80ee00 [ 807.942050] raw: 0000000000000000 0000000080190019 00000001ffffffff 0000000000000000 [ 807.950456] page dumped because: kasan: bad access detected [ 807.958240] Memory state around the buggy address: [ 807.963405] ffff88033e635f00: fc fc fc fc fb fb fb fb fb fb fb fc fc fc fc fb [ 807.971288] ffff88033e635f80: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc [ 807.979166] >ffff88033e636000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 807.994882] ^ [ 807.998477] ffff88033e636080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 808.006352] ffff88033e636100: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb [ 808.014230] ================================================================== [ 808.022108] Disabling lock debugging due to kernel taint Fixes: edfaf94fa705 ("net_sched: improve and refactor tcf_action_put_many()") Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-03 07:04:55 +00:00
actions[i] = NULL;
if (tcf_action_put(a)) {
/* last reference, action was deleted concurrently */
module_put(ops->owner);
} else {
int ret;
/* now do the delete */
ret = tcf_idr_delete_index(idrinfo, act_index);
if (ret < 0)
return ret;
}
}
return 0;
}
static struct sk_buff *tcf_reoffload_del_notify_msg(struct net *net,
struct tc_action *action)
{
size_t attr_size = tcf_action_fill_size(action);
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {
[0] = action,
};
struct sk_buff *skb;
skb = alloc_skb(max(attr_size, NLMSG_GOODSIZE), GFP_KERNEL);
if (!skb)
return ERR_PTR(-ENOBUFS);
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
if (tca_get_fill(skb, actions, 0, 0, 0, RTM_DELACTION, 0, 1, NULL) <= 0) {
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
return skb;
}
static int tcf_reoffload_del_notify(struct net *net, struct tc_action *action)
{
const struct tc_action_ops *ops = action->ops;
struct sk_buff *skb;
int ret;
if (!rtnl_notify_needed(net, 0, RTNLGRP_TC)) {
skb = NULL;
} else {
skb = tcf_reoffload_del_notify_msg(net, action);
if (IS_ERR(skb))
return PTR_ERR(skb);
}
ret = tcf_idr_release_unsafe(action);
if (ret == ACT_P_DELETED) {
module_put(ops->owner);
ret = rtnetlink_maybe_send(skb, net, 0, RTNLGRP_TC, 0);
} else {
kfree_skb(skb);
}
return ret;
}
int tcf_action_reoffload_cb(flow_indr_block_bind_cb_t *cb,
void *cb_priv, bool add)
{
struct tc_act_pernet_id *id_ptr;
struct tcf_idrinfo *idrinfo;
struct tc_action_net *tn;
struct tc_action *p;
unsigned int act_id;
unsigned long tmp;
unsigned long id;
struct idr *idr;
struct net *net;
int ret;
if (!cb)
return -EINVAL;
down_read(&net_rwsem);
mutex_lock(&act_id_mutex);
for_each_net(net) {
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
act_id = id_ptr->id;
tn = net_generic(net, act_id);
if (!tn)
continue;
idrinfo = tn->idrinfo;
if (!idrinfo)
continue;
mutex_lock(&idrinfo->lock);
idr = &idrinfo->action_idr;
idr_for_each_entry_ul(idr, p, tmp, id) {
if (IS_ERR(p) || tc_act_bind(p->tcfa_flags))
continue;
if (add) {
tcf_action_offload_add_ex(p, NULL, cb,
cb_priv);
continue;
}
/* cb unregister to update hw count */
ret = tcf_action_offload_del_ex(p, cb, cb_priv);
if (ret < 0)
continue;
if (tc_act_skip_sw(p->tcfa_flags) &&
!tc_act_in_hw(p))
tcf_reoffload_del_notify(net, p);
}
mutex_unlock(&idrinfo->lock);
}
}
mutex_unlock(&act_id_mutex);
up_read(&net_rwsem);
return 0;
}
static struct sk_buff *tcf_del_notify_msg(struct net *net, struct nlmsghdr *n,
struct tc_action *actions[],
u32 portid, size_t attr_size,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
skb = alloc_skb(max(attr_size, NLMSG_GOODSIZE), GFP_KERNEL);
if (!skb)
return ERR_PTR(-ENOBUFS);
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, RTM_DELACTION,
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
0, 2, extack) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink TC action attributes");
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
return skb;
}
static int tcf_del_notify(struct net *net, struct nlmsghdr *n,
struct tc_action *actions[], u32 portid,
size_t attr_size, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
int ret;
if (!rtnl_notify_needed(net, n->nlmsg_flags, RTNLGRP_TC)) {
skb = NULL;
} else {
skb = tcf_del_notify_msg(net, n, actions, portid, attr_size,
extack);
if (IS_ERR(skb))
return PTR_ERR(skb);
}
/* now do the delete */
ret = tcf_action_delete(net, actions);
if (ret < 0) {
NL_SET_ERR_MSG(extack, "Failed to delete TC action");
kfree_skb(skb);
return ret;
}
return rtnetlink_maybe_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
}
static int
tca_action_gd(struct net *net, struct nlattr *nla, struct nlmsghdr *n,
u32 portid, int event, struct netlink_ext_ack *extack)
{
int i, ret;
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct tc_action *act;
size_t attr_size = 0;
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {};
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
ret = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL,
extack);
if (ret < 0)
return ret;
if (event == RTM_DELACTION && n->nlmsg_flags & NLM_F_ROOT) {
if (tb[1])
return tca_action_flush(net, tb[1], n, portid, extack);
NL_SET_ERR_MSG(extack, "Invalid netlink attributes while flushing TC action");
return -EINVAL;
}
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
act = tcf_action_get_1(net, tb[i], n, portid, extack);
if (IS_ERR(act)) {
ret = PTR_ERR(act);
goto err;
}
attr_size += tcf_action_fill_size(act);
actions[i - 1] = act;
}
attr_size = tcf_action_full_attrs_size(attr_size);
if (event == RTM_GETACTION)
ret = tcf_get_notify(net, portid, n, actions, event, extack);
else { /* delete */
ret = tcf_del_notify(net, n, actions, portid, attr_size, extack);
if (ret)
goto err;
return 0;
}
err:
tcf_action_put_many(actions);
return ret;
}
static struct sk_buff *tcf_add_notify_msg(struct net *net, struct nlmsghdr *n,
struct tc_action *actions[],
u32 portid, size_t attr_size,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
skb = alloc_skb(max(attr_size, NLMSG_GOODSIZE), GFP_KERNEL);
if (!skb)
return ERR_PTR(-ENOBUFS);
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, n->nlmsg_flags,
sched: add new attr TCA_EXT_WARN_MSG to report tc extact message We will report extack message if there is an error via netlink_ack(). But if the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. In commit 81c7288b170a ("sched: cls: enable verbose logging") Marcelo made cls could log verbose info for offloading failures, which helps improving Open vSwitch debuggability when using flower offloading. It would also be helpful if userspace monitor tools, like "tc monitor", could log this kind of message, as it doesn't require vswitchd log level adjusment. Let's add a new tc attributes to report the extack message so the monitor program could receive the failures. e.g. # tc monitor added chain dev enp3s0f1np1 parent ffff: chain 0 added filter dev enp3s0f1np1 ingress protocol all pref 49152 flower chain 0 handle 0x1 ct_state +trk+new not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 Warning: mlx5_core: matching on ct_state +new isn't supported. In this patch I only report the extack message on add/del operations. It doesn't look like we need to report the extack message on get/dump operations. Note this message not only reporte to multicast groups, it could also be reported unicast, which may affect the current usersapce tool's behaivor. Suggested-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20230113034353.2766735-1-liuhangbin@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-13 03:43:53 +00:00
RTM_NEWACTION, 0, 0, extack) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action");
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
return skb;
}
static int tcf_add_notify(struct net *net, struct nlmsghdr *n,
struct tc_action *actions[], u32 portid,
size_t attr_size, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
if (!rtnl_notify_needed(net, n->nlmsg_flags, RTNLGRP_TC)) {
skb = NULL;
} else {
skb = tcf_add_notify_msg(net, n, actions, portid, attr_size,
extack);
if (IS_ERR(skb))
return PTR_ERR(skb);
}
return rtnetlink_maybe_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
}
static int tcf_action_add(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid, u32 flags,
struct netlink_ext_ack *extack)
{
size_t attr_size = 0;
int loop, ret;
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {};
int init_res[TCA_ACT_MAX_PRIO] = {};
net: avoid potential infinite loop in tc_ctl_action() tc_ctl_action() has the ability to loop forever if tcf_action_add() returns -EAGAIN. This special case has been done in case a module needed to be loaded, but it turns out that tcf_add_notify() could also return -EAGAIN if the socket sk_rcvbuf limit is hit. We need to separate the two cases, and only loop for the module loading case. While we are at it, add a limit of 10 attempts since unbounded loops are always scary. syzbot repro was something like : socket(PF_NETLINK, SOCK_RAW|SOCK_NONBLOCK, NETLINK_ROUTE) = 3 write(3, ..., 38) = 38 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [0], 4) = 0 sendmsg(3, {msg_name(0)=NULL, msg_iov(1)=[{..., 388}], msg_controllen=0, msg_flags=0x10}, ...) NMI backtrace for cpu 0 CPU: 0 PID: 1054 Comm: khungtaskd Not tainted 5.4.0-rc1+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 nmi_cpu_backtrace.cold+0x70/0xb2 lib/nmi_backtrace.c:101 nmi_trigger_cpumask_backtrace+0x23b/0x28b lib/nmi_backtrace.c:62 arch_trigger_cpumask_backtrace+0x14/0x20 arch/x86/kernel/apic/hw_nmi.c:38 trigger_all_cpu_backtrace include/linux/nmi.h:146 [inline] check_hung_uninterruptible_tasks kernel/hung_task.c:205 [inline] watchdog+0x9d0/0xef0 kernel/hung_task.c:289 kthread+0x361/0x430 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 8859 Comm: syz-executor910 Not tainted 5.4.0-rc1+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:arch_local_save_flags arch/x86/include/asm/paravirt.h:751 [inline] RIP: 0010:lockdep_hardirqs_off+0x1df/0x2e0 kernel/locking/lockdep.c:3453 Code: 5c 08 00 00 5b 41 5c 41 5d 5d c3 48 c7 c0 58 1d f3 88 48 ba 00 00 00 00 00 fc ff df 48 c1 e8 03 80 3c 10 00 0f 85 d3 00 00 00 <48> 83 3d 21 9e 99 07 00 0f 84 b9 00 00 00 9c 58 0f 1f 44 00 00 f6 RSP: 0018:ffff8880a6f3f1b8 EFLAGS: 00000046 RAX: 1ffffffff11e63ab RBX: ffff88808c9c6080 RCX: 0000000000000000 RDX: dffffc0000000000 RSI: 0000000000000000 RDI: ffff88808c9c6914 RBP: ffff8880a6f3f1d0 R08: ffff88808c9c6080 R09: fffffbfff16be5d1 R10: fffffbfff16be5d0 R11: 0000000000000003 R12: ffffffff8746591f R13: ffff88808c9c6080 R14: ffffffff8746591f R15: 0000000000000003 FS: 00000000011e4880(0000) GS:ffff8880ae900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffff600400 CR3: 00000000a8920000 CR4: 00000000001406e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: trace_hardirqs_off+0x62/0x240 kernel/trace/trace_preemptirq.c:45 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] _raw_spin_lock_irqsave+0x6f/0xcd kernel/locking/spinlock.c:159 __wake_up_common_lock+0xc8/0x150 kernel/sched/wait.c:122 __wake_up+0xe/0x10 kernel/sched/wait.c:142 netlink_unlock_table net/netlink/af_netlink.c:466 [inline] netlink_unlock_table net/netlink/af_netlink.c:463 [inline] netlink_broadcast_filtered+0x705/0xb80 net/netlink/af_netlink.c:1514 netlink_broadcast+0x3a/0x50 net/netlink/af_netlink.c:1534 rtnetlink_send+0xdd/0x110 net/core/rtnetlink.c:714 tcf_add_notify net/sched/act_api.c:1343 [inline] tcf_action_add+0x243/0x370 net/sched/act_api.c:1362 tc_ctl_action+0x3b5/0x4bc net/sched/act_api.c:1410 rtnetlink_rcv_msg+0x463/0xb00 net/core/rtnetlink.c:5386 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5404 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8a5/0xd60 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:657 ___sys_sendmsg+0x803/0x920 net/socket.c:2311 __sys_sendmsg+0x105/0x1d0 net/socket.c:2356 __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg net/socket.c:2363 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2363 do_syscall_64+0xfa/0x760 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x440939 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot+cf0adbb9c28c8866c788@syzkaller.appspotmail.com Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-14 18:22:30 +00:00
for (loop = 0; loop < 10; loop++) {
ret = tcf_action_init(net, NULL, nla, NULL, actions, init_res,
&attr_size, flags, 0, extack);
net: avoid potential infinite loop in tc_ctl_action() tc_ctl_action() has the ability to loop forever if tcf_action_add() returns -EAGAIN. This special case has been done in case a module needed to be loaded, but it turns out that tcf_add_notify() could also return -EAGAIN if the socket sk_rcvbuf limit is hit. We need to separate the two cases, and only loop for the module loading case. While we are at it, add a limit of 10 attempts since unbounded loops are always scary. syzbot repro was something like : socket(PF_NETLINK, SOCK_RAW|SOCK_NONBLOCK, NETLINK_ROUTE) = 3 write(3, ..., 38) = 38 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [0], 4) = 0 sendmsg(3, {msg_name(0)=NULL, msg_iov(1)=[{..., 388}], msg_controllen=0, msg_flags=0x10}, ...) NMI backtrace for cpu 0 CPU: 0 PID: 1054 Comm: khungtaskd Not tainted 5.4.0-rc1+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 nmi_cpu_backtrace.cold+0x70/0xb2 lib/nmi_backtrace.c:101 nmi_trigger_cpumask_backtrace+0x23b/0x28b lib/nmi_backtrace.c:62 arch_trigger_cpumask_backtrace+0x14/0x20 arch/x86/kernel/apic/hw_nmi.c:38 trigger_all_cpu_backtrace include/linux/nmi.h:146 [inline] check_hung_uninterruptible_tasks kernel/hung_task.c:205 [inline] watchdog+0x9d0/0xef0 kernel/hung_task.c:289 kthread+0x361/0x430 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 8859 Comm: syz-executor910 Not tainted 5.4.0-rc1+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:arch_local_save_flags arch/x86/include/asm/paravirt.h:751 [inline] RIP: 0010:lockdep_hardirqs_off+0x1df/0x2e0 kernel/locking/lockdep.c:3453 Code: 5c 08 00 00 5b 41 5c 41 5d 5d c3 48 c7 c0 58 1d f3 88 48 ba 00 00 00 00 00 fc ff df 48 c1 e8 03 80 3c 10 00 0f 85 d3 00 00 00 <48> 83 3d 21 9e 99 07 00 0f 84 b9 00 00 00 9c 58 0f 1f 44 00 00 f6 RSP: 0018:ffff8880a6f3f1b8 EFLAGS: 00000046 RAX: 1ffffffff11e63ab RBX: ffff88808c9c6080 RCX: 0000000000000000 RDX: dffffc0000000000 RSI: 0000000000000000 RDI: ffff88808c9c6914 RBP: ffff8880a6f3f1d0 R08: ffff88808c9c6080 R09: fffffbfff16be5d1 R10: fffffbfff16be5d0 R11: 0000000000000003 R12: ffffffff8746591f R13: ffff88808c9c6080 R14: ffffffff8746591f R15: 0000000000000003 FS: 00000000011e4880(0000) GS:ffff8880ae900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffff600400 CR3: 00000000a8920000 CR4: 00000000001406e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: trace_hardirqs_off+0x62/0x240 kernel/trace/trace_preemptirq.c:45 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] _raw_spin_lock_irqsave+0x6f/0xcd kernel/locking/spinlock.c:159 __wake_up_common_lock+0xc8/0x150 kernel/sched/wait.c:122 __wake_up+0xe/0x10 kernel/sched/wait.c:142 netlink_unlock_table net/netlink/af_netlink.c:466 [inline] netlink_unlock_table net/netlink/af_netlink.c:463 [inline] netlink_broadcast_filtered+0x705/0xb80 net/netlink/af_netlink.c:1514 netlink_broadcast+0x3a/0x50 net/netlink/af_netlink.c:1534 rtnetlink_send+0xdd/0x110 net/core/rtnetlink.c:714 tcf_add_notify net/sched/act_api.c:1343 [inline] tcf_action_add+0x243/0x370 net/sched/act_api.c:1362 tc_ctl_action+0x3b5/0x4bc net/sched/act_api.c:1410 rtnetlink_rcv_msg+0x463/0xb00 net/core/rtnetlink.c:5386 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5404 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8a5/0xd60 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:657 ___sys_sendmsg+0x803/0x920 net/socket.c:2311 __sys_sendmsg+0x105/0x1d0 net/socket.c:2356 __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg net/socket.c:2363 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2363 do_syscall_64+0xfa/0x760 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x440939 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot+cf0adbb9c28c8866c788@syzkaller.appspotmail.com Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-14 18:22:30 +00:00
if (ret != -EAGAIN)
break;
}
if (ret < 0)
return ret;
ret = tcf_add_notify(net, n, actions, portid, attr_size, extack);
/* only put bound actions */
tca_put_bound_many(actions, init_res);
return ret;
}
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
static const struct nla_policy tcaa_policy[TCA_ROOT_MAX + 1] = {
[TCA_ROOT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAG_LARGE_DUMP_ON |
TCA_ACT_FLAG_TERSE_DUMP),
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
[TCA_ROOT_TIME_DELTA] = { .type = NLA_U32 },
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
};
static int tc_ctl_action(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
struct nlattr *tca[TCA_ROOT_MAX + 1];
u32 portid = NETLINK_CB(skb).portid;
u32 flags = 0;
int ret = 0;
if ((n->nlmsg_type != RTM_GETACTION) &&
!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
ret = nlmsg_parse_deprecated(n, sizeof(struct tcamsg), tca,
TCA_ROOT_MAX, NULL, extack);
if (ret < 0)
return ret;
if (tca[TCA_ACT_TAB] == NULL) {
NL_SET_ERR_MSG(extack, "Netlink action attributes missing");
return -EINVAL;
}
/* n->nlmsg_flags & NLM_F_CREATE */
switch (n->nlmsg_type) {
case RTM_NEWACTION:
/* we are going to assume all other flags
* imply create only if it doesn't exist
* Note that CREATE | EXCL implies that
* but since we want avoid ambiguity (eg when flags
* is zero) then just set this
*/
if (n->nlmsg_flags & NLM_F_REPLACE)
flags = TCA_ACT_FLAGS_REPLACE;
ret = tcf_action_add(net, tca[TCA_ACT_TAB], n, portid, flags,
extack);
break;
case RTM_DELACTION:
ret = tca_action_gd(net, tca[TCA_ACT_TAB], n,
portid, RTM_DELACTION, extack);
break;
case RTM_GETACTION:
ret = tca_action_gd(net, tca[TCA_ACT_TAB], n,
portid, RTM_GETACTION, extack);
break;
default:
BUG();
}
return ret;
}
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
static struct nlattr *find_dump_kind(struct nlattr **nla)
{
struct nlattr *tb1, *tb2[TCA_ACT_MAX + 1];
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct nlattr *kind;
tb1 = nla[TCA_ACT_TAB];
if (tb1 == NULL)
return NULL;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
if (nla_parse_deprecated(tb, TCA_ACT_MAX_PRIO, nla_data(tb1), NLMSG_ALIGN(nla_len(tb1)), NULL, NULL) < 0)
return NULL;
if (tb[1] == NULL)
return NULL;
if (nla_parse_nested_deprecated(tb2, TCA_ACT_MAX, tb[1], tcf_action_policy, NULL) < 0)
return NULL;
kind = tb2[TCA_ACT_KIND];
return kind;
}
static int tc_dump_action(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
struct tc_action_ops *a_o;
int ret = 0;
struct tcamsg *t = (struct tcamsg *) nlmsg_data(cb->nlh);
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
struct nlattr *tb[TCA_ROOT_MAX + 1];
struct nlattr *count_attr = NULL;
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
unsigned long jiffy_since = 0;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
struct nlattr *kind = NULL;
struct nla_bitfield32 bf;
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
u32 msecs_since = 0;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
u32 act_count = 0;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
ret = nlmsg_parse_deprecated(cb->nlh, sizeof(struct tcamsg), tb,
TCA_ROOT_MAX, tcaa_policy, cb->extack);
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
if (ret < 0)
return ret;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
kind = find_dump_kind(tb);
if (kind == NULL) {
pr_info("tc_dump_action: action bad kind\n");
return 0;
}
a_o = tc_lookup_action(kind);
if (a_o == NULL)
return 0;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
cb->args[2] = 0;
if (tb[TCA_ROOT_FLAGS]) {
bf = nla_get_bitfield32(tb[TCA_ROOT_FLAGS]);
cb->args[2] = bf.value;
}
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
if (tb[TCA_ROOT_TIME_DELTA]) {
msecs_since = nla_get_u32(tb[TCA_ROOT_TIME_DELTA]);
}
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
cb->nlh->nlmsg_type, sizeof(*t), 0);
if (!nlh)
goto out_module_put;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
if (msecs_since)
jiffy_since = jiffies - msecs_to_jiffies(msecs_since);
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
net sched actions: add time filter for action dumping This patch adds support for filtering based on time since last used. When we are dumping a large number of actions it is useful to have the option of filtering based on when the action was last used to reduce the amount of data crossing to user space. With this patch the user space app sets the TCA_ROOT_TIME_DELTA attribute with the value in milliseconds with "time of interest since now". The kernel converts this to jiffies and does the filtering comparison matching entries that have seen activity since then and returns them to user space. Old kernels and old tc continue to work in legacy mode since they dont specify this attribute. Some example (we have 400 actions bound to 400 filters); at installation time. Using updated when tc setting the time of interest to 120 seconds earlier (we see 400 actions): prompt$ hackedtc actions ls action gact since 120000| grep index | wc -l 400 go get some coffee and wait for > 120 seconds and try again: prompt$ hackedtc actions ls action gact since 120000 | grep index | wc -l 0 Lets see a filter bound to one of these actions: .... filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 2 success 1) match 7f000002/ffffffff at 12 (success 1 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1145 sec used 802 sec Action statistics: Sent 84 bytes 1 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 .... that coffee took long, no? It was good. Now lets ping -c 1 127.0.0.2, then run the actions again: prompt$ hackedtc actions ls action gact since 120 | grep index | wc -l 1 More details please: prompt$ hackedtc -s actions ls action gact since 120000 action order 0: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1270 sec used 30 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 And the filter? filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:10 (rule hit 4 success 2) match 7f000002/ffffffff at 12 (success 2 ) action order 1: gact action pass random type none pass val 0 index 23 ref 2 bind 1 installed 1324 sec used 84 sec Action statistics: Sent 168 bytes 2 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:52 +00:00
cb->args[3] = jiffy_since;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
count_attr = nla_reserve(skb, TCA_ROOT_COUNT, sizeof(u32));
if (!count_attr)
goto out_module_put;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (nest == NULL)
goto out_module_put;
ret = __tcf_generic_walker(net, skb, cb, RTM_GETACTION, a_o, NULL);
if (ret < 0)
goto out_module_put;
if (ret > 0) {
nla_nest_end(skb, nest);
ret = skb->len;
net sched actions: dump more than TCA_ACT_MAX_PRIO actions per batch When you dump hundreds of thousands of actions, getting only 32 per dump batch even when the socket buffer and memory allocations allow is inefficient. With this change, the user will get as many as possibly fitting within the given constraints available to the kernel. The top level action TLV space is extended. An attribute TCA_ROOT_FLAGS is used to carry flags; flag TCA_FLAG_LARGE_DUMP_ON is set by the user indicating the user is capable of processing these large dumps. Older user space which doesnt set this flag doesnt get the large (than 32) batches. The kernel uses the TCA_ROOT_COUNT attribute to tell the user how many actions are put in a single batch. As such user space app knows how long to iterate (independent of the type of action being dumped) instead of hardcoded maximum of 32 thus maintaining backward compat. Some results dumping 1.5M actions below: first an unpatched tc which doesnt understand these features... prompt$ time -p tc actions ls action gact | grep index | wc -l 1500000 real 1388.43 user 2.07 sys 1386.79 Now lets see a patched tc which sets the correct flags when requesting a dump: prompt$ time -p updatedtc actions ls action gact | grep index | wc -l 1500000 real 178.13 user 2.02 sys 176.96 That is about 8x performance improvement for tc app which sets its receive buffer to about 32K. Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-30 17:24:51 +00:00
act_count = cb->args[1];
memcpy(nla_data(count_attr), &act_count, sizeof(u32));
cb->args[1] = 0;
} else
nlmsg_trim(skb, b);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
if (NETLINK_CB(cb->skb).portid && ret)
nlh->nlmsg_flags |= NLM_F_MULTI;
module_put(a_o->owner);
return skb->len;
out_module_put:
module_put(a_o->owner);
nlmsg_trim(skb, b);
return skb->len;
}
static const struct rtnl_msg_handler tc_action_rtnl_msg_handlers[] __initconst = {
{.msgtype = RTM_NEWACTION, .doit = tc_ctl_action},
{.msgtype = RTM_DELACTION, .doit = tc_ctl_action},
{.msgtype = RTM_GETACTION, .doit = tc_ctl_action,
.dumpit = tc_dump_action},
};
static int __init tc_action_init(void)
{
rtnl_register_many(tc_action_rtnl_msg_handlers);
return 0;
}
subsys_initcall(tc_action_init);