2014-05-28 10:15:41 -06:00
|
|
|
/*
|
|
|
|
* Block multiqueue core code
|
|
|
|
*
|
|
|
|
* Copyright (C) 2013-2014 Jens Axboe
|
|
|
|
* Copyright (C) 2013-2014 Christoph Hellwig
|
|
|
|
*/
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/backing-dev.h>
|
|
|
|
#include <linux/bio.h>
|
|
|
|
#include <linux/blkdev.h>
|
2015-09-14 18:16:02 +01:00
|
|
|
#include <linux/kmemleak.h>
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/llist.h>
|
|
|
|
#include <linux/list_sort.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/cache.h>
|
|
|
|
#include <linux/sched/sysctl.h>
|
2017-02-01 16:36:40 +01:00
|
|
|
#include <linux/sched/topology.h>
|
2017-02-02 19:15:33 +01:00
|
|
|
#include <linux/sched/signal.h>
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
#include <linux/delay.h>
|
2014-09-17 08:27:03 -06:00
|
|
|
#include <linux/crash_dump.h>
|
2016-08-25 08:07:30 -06:00
|
|
|
#include <linux/prefetch.h>
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
|
|
|
|
#include <linux/blk-mq.h>
|
|
|
|
#include "blk.h"
|
|
|
|
#include "blk-mq.h"
|
2017-05-04 08:17:21 -06:00
|
|
|
#include "blk-mq-debugfs.h"
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
#include "blk-mq-tag.h"
|
2016-11-07 21:32:37 -07:00
|
|
|
#include "blk-stat.h"
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
#include "blk-wbt.h"
|
2017-01-17 06:03:22 -07:00
|
|
|
#include "blk-mq-sched.h"
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-11-02 21:29:54 +03:00
|
|
|
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
static void blk_mq_poll_stats_start(struct request_queue *q);
|
|
|
|
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
|
|
|
|
|
2017-04-07 06:24:03 -06:00
|
|
|
static int blk_mq_poll_stats_bkt(const struct request *rq)
|
|
|
|
{
|
|
|
|
int ddir, bytes, bucket;
|
|
|
|
|
2017-04-21 07:55:42 -06:00
|
|
|
ddir = rq_data_dir(rq);
|
2017-04-07 06:24:03 -06:00
|
|
|
bytes = blk_rq_bytes(rq);
|
|
|
|
|
|
|
|
bucket = ddir + 2*(ilog2(bytes) - 9);
|
|
|
|
|
|
|
|
if (bucket < 0)
|
|
|
|
return -1;
|
|
|
|
else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
|
|
|
|
return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
|
|
|
|
|
|
|
|
return bucket;
|
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
/*
|
|
|
|
* Check if any of the ctx's have pending work in this hardware queue
|
|
|
|
*/
|
2017-11-10 09:13:21 -07:00
|
|
|
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2017-11-10 09:13:21 -07:00
|
|
|
return !list_empty_careful(&hctx->dispatch) ||
|
|
|
|
sbitmap_any_bit_set(&hctx->ctx_map) ||
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_mq_sched_has_work(hctx);
|
2014-05-19 09:23:55 -06:00
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
/*
|
|
|
|
* Mark this ctx as having pending work in this hardware queue
|
|
|
|
*/
|
|
|
|
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct blk_mq_ctx *ctx)
|
|
|
|
{
|
2016-09-17 08:38:44 -06:00
|
|
|
if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
|
|
|
|
sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
|
2014-05-19 09:23:55 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct blk_mq_ctx *ctx)
|
|
|
|
{
|
2016-09-17 08:38:44 -06:00
|
|
|
sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-08-08 17:51:45 -06:00
|
|
|
struct mq_inflight {
|
|
|
|
struct hd_struct *part;
|
|
|
|
unsigned int *inflight;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq, void *priv,
|
|
|
|
bool reserved)
|
|
|
|
{
|
|
|
|
struct mq_inflight *mi = priv;
|
|
|
|
|
2018-01-09 08:29:49 -08:00
|
|
|
if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
|
2017-08-08 17:51:45 -06:00
|
|
|
/*
|
2017-08-08 17:53:33 -06:00
|
|
|
* index[0] counts the specific partition that was asked
|
|
|
|
* for. index[1] counts the ones that are active on the
|
|
|
|
* whole device, so increment that if mi->part is indeed
|
|
|
|
* a partition, and not a whole device.
|
2017-08-08 17:51:45 -06:00
|
|
|
*/
|
2017-08-08 17:53:33 -06:00
|
|
|
if (rq->part == mi->part)
|
2017-08-08 17:51:45 -06:00
|
|
|
mi->inflight[0]++;
|
2017-08-08 17:53:33 -06:00
|
|
|
if (mi->part->partno)
|
|
|
|
mi->inflight[1]++;
|
2017-08-08 17:51:45 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
|
|
|
|
unsigned int inflight[2])
|
|
|
|
{
|
|
|
|
struct mq_inflight mi = { .part = part, .inflight = inflight, };
|
|
|
|
|
2017-08-08 17:53:33 -06:00
|
|
|
inflight[0] = inflight[1] = 0;
|
2017-08-08 17:51:45 -06:00
|
|
|
blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
|
|
|
|
}
|
|
|
|
|
2017-03-27 20:06:57 +08:00
|
|
|
void blk_freeze_queue_start(struct request_queue *q)
|
2013-12-26 21:31:35 +08:00
|
|
|
{
|
2015-05-07 09:38:13 +02:00
|
|
|
int freeze_depth;
|
2014-08-16 08:02:24 -04:00
|
|
|
|
2015-05-07 09:38:13 +02:00
|
|
|
freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
|
|
|
|
if (freeze_depth == 1) {
|
2015-10-21 13:20:12 -04:00
|
|
|
percpu_ref_kill(&q->q_usage_counter);
|
2017-11-09 10:49:53 -08:00
|
|
|
if (q->mq_ops)
|
|
|
|
blk_mq_run_hw_queues(q, false);
|
2014-08-16 08:02:24 -04:00
|
|
|
}
|
2014-11-04 13:52:27 -05:00
|
|
|
}
|
2017-03-27 20:06:57 +08:00
|
|
|
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
|
2014-11-04 13:52:27 -05:00
|
|
|
|
2017-03-01 14:22:10 -05:00
|
|
|
void blk_mq_freeze_queue_wait(struct request_queue *q)
|
2014-11-04 13:52:27 -05:00
|
|
|
{
|
2015-10-21 13:20:12 -04:00
|
|
|
wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
|
2013-12-26 21:31:35 +08:00
|
|
|
}
|
2017-03-01 14:22:10 -05:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
|
2013-12-26 21:31:35 +08:00
|
|
|
|
2017-03-01 14:22:11 -05:00
|
|
|
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
|
|
|
|
unsigned long timeout)
|
|
|
|
{
|
|
|
|
return wait_event_timeout(q->mq_freeze_wq,
|
|
|
|
percpu_ref_is_zero(&q->q_usage_counter),
|
|
|
|
timeout);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
|
2013-12-26 21:31:35 +08:00
|
|
|
|
2014-11-04 13:52:27 -05:00
|
|
|
/*
|
|
|
|
* Guarantee no request is in use, so we can change any data structure of
|
|
|
|
* the queue afterward.
|
|
|
|
*/
|
2015-10-21 13:20:12 -04:00
|
|
|
void blk_freeze_queue(struct request_queue *q)
|
2014-11-04 13:52:27 -05:00
|
|
|
{
|
2015-10-21 13:20:12 -04:00
|
|
|
/*
|
|
|
|
* In the !blk_mq case we are only calling this to kill the
|
|
|
|
* q_usage_counter, otherwise this increases the freeze depth
|
|
|
|
* and waits for it to return to zero. For this reason there is
|
|
|
|
* no blk_unfreeze_queue(), and blk_freeze_queue() is not
|
|
|
|
* exported to drivers as the only user for unfreeze is blk_mq.
|
|
|
|
*/
|
2017-03-27 20:06:57 +08:00
|
|
|
blk_freeze_queue_start(q);
|
2017-11-30 07:56:35 +08:00
|
|
|
if (!q->mq_ops)
|
|
|
|
blk_drain_queue(q);
|
2014-11-04 13:52:27 -05:00
|
|
|
blk_mq_freeze_queue_wait(q);
|
|
|
|
}
|
2015-10-21 13:20:12 -04:00
|
|
|
|
|
|
|
void blk_mq_freeze_queue(struct request_queue *q)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* ...just an alias to keep freeze and unfreeze actions balanced
|
|
|
|
* in the blk_mq_* namespace
|
|
|
|
*/
|
|
|
|
blk_freeze_queue(q);
|
|
|
|
}
|
2015-01-02 15:05:12 -07:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
|
2014-11-04 13:52:27 -05:00
|
|
|
|
2014-12-19 17:54:14 -07:00
|
|
|
void blk_mq_unfreeze_queue(struct request_queue *q)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2015-05-07 09:38:13 +02:00
|
|
|
int freeze_depth;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-05-07 09:38:13 +02:00
|
|
|
freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
|
|
|
|
WARN_ON_ONCE(freeze_depth < 0);
|
|
|
|
if (!freeze_depth) {
|
2015-10-21 13:20:12 -04:00
|
|
|
percpu_ref_reinit(&q->q_usage_counter);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
wake_up_all(&q->mq_freeze_wq);
|
2014-07-01 10:34:38 -06:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2014-12-19 17:54:14 -07:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-06-21 10:55:47 -07:00
|
|
|
/*
|
|
|
|
* FIXME: replace the scsi_internal_device_*block_nowait() calls in the
|
|
|
|
* mpt3sas driver such that this function can be removed.
|
|
|
|
*/
|
|
|
|
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
|
|
|
|
{
|
2018-03-07 17:10:04 -08:00
|
|
|
blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
|
2017-06-21 10:55:47 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
|
|
|
|
|
2016-11-02 10:09:51 -06:00
|
|
|
/**
|
2017-06-06 23:22:07 +08:00
|
|
|
* blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
|
2016-11-02 10:09:51 -06:00
|
|
|
* @q: request queue.
|
|
|
|
*
|
|
|
|
* Note: this function does not prevent that the struct request end_io()
|
2017-06-06 23:22:07 +08:00
|
|
|
* callback function is invoked. Once this function is returned, we make
|
|
|
|
* sure no dispatch can happen until the queue is unquiesced via
|
|
|
|
* blk_mq_unquiesce_queue().
|
2016-11-02 10:09:51 -06:00
|
|
|
*/
|
|
|
|
void blk_mq_quiesce_queue(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
unsigned int i;
|
|
|
|
bool rcu = false;
|
|
|
|
|
2017-06-06 23:22:08 +08:00
|
|
|
blk_mq_quiesce_queue_nowait(q);
|
2017-06-18 14:24:27 -06:00
|
|
|
|
2016-11-02 10:09:51 -06:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
|
|
if (hctx->flags & BLK_MQ_F_BLOCKING)
|
2018-01-09 08:29:53 -08:00
|
|
|
synchronize_srcu(hctx->srcu);
|
2016-11-02 10:09:51 -06:00
|
|
|
else
|
|
|
|
rcu = true;
|
|
|
|
}
|
|
|
|
if (rcu)
|
|
|
|
synchronize_rcu();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
|
|
|
|
|
2017-06-06 23:22:03 +08:00
|
|
|
/*
|
|
|
|
* blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
|
|
|
|
* @q: request queue.
|
|
|
|
*
|
|
|
|
* This function recovers queue into the state before quiescing
|
|
|
|
* which is done by blk_mq_quiesce_queue.
|
|
|
|
*/
|
|
|
|
void blk_mq_unquiesce_queue(struct request_queue *q)
|
|
|
|
{
|
2018-03-07 17:10:04 -08:00
|
|
|
blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
|
2017-06-18 14:24:27 -06:00
|
|
|
|
2017-06-06 23:22:08 +08:00
|
|
|
/* dispatch requests which are inserted during quiescing */
|
|
|
|
blk_mq_run_hw_queues(q, true);
|
2017-06-06 23:22:03 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
|
|
|
|
|
2014-12-22 14:04:42 -07:00
|
|
|
void blk_mq_wake_waiters(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
|
|
if (blk_mq_hw_queue_mapped(hctx))
|
|
|
|
blk_mq_tag_wakeup_all(hctx->tags, true);
|
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
|
|
|
|
{
|
|
|
|
return blk_mq_has_free_tags(hctx->tags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_can_queue);
|
|
|
|
|
2017-06-16 18:15:27 +02:00
|
|
|
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
|
|
|
|
unsigned int tag, unsigned int op)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2017-06-16 18:15:27 +02:00
|
|
|
struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
|
|
|
|
struct request *rq = tags->static_rqs[tag];
|
2018-01-14 10:40:45 -07:00
|
|
|
req_flags_t rq_flags = 0;
|
2017-06-20 11:15:43 -07:00
|
|
|
|
2017-06-16 18:15:27 +02:00
|
|
|
if (data->flags & BLK_MQ_REQ_INTERNAL) {
|
|
|
|
rq->tag = -1;
|
|
|
|
rq->internal_tag = tag;
|
|
|
|
} else {
|
|
|
|
if (blk_mq_tag_busy(data->hctx)) {
|
2018-01-14 10:40:45 -07:00
|
|
|
rq_flags = RQF_MQ_INFLIGHT;
|
2017-06-16 18:15:27 +02:00
|
|
|
atomic_inc(&data->hctx->nr_active);
|
|
|
|
}
|
|
|
|
rq->tag = tag;
|
|
|
|
rq->internal_tag = -1;
|
|
|
|
data->hctx->tags->rqs[rq->tag] = rq;
|
|
|
|
}
|
|
|
|
|
2014-05-06 12:12:45 +02:00
|
|
|
/* csd/requeue_work/fifo_time is initialized before use */
|
2017-06-16 18:15:27 +02:00
|
|
|
rq->q = data->q;
|
|
|
|
rq->mq_ctx = data->ctx;
|
2018-01-14 10:40:45 -07:00
|
|
|
rq->rq_flags = rq_flags;
|
2018-01-10 11:46:39 -07:00
|
|
|
rq->cpu = -1;
|
2016-10-28 08:48:16 -06:00
|
|
|
rq->cmd_flags = op;
|
2017-11-09 10:49:55 -08:00
|
|
|
if (data->flags & BLK_MQ_REQ_PREEMPT)
|
|
|
|
rq->rq_flags |= RQF_PREEMPT;
|
2017-06-16 18:15:27 +02:00
|
|
|
if (blk_queue_io_stat(data->q))
|
2016-10-20 15:12:13 +02:00
|
|
|
rq->rq_flags |= RQF_IO_STAT;
|
2018-01-10 11:46:39 -07:00
|
|
|
INIT_LIST_HEAD(&rq->queuelist);
|
2014-05-06 12:12:45 +02:00
|
|
|
INIT_HLIST_NODE(&rq->hash);
|
|
|
|
RB_CLEAR_NODE(&rq->rb_node);
|
|
|
|
rq->rq_disk = NULL;
|
|
|
|
rq->part = NULL;
|
2014-06-09 09:36:53 -06:00
|
|
|
rq->start_time = jiffies;
|
2014-05-06 12:12:45 +02:00
|
|
|
rq->nr_phys_segments = 0;
|
|
|
|
#if defined(CONFIG_BLK_DEV_INTEGRITY)
|
|
|
|
rq->nr_integrity_segments = 0;
|
|
|
|
#endif
|
|
|
|
rq->special = NULL;
|
|
|
|
/* tag was already set */
|
|
|
|
rq->extra_len = 0;
|
2018-01-10 11:34:25 -07:00
|
|
|
rq->__deadline = 0;
|
2014-05-06 12:12:45 +02:00
|
|
|
|
|
|
|
INIT_LIST_HEAD(&rq->timeout_list);
|
2014-06-06 11:03:48 -06:00
|
|
|
rq->timeout = 0;
|
|
|
|
|
2014-05-06 12:12:45 +02:00
|
|
|
rq->end_io = NULL;
|
|
|
|
rq->end_io_data = NULL;
|
|
|
|
rq->next_rq = NULL;
|
|
|
|
|
2018-01-10 11:46:39 -07:00
|
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
|
|
rq->rl = NULL;
|
|
|
|
set_start_time_ns(rq);
|
|
|
|
rq->io_start_time_ns = 0;
|
|
|
|
#endif
|
|
|
|
|
2017-06-16 18:15:27 +02:00
|
|
|
data->ctx->rq_dispatched[op_is_sync(op)]++;
|
|
|
|
return rq;
|
2014-05-27 20:59:47 +02:00
|
|
|
}
|
|
|
|
|
2017-06-16 18:15:19 +02:00
|
|
|
static struct request *blk_mq_get_request(struct request_queue *q,
|
|
|
|
struct bio *bio, unsigned int op,
|
|
|
|
struct blk_mq_alloc_data *data)
|
|
|
|
{
|
|
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
struct request *rq;
|
2017-06-16 18:15:27 +02:00
|
|
|
unsigned int tag;
|
2017-10-16 16:32:26 -07:00
|
|
|
bool put_ctx_on_error = false;
|
2017-06-16 18:15:19 +02:00
|
|
|
|
|
|
|
blk_queue_enter_live(q);
|
|
|
|
data->q = q;
|
2017-10-16 16:32:26 -07:00
|
|
|
if (likely(!data->ctx)) {
|
|
|
|
data->ctx = blk_mq_get_ctx(q);
|
|
|
|
put_ctx_on_error = true;
|
|
|
|
}
|
2017-06-16 18:15:19 +02:00
|
|
|
if (likely(!data->hctx))
|
|
|
|
data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
|
2017-06-20 07:05:46 -05:00
|
|
|
if (op & REQ_NOWAIT)
|
|
|
|
data->flags |= BLK_MQ_REQ_NOWAIT;
|
2017-06-16 18:15:19 +02:00
|
|
|
|
|
|
|
if (e) {
|
|
|
|
data->flags |= BLK_MQ_REQ_INTERNAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush requests are special and go directly to the
|
|
|
|
* dispatch list.
|
|
|
|
*/
|
2017-06-16 18:15:26 +02:00
|
|
|
if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
|
|
|
|
e->type->ops.mq.limit_depth(op, data);
|
2017-06-16 18:15:19 +02:00
|
|
|
}
|
|
|
|
|
2017-06-16 18:15:27 +02:00
|
|
|
tag = blk_mq_get_tag(data);
|
|
|
|
if (tag == BLK_MQ_TAG_FAIL) {
|
2017-10-16 16:32:26 -07:00
|
|
|
if (put_ctx_on_error) {
|
|
|
|
blk_mq_put_ctx(data->ctx);
|
2017-08-02 08:01:45 +08:00
|
|
|
data->ctx = NULL;
|
|
|
|
}
|
2017-06-16 18:15:23 +02:00
|
|
|
blk_queue_exit(q);
|
|
|
|
return NULL;
|
2017-06-16 18:15:19 +02:00
|
|
|
}
|
|
|
|
|
2017-06-16 18:15:27 +02:00
|
|
|
rq = blk_mq_rq_ctx_init(data, tag, op);
|
2017-06-16 18:15:23 +02:00
|
|
|
if (!op_is_flush(op)) {
|
|
|
|
rq->elv.icq = NULL;
|
2017-06-16 18:15:26 +02:00
|
|
|
if (e && e->type->ops.mq.prepare_request) {
|
2017-06-16 18:15:25 +02:00
|
|
|
if (e->type->icq_cache && rq_ioc(bio))
|
|
|
|
blk_mq_sched_assign_ioc(rq, bio);
|
|
|
|
|
2017-06-16 18:15:26 +02:00
|
|
|
e->type->ops.mq.prepare_request(rq, bio);
|
|
|
|
rq->rq_flags |= RQF_ELVPRIV;
|
2017-06-16 18:15:25 +02:00
|
|
|
}
|
2017-06-16 18:15:23 +02:00
|
|
|
}
|
|
|
|
data->hctx->queued++;
|
|
|
|
return rq;
|
2017-06-16 18:15:19 +02:00
|
|
|
}
|
|
|
|
|
2017-06-20 11:15:39 -07:00
|
|
|
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
|
2017-11-09 10:49:59 -08:00
|
|
|
blk_mq_req_flags_t flags)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2017-01-26 12:22:11 -07:00
|
|
|
struct blk_mq_alloc_data alloc_data = { .flags = flags };
|
2017-01-17 06:03:22 -07:00
|
|
|
struct request *rq;
|
2014-08-28 08:15:21 -06:00
|
|
|
int ret;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-11-09 10:49:58 -08:00
|
|
|
ret = blk_queue_enter(q, flags);
|
2014-08-28 08:15:21 -06:00
|
|
|
if (ret)
|
|
|
|
return ERR_PTR(ret);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-06-20 11:15:39 -07:00
|
|
|
rq = blk_mq_get_request(q, NULL, op, &alloc_data);
|
2017-08-14 16:40:11 -04:00
|
|
|
blk_queue_exit(q);
|
2016-09-21 10:08:43 -06:00
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
if (!rq)
|
2014-08-28 08:15:21 -06:00
|
|
|
return ERR_PTR(-EWOULDBLOCK);
|
2016-07-19 11:31:50 +02:00
|
|
|
|
2017-08-02 08:01:45 +08:00
|
|
|
blk_mq_put_ctx(alloc_data.ctx);
|
|
|
|
|
2016-07-19 11:31:50 +02:00
|
|
|
rq->__data_len = 0;
|
|
|
|
rq->__sector = (sector_t) -1;
|
|
|
|
rq->bio = rq->biotail = NULL;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
return rq;
|
|
|
|
}
|
2014-05-09 09:36:49 -06:00
|
|
|
EXPORT_SYMBOL(blk_mq_alloc_request);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-06-20 11:15:39 -07:00
|
|
|
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
|
2017-11-09 10:49:59 -08:00
|
|
|
unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
|
2016-06-13 16:45:21 +02:00
|
|
|
{
|
2017-02-27 10:28:27 -08:00
|
|
|
struct blk_mq_alloc_data alloc_data = { .flags = flags };
|
2016-06-13 16:45:21 +02:00
|
|
|
struct request *rq;
|
2017-02-27 10:28:27 -08:00
|
|
|
unsigned int cpu;
|
2016-06-13 16:45:21 +02:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the tag allocator sleeps we could get an allocation for a
|
|
|
|
* different hardware context. No need to complicate the low level
|
|
|
|
* allocator for this for the rare use case of a command tied to
|
|
|
|
* a specific queue.
|
|
|
|
*/
|
|
|
|
if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
if (hctx_idx >= q->nr_hw_queues)
|
|
|
|
return ERR_PTR(-EIO);
|
|
|
|
|
2017-11-09 10:49:58 -08:00
|
|
|
ret = blk_queue_enter(q, flags);
|
2016-06-13 16:45:21 +02:00
|
|
|
if (ret)
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
|
2016-09-23 10:25:48 -06:00
|
|
|
/*
|
|
|
|
* Check if the hardware context is actually mapped to anything.
|
|
|
|
* If not tell the caller that it should skip this queue.
|
|
|
|
*/
|
2017-02-27 10:28:27 -08:00
|
|
|
alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
|
|
|
|
if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
|
|
|
|
blk_queue_exit(q);
|
|
|
|
return ERR_PTR(-EXDEV);
|
2016-09-23 10:25:48 -06:00
|
|
|
}
|
2018-01-12 10:53:06 +08:00
|
|
|
cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
|
2017-02-27 10:28:27 -08:00
|
|
|
alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
|
2016-06-13 16:45:21 +02:00
|
|
|
|
2017-06-20 11:15:39 -07:00
|
|
|
rq = blk_mq_get_request(q, NULL, op, &alloc_data);
|
2017-08-14 16:40:11 -04:00
|
|
|
blk_queue_exit(q);
|
2016-09-23 10:25:48 -06:00
|
|
|
|
2017-02-27 10:28:27 -08:00
|
|
|
if (!rq)
|
|
|
|
return ERR_PTR(-EWOULDBLOCK);
|
|
|
|
|
|
|
|
return rq;
|
2016-06-13 16:45:21 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
|
|
|
|
|
2017-06-16 18:15:22 +02:00
|
|
|
void blk_mq_free_request(struct request *rq)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
2017-06-16 18:15:22 +02:00
|
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
const int sched_tag = rq->internal_tag;
|
|
|
|
|
2017-06-16 18:15:26 +02:00
|
|
|
if (rq->rq_flags & RQF_ELVPRIV) {
|
2017-06-16 18:15:22 +02:00
|
|
|
if (e && e->type->ops.mq.finish_request)
|
|
|
|
e->type->ops.mq.finish_request(rq);
|
|
|
|
if (rq->elv.icq) {
|
|
|
|
put_io_context(rq->elv.icq->ioc);
|
|
|
|
rq->elv.icq = NULL;
|
|
|
|
}
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-06-16 18:15:22 +02:00
|
|
|
ctx->rq_completed[rq_is_sync(rq)]++;
|
2016-10-20 15:12:13 +02:00
|
|
|
if (rq->rq_flags & RQF_MQ_INFLIGHT)
|
2014-05-13 15:10:52 -06:00
|
|
|
atomic_dec(&hctx->nr_active);
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
|
2017-09-30 02:08:24 -06:00
|
|
|
if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
|
|
|
|
laptop_io_completion(q->backing_dev_info);
|
|
|
|
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
wbt_done(q->rq_wb, &rq->issue_stat);
|
2014-05-13 15:10:52 -06:00
|
|
|
|
2017-10-06 17:56:00 -07:00
|
|
|
if (blk_rq_rl(rq))
|
|
|
|
blk_put_rl(blk_rq_rl(rq));
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
|
2017-01-17 06:03:22 -07:00
|
|
|
if (rq->tag != -1)
|
|
|
|
blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
|
|
|
|
if (sched_tag != -1)
|
2017-04-14 01:00:01 -07:00
|
|
|
blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
|
2017-04-07 12:40:09 -06:00
|
|
|
blk_mq_sched_restart(hctx);
|
2015-10-21 13:20:12 -04:00
|
|
|
blk_queue_exit(q);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2014-11-17 10:40:48 -07:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_free_request);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-06-03 09:38:04 +02:00
|
|
|
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2013-12-05 10:50:39 -07:00
|
|
|
blk_account_io_done(rq);
|
|
|
|
|
2014-04-16 09:44:53 +02:00
|
|
|
if (rq->end_io) {
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
wbt_done(rq->q->rq_wb, &rq->issue_stat);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
rq->end_io(rq, error);
|
2014-04-16 09:44:53 +02:00
|
|
|
} else {
|
|
|
|
if (unlikely(blk_bidi_rq(rq)))
|
|
|
|
blk_mq_free_request(rq->next_rq);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
blk_mq_free_request(rq);
|
2014-04-16 09:44:53 +02:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2014-09-13 16:40:10 -07:00
|
|
|
EXPORT_SYMBOL(__blk_mq_end_request);
|
2014-04-16 09:44:52 +02:00
|
|
|
|
2017-06-03 09:38:04 +02:00
|
|
|
void blk_mq_end_request(struct request *rq, blk_status_t error)
|
2014-04-16 09:44:52 +02:00
|
|
|
{
|
|
|
|
if (blk_update_request(rq, error, blk_rq_bytes(rq)))
|
|
|
|
BUG();
|
2014-09-13 16:40:10 -07:00
|
|
|
__blk_mq_end_request(rq, error);
|
2014-04-16 09:44:52 +02:00
|
|
|
}
|
2014-09-13 16:40:10 -07:00
|
|
|
EXPORT_SYMBOL(blk_mq_end_request);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-02-10 03:24:38 -08:00
|
|
|
static void __blk_mq_complete_request_remote(void *data)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2014-01-08 09:33:37 -08:00
|
|
|
struct request *rq = data;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-02-10 03:24:38 -08:00
|
|
|
rq->q->softirq_done_fn(rq);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-04-20 16:03:10 +02:00
|
|
|
static void __blk_mq_complete_request(struct request *rq)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
2014-04-25 02:32:53 -07:00
|
|
|
bool shared = false;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
int cpu;
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
|
2018-01-09 08:29:52 -08:00
|
|
|
blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
|
2017-04-20 16:03:10 +02:00
|
|
|
if (rq->internal_tag != -1)
|
|
|
|
blk_mq_sched_completed_request(rq);
|
|
|
|
if (rq->rq_flags & RQF_STATS) {
|
|
|
|
blk_mq_poll_stats_start(rq->q);
|
|
|
|
blk_stat_add(rq);
|
|
|
|
}
|
|
|
|
|
2014-04-25 02:32:53 -07:00
|
|
|
if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
|
2014-02-10 03:24:38 -08:00
|
|
|
rq->q->softirq_done_fn(rq);
|
|
|
|
return;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
cpu = get_cpu();
|
2014-04-25 02:32:53 -07:00
|
|
|
if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
|
|
|
|
shared = cpus_share_cache(cpu, ctx->cpu);
|
|
|
|
|
|
|
|
if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
|
2014-02-10 03:24:38 -08:00
|
|
|
rq->csd.func = __blk_mq_complete_request_remote;
|
2014-01-08 09:33:37 -08:00
|
|
|
rq->csd.info = rq;
|
|
|
|
rq->csd.flags = 0;
|
2014-02-24 16:40:02 +01:00
|
|
|
smp_call_function_single_async(ctx->cpu, &rq->csd);
|
2014-01-08 09:33:37 -08:00
|
|
|
} else {
|
2014-02-10 03:24:38 -08:00
|
|
|
rq->q->softirq_done_fn(rq);
|
2014-01-08 09:33:37 -08:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
put_cpu();
|
|
|
|
}
|
2014-02-10 03:24:38 -08:00
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
|
2018-01-10 11:34:27 -08:00
|
|
|
__releases(hctx->srcu)
|
2018-01-09 08:29:46 -08:00
|
|
|
{
|
|
|
|
if (!(hctx->flags & BLK_MQ_F_BLOCKING))
|
|
|
|
rcu_read_unlock();
|
|
|
|
else
|
2018-01-09 08:29:53 -08:00
|
|
|
srcu_read_unlock(hctx->srcu, srcu_idx);
|
2018-01-09 08:29:46 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
|
2018-01-10 11:34:27 -08:00
|
|
|
__acquires(hctx->srcu)
|
2018-01-09 08:29:46 -08:00
|
|
|
{
|
2018-01-09 09:32:25 -07:00
|
|
|
if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
|
|
|
|
/* shut up gcc false positive */
|
|
|
|
*srcu_idx = 0;
|
2018-01-09 08:29:46 -08:00
|
|
|
rcu_read_lock();
|
2018-01-09 09:32:25 -07:00
|
|
|
} else
|
2018-01-09 08:29:53 -08:00
|
|
|
*srcu_idx = srcu_read_lock(hctx->srcu);
|
2018-01-09 08:29:46 -08:00
|
|
|
}
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* blk_mq_rq_aborted_gstate() is used from the completion path and
|
|
|
|
* can thus be called from irq context. u64_stats_fetch in the
|
|
|
|
* middle of update on the same CPU leads to lockup. Disable irq
|
|
|
|
* while updating.
|
|
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
|
|
u64_stats_update_begin(&rq->aborted_gstate_sync);
|
|
|
|
rq->aborted_gstate = gstate;
|
|
|
|
u64_stats_update_end(&rq->aborted_gstate_sync);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 blk_mq_rq_aborted_gstate(struct request *rq)
|
|
|
|
{
|
|
|
|
unsigned int start;
|
|
|
|
u64 aborted_gstate;
|
|
|
|
|
|
|
|
do {
|
|
|
|
start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
|
|
|
|
aborted_gstate = rq->aborted_gstate;
|
|
|
|
} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
|
|
|
|
|
|
|
|
return aborted_gstate;
|
|
|
|
}
|
|
|
|
|
2014-02-10 03:24:38 -08:00
|
|
|
/**
|
|
|
|
* blk_mq_complete_request - end I/O on a request
|
|
|
|
* @rq: the request being processed
|
|
|
|
*
|
|
|
|
* Description:
|
|
|
|
* Ends all I/O on a request. It does not handle partial completions.
|
|
|
|
* The actual completion happens out-of-order, through a IPI handler.
|
|
|
|
**/
|
2017-04-20 16:03:09 +02:00
|
|
|
void blk_mq_complete_request(struct request *rq)
|
2014-02-10 03:24:38 -08:00
|
|
|
{
|
2014-05-27 17:46:48 -06:00
|
|
|
struct request_queue *q = rq->q;
|
2018-01-09 08:29:47 -08:00
|
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
|
|
|
|
int srcu_idx;
|
2014-05-27 17:46:48 -06:00
|
|
|
|
|
|
|
if (unlikely(blk_should_fake_timeout(q)))
|
2014-02-10 03:24:38 -08:00
|
|
|
return;
|
2018-01-09 08:29:47 -08:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
/*
|
|
|
|
* If @rq->aborted_gstate equals the current instance, timeout is
|
|
|
|
* claiming @rq and we lost. This is synchronized through
|
|
|
|
* hctx_lock(). See blk_mq_timeout_work() for details.
|
|
|
|
*
|
|
|
|
* Completion path never blocks and we can directly use RCU here
|
|
|
|
* instead of hctx_lock() which can be either RCU or SRCU.
|
|
|
|
* However, that would complicate paths which want to synchronize
|
|
|
|
* against us. Let stay in sync with the issue path so that
|
|
|
|
* hctx_lock() covers both issue and completion paths.
|
|
|
|
*/
|
2018-01-09 08:29:47 -08:00
|
|
|
hctx_lock(hctx, &srcu_idx);
|
2018-01-09 08:29:51 -08:00
|
|
|
if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
|
2014-05-30 21:20:50 -06:00
|
|
|
__blk_mq_complete_request(rq);
|
2018-01-09 08:29:47 -08:00
|
|
|
hctx_unlock(hctx, srcu_idx);
|
2014-02-10 03:24:38 -08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_complete_request);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-01-07 18:55:43 -07:00
|
|
|
int blk_mq_request_started(struct request *rq)
|
|
|
|
{
|
2018-01-09 08:29:52 -08:00
|
|
|
return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
|
2015-01-07 18:55:43 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_request_started);
|
|
|
|
|
2014-09-13 16:40:09 -07:00
|
|
|
void blk_mq_start_request(struct request *rq)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_mq_sched_started_request(rq);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
trace_block_rq_issue(q, rq);
|
|
|
|
|
2016-11-07 21:32:37 -07:00
|
|
|
if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
|
2017-03-27 15:19:41 -07:00
|
|
|
blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
|
2016-11-07 21:32:37 -07:00
|
|
|
rq->rq_flags |= RQF_STATS;
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
wbt_issue(q->rq_wb, &rq->issue_stat);
|
2016-11-07 21:32:37 -07:00
|
|
|
}
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
|
2014-09-16 10:37:37 -06:00
|
|
|
|
2014-04-24 08:51:47 -06:00
|
|
|
/*
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
* Mark @rq in-flight which also advances the generation number,
|
|
|
|
* and register for timeout. Protect with a seqcount to allow the
|
|
|
|
* timeout path to read both @rq->gstate and @rq->deadline
|
|
|
|
* coherently.
|
2017-09-06 10:00:22 +02:00
|
|
|
*
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
* This is the only place where a request is marked in-flight. If
|
|
|
|
* the timeout path reads an in-flight @rq->gstate, the
|
|
|
|
* @rq->deadline it reads together under @rq->gstate_seq is
|
|
|
|
* guaranteed to be the matching one.
|
2014-04-24 08:51:47 -06:00
|
|
|
*/
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
preempt_disable();
|
|
|
|
write_seqcount_begin(&rq->gstate_seq);
|
|
|
|
|
|
|
|
blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
|
|
|
|
blk_add_timer(rq);
|
|
|
|
|
|
|
|
write_seqcount_end(&rq->gstate_seq);
|
|
|
|
preempt_enable();
|
2014-02-11 08:27:14 -08:00
|
|
|
|
|
|
|
if (q->dma_drain_size && blk_rq_bytes(rq)) {
|
|
|
|
/*
|
|
|
|
* Make sure space for the drain appears. We know we can do
|
|
|
|
* this because max_hw_segments has been adjusted to be one
|
|
|
|
* fewer than the device can handle.
|
|
|
|
*/
|
|
|
|
rq->nr_phys_segments++;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2014-09-13 16:40:09 -07:00
|
|
|
EXPORT_SYMBOL(blk_mq_start_request);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-03-27 20:06:55 +08:00
|
|
|
/*
|
2018-01-09 08:29:52 -08:00
|
|
|
* When we reach here because queue is busy, it's safe to change the state
|
|
|
|
* to IDLE without checking @rq->aborted_gstate because we should still be
|
|
|
|
* holding the RCU read lock and thus protected against timeout.
|
2017-03-27 20:06:55 +08:00
|
|
|
*/
|
2014-04-16 09:44:57 +02:00
|
|
|
static void __blk_mq_requeue_request(struct request *rq)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
|
|
|
|
2017-11-02 23:24:38 +08:00
|
|
|
blk_mq_put_driver_tag(rq);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
trace_block_rq_requeue(q, rq);
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
wbt_requeue(q->rq_wb, &rq->issue_stat);
|
2014-02-11 08:27:14 -08:00
|
|
|
|
2018-01-09 08:29:52 -08:00
|
|
|
if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
|
2014-09-13 16:40:09 -07:00
|
|
|
if (q->dma_drain_size && blk_rq_bytes(rq))
|
|
|
|
rq->nr_phys_segments--;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2016-10-28 17:21:41 -07:00
|
|
|
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
|
2014-04-16 09:44:57 +02:00
|
|
|
{
|
|
|
|
__blk_mq_requeue_request(rq);
|
|
|
|
|
2018-02-23 23:36:56 +08:00
|
|
|
/* this request will be re-inserted to io scheduler queue */
|
|
|
|
blk_mq_sched_requeue_request(rq);
|
|
|
|
|
2014-04-16 09:44:57 +02:00
|
|
|
BUG_ON(blk_queued_rq(rq));
|
2016-10-28 17:21:41 -07:00
|
|
|
blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
|
2014-04-16 09:44:57 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_requeue_request);
|
|
|
|
|
2014-05-28 08:08:02 -06:00
|
|
|
static void blk_mq_requeue_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct request_queue *q =
|
2016-09-14 13:28:30 -04:00
|
|
|
container_of(work, struct request_queue, requeue_work.work);
|
2014-05-28 08:08:02 -06:00
|
|
|
LIST_HEAD(rq_list);
|
|
|
|
struct request *rq, *next;
|
|
|
|
|
2017-07-27 08:03:57 -06:00
|
|
|
spin_lock_irq(&q->requeue_lock);
|
2014-05-28 08:08:02 -06:00
|
|
|
list_splice_init(&q->requeue_list, &rq_list);
|
2017-07-27 08:03:57 -06:00
|
|
|
spin_unlock_irq(&q->requeue_lock);
|
2014-05-28 08:08:02 -06:00
|
|
|
|
|
|
|
list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
|
2016-10-20 15:12:13 +02:00
|
|
|
if (!(rq->rq_flags & RQF_SOFTBARRIER))
|
2014-05-28 08:08:02 -06:00
|
|
|
continue;
|
|
|
|
|
2016-10-20 15:12:13 +02:00
|
|
|
rq->rq_flags &= ~RQF_SOFTBARRIER;
|
2014-05-28 08:08:02 -06:00
|
|
|
list_del_init(&rq->queuelist);
|
2018-01-17 11:25:58 -05:00
|
|
|
blk_mq_sched_insert_request(rq, true, false, false);
|
2014-05-28 08:08:02 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
while (!list_empty(&rq_list)) {
|
|
|
|
rq = list_entry(rq_list.next, struct request, queuelist);
|
|
|
|
list_del_init(&rq->queuelist);
|
2018-01-17 11:25:58 -05:00
|
|
|
blk_mq_sched_insert_request(rq, false, false, false);
|
2014-05-28 08:08:02 -06:00
|
|
|
}
|
|
|
|
|
2016-10-28 17:20:32 -07:00
|
|
|
blk_mq_run_hw_queues(q, false);
|
2014-05-28 08:08:02 -06:00
|
|
|
}
|
|
|
|
|
2016-10-28 17:21:41 -07:00
|
|
|
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
|
|
|
|
bool kick_requeue_list)
|
2014-05-28 08:08:02 -06:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We abuse this flag that is otherwise used by the I/O scheduler to
|
2017-11-10 22:05:12 -07:00
|
|
|
* request head insertion from the workqueue.
|
2014-05-28 08:08:02 -06:00
|
|
|
*/
|
2016-10-20 15:12:13 +02:00
|
|
|
BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
|
2014-05-28 08:08:02 -06:00
|
|
|
|
|
|
|
spin_lock_irqsave(&q->requeue_lock, flags);
|
|
|
|
if (at_head) {
|
2016-10-20 15:12:13 +02:00
|
|
|
rq->rq_flags |= RQF_SOFTBARRIER;
|
2014-05-28 08:08:02 -06:00
|
|
|
list_add(&rq->queuelist, &q->requeue_list);
|
|
|
|
} else {
|
|
|
|
list_add_tail(&rq->queuelist, &q->requeue_list);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&q->requeue_lock, flags);
|
2016-10-28 17:21:41 -07:00
|
|
|
|
|
|
|
if (kick_requeue_list)
|
|
|
|
blk_mq_kick_requeue_list(q);
|
2014-05-28 08:08:02 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
|
|
|
|
|
|
|
|
void blk_mq_kick_requeue_list(struct request_queue *q)
|
|
|
|
{
|
2018-01-19 08:58:55 -08:00
|
|
|
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
|
2014-05-28 08:08:02 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_kick_requeue_list);
|
|
|
|
|
2016-09-14 13:28:30 -04:00
|
|
|
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
|
|
|
|
unsigned long msecs)
|
|
|
|
{
|
2017-08-09 11:28:06 -07:00
|
|
|
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
|
|
|
|
msecs_to_jiffies(msecs));
|
2016-09-14 13:28:30 -04:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
|
|
|
|
|
2014-06-04 10:23:49 -06:00
|
|
|
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
|
|
|
|
{
|
2016-08-25 08:07:30 -06:00
|
|
|
if (tag < tags->nr_tags) {
|
|
|
|
prefetch(tags->rqs[tag]);
|
2016-03-15 12:03:28 -07:00
|
|
|
return tags->rqs[tag];
|
2016-08-25 08:07:30 -06:00
|
|
|
}
|
2016-03-15 12:03:28 -07:00
|
|
|
|
|
|
|
return NULL;
|
2014-04-15 14:14:00 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_tag_to_rq);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
struct blk_mq_timeout_data {
|
2014-09-13 16:40:12 -07:00
|
|
|
unsigned long next;
|
|
|
|
unsigned int next_set;
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
unsigned int nr_expired;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
};
|
|
|
|
|
2018-01-09 08:29:50 -08:00
|
|
|
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2016-12-13 09:24:51 -07:00
|
|
|
const struct blk_mq_ops *ops = req->q->mq_ops;
|
2014-09-13 16:40:12 -07:00
|
|
|
enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
|
2014-04-24 08:51:47 -06:00
|
|
|
|
2018-01-09 08:29:51 -08:00
|
|
|
req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
|
2014-04-24 08:51:47 -06:00
|
|
|
|
2014-09-13 16:40:12 -07:00
|
|
|
if (ops->timeout)
|
2014-09-13 16:40:13 -07:00
|
|
|
ret = ops->timeout(req, reserved);
|
2014-09-13 16:40:12 -07:00
|
|
|
|
|
|
|
switch (ret) {
|
|
|
|
case BLK_EH_HANDLED:
|
|
|
|
__blk_mq_complete_request(req);
|
|
|
|
break;
|
|
|
|
case BLK_EH_RESET_TIMER:
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
/*
|
|
|
|
* As nothing prevents from completion happening while
|
|
|
|
* ->aborted_gstate is set, this may lead to ignored
|
|
|
|
* completions and further spurious timeouts.
|
|
|
|
*/
|
|
|
|
blk_mq_rq_update_aborted_gstate(req, 0);
|
2014-09-13 16:40:12 -07:00
|
|
|
blk_add_timer(req);
|
|
|
|
break;
|
|
|
|
case BLK_EH_NOT_HANDLED:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "block: bad eh return: %d\n", ret);
|
|
|
|
break;
|
|
|
|
}
|
2014-04-24 08:51:47 -06:00
|
|
|
}
|
2015-01-07 18:55:46 -07:00
|
|
|
|
2014-09-13 16:40:11 -07:00
|
|
|
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq, void *priv, bool reserved)
|
|
|
|
{
|
|
|
|
struct blk_mq_timeout_data *data = priv;
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
unsigned long gstate, deadline;
|
|
|
|
int start;
|
2014-04-24 08:51:47 -06:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
might_sleep();
|
2014-04-24 08:51:47 -06:00
|
|
|
|
2018-01-09 08:29:52 -08:00
|
|
|
if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
|
2014-09-13 16:40:12 -07:00
|
|
|
return;
|
2017-09-06 10:00:22 +02:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
/* read coherent snapshots of @rq->state_gen and @rq->deadline */
|
|
|
|
while (true) {
|
|
|
|
start = read_seqcount_begin(&rq->gstate_seq);
|
|
|
|
gstate = READ_ONCE(rq->gstate);
|
2018-01-09 14:23:42 -07:00
|
|
|
deadline = blk_rq_deadline(rq);
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
if (!read_seqcount_retry(&rq->gstate_seq, start))
|
|
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
}
|
2017-09-06 10:00:22 +02:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
/* if in-flight && overdue, mark for abortion */
|
|
|
|
if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
|
|
|
|
time_after_eq(jiffies, deadline)) {
|
|
|
|
blk_mq_rq_update_aborted_gstate(rq, gstate);
|
|
|
|
data->nr_expired++;
|
|
|
|
hctx->nr_expired++;
|
2017-09-06 10:00:22 +02:00
|
|
|
} else if (!data->next_set || time_after(data->next, deadline)) {
|
|
|
|
data->next = deadline;
|
2014-09-13 16:40:12 -07:00
|
|
|
data->next_set = 1;
|
|
|
|
}
|
2014-04-24 08:51:47 -06:00
|
|
|
}
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq, void *priv, bool reserved)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We marked @rq->aborted_gstate and waited for RCU. If there were
|
|
|
|
* completions that we lost to, they would have finished and
|
|
|
|
* updated @rq->gstate by now; otherwise, the completion path is
|
|
|
|
* now guaranteed to see @rq->aborted_gstate and yield. If
|
|
|
|
* @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
|
|
|
|
*/
|
2018-01-09 08:29:51 -08:00
|
|
|
if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
|
|
|
|
READ_ONCE(rq->gstate) == rq->aborted_gstate)
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
blk_mq_rq_timed_out(rq, reserved);
|
|
|
|
}
|
|
|
|
|
2015-10-30 20:57:30 +08:00
|
|
|
static void blk_mq_timeout_work(struct work_struct *work)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2015-10-30 20:57:30 +08:00
|
|
|
struct request_queue *q =
|
|
|
|
container_of(work, struct request_queue, timeout_work);
|
2014-09-13 16:40:11 -07:00
|
|
|
struct blk_mq_timeout_data data = {
|
|
|
|
.next = 0,
|
|
|
|
.next_set = 0,
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
.nr_expired = 0,
|
2014-09-13 16:40:11 -07:00
|
|
|
};
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
struct blk_mq_hw_ctx *hctx;
|
2014-09-13 16:40:11 -07:00
|
|
|
int i;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
blk-mq: Allow timeouts to run while queue is freezing
In case a submitted request gets stuck for some reason, the block layer
can prevent the request starvation by starting the scheduled timeout work.
If this stuck request occurs at the same time another thread has started
a queue freeze, the blk_mq_timeout_work will not be able to acquire the
queue reference and will return silently, thus not issuing the timeout.
But since the request is already holding a q_usage_counter reference and
is unable to complete, it will never release its reference, preventing
the queue from completing the freeze started by first thread. This puts
the request_queue in a hung state, forever waiting for the freeze
completion.
This was observed while running IO to a NVMe device at the same time we
toggled the CPU hotplug code. Eventually, once a request got stuck
requiring a timeout during a queue freeze, we saw the CPU Hotplug
notification code get stuck inside blk_mq_freeze_queue_wait, as shown in
the trace below.
[c000000deaf13690] [c000000deaf13738] 0xc000000deaf13738 (unreliable)
[c000000deaf13860] [c000000000015ce8] __switch_to+0x1f8/0x350
[c000000deaf138b0] [c000000000ade0e4] __schedule+0x314/0x990
[c000000deaf13940] [c000000000ade7a8] schedule+0x48/0xc0
[c000000deaf13970] [c0000000005492a4] blk_mq_freeze_queue_wait+0x74/0x110
[c000000deaf139e0] [c00000000054b6a8] blk_mq_queue_reinit_notify+0x1a8/0x2e0
[c000000deaf13a40] [c0000000000e7878] notifier_call_chain+0x98/0x100
[c000000deaf13a90] [c0000000000b8e08] cpu_notify_nofail+0x48/0xa0
[c000000deaf13ac0] [c0000000000b92f0] _cpu_down+0x2a0/0x400
[c000000deaf13b90] [c0000000000b94a8] cpu_down+0x58/0xa0
[c000000deaf13bc0] [c0000000006d5dcc] cpu_subsys_offline+0x2c/0x50
[c000000deaf13bf0] [c0000000006cd244] device_offline+0x104/0x140
[c000000deaf13c30] [c0000000006cd40c] online_store+0x6c/0xc0
[c000000deaf13c80] [c0000000006c8c78] dev_attr_store+0x68/0xa0
[c000000deaf13cc0] [c0000000003974d0] sysfs_kf_write+0x80/0xb0
[c000000deaf13d00] [c0000000003963e8] kernfs_fop_write+0x188/0x200
[c000000deaf13d50] [c0000000002e0f6c] __vfs_write+0x6c/0xe0
[c000000deaf13d90] [c0000000002e1ca0] vfs_write+0xc0/0x230
[c000000deaf13de0] [c0000000002e2cdc] SyS_write+0x6c/0x110
[c000000deaf13e30] [c000000000009204] system_call+0x38/0xb4
The fix is to allow the timeout work to execute in the window between
dropping the initial refcount reference and the release of the last
reference, which actually marks the freeze completion. This can be
achieved with percpu_refcount_tryget, which does not require the counter
to be alive. This way the timeout work can do it's job and terminate a
stuck request even during a freeze, returning its reference and avoiding
the deadlock.
Allowing the timeout to run is just a part of the fix, since for some
devices, we might get stuck again inside the device driver's timeout
handler, should it attempt to allocate a new request in that path -
which is a quite common action for Abort commands, which need to be sent
after a timeout. In NVMe, for instance, we call blk_mq_alloc_request
from inside the timeout handler, which will fail during a freeze, since
it also tries to acquire a queue reference.
I considered a similar change to blk_mq_alloc_request as a generic
solution for further device driver hangs, but we can't do that, since it
would allow new requests to disturb the freeze process. I thought about
creating a new function in the block layer to support unfreezable
requests for these occasions, but after working on it for a while, I
feel like this should be handled in a per-driver basis. I'm now
experimenting with changes to the NVMe timeout path, but I'm open to
suggestions of ways to make this generic.
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: linux-nvme@lists.infradead.org
Cc: linux-block@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-08-01 08:23:39 -06:00
|
|
|
/* A deadlock might occur if a request is stuck requiring a
|
|
|
|
* timeout at the same time a queue freeze is waiting
|
|
|
|
* completion, since the timeout code would not be able to
|
|
|
|
* acquire the queue reference here.
|
|
|
|
*
|
|
|
|
* That's why we don't use blk_queue_enter here; instead, we use
|
|
|
|
* percpu_ref_tryget directly, because we need to be able to
|
|
|
|
* obtain a reference even in the short window between the queue
|
|
|
|
* starting to freeze, by dropping the first reference in
|
2017-03-27 20:06:57 +08:00
|
|
|
* blk_freeze_queue_start, and the moment the last request is
|
blk-mq: Allow timeouts to run while queue is freezing
In case a submitted request gets stuck for some reason, the block layer
can prevent the request starvation by starting the scheduled timeout work.
If this stuck request occurs at the same time another thread has started
a queue freeze, the blk_mq_timeout_work will not be able to acquire the
queue reference and will return silently, thus not issuing the timeout.
But since the request is already holding a q_usage_counter reference and
is unable to complete, it will never release its reference, preventing
the queue from completing the freeze started by first thread. This puts
the request_queue in a hung state, forever waiting for the freeze
completion.
This was observed while running IO to a NVMe device at the same time we
toggled the CPU hotplug code. Eventually, once a request got stuck
requiring a timeout during a queue freeze, we saw the CPU Hotplug
notification code get stuck inside blk_mq_freeze_queue_wait, as shown in
the trace below.
[c000000deaf13690] [c000000deaf13738] 0xc000000deaf13738 (unreliable)
[c000000deaf13860] [c000000000015ce8] __switch_to+0x1f8/0x350
[c000000deaf138b0] [c000000000ade0e4] __schedule+0x314/0x990
[c000000deaf13940] [c000000000ade7a8] schedule+0x48/0xc0
[c000000deaf13970] [c0000000005492a4] blk_mq_freeze_queue_wait+0x74/0x110
[c000000deaf139e0] [c00000000054b6a8] blk_mq_queue_reinit_notify+0x1a8/0x2e0
[c000000deaf13a40] [c0000000000e7878] notifier_call_chain+0x98/0x100
[c000000deaf13a90] [c0000000000b8e08] cpu_notify_nofail+0x48/0xa0
[c000000deaf13ac0] [c0000000000b92f0] _cpu_down+0x2a0/0x400
[c000000deaf13b90] [c0000000000b94a8] cpu_down+0x58/0xa0
[c000000deaf13bc0] [c0000000006d5dcc] cpu_subsys_offline+0x2c/0x50
[c000000deaf13bf0] [c0000000006cd244] device_offline+0x104/0x140
[c000000deaf13c30] [c0000000006cd40c] online_store+0x6c/0xc0
[c000000deaf13c80] [c0000000006c8c78] dev_attr_store+0x68/0xa0
[c000000deaf13cc0] [c0000000003974d0] sysfs_kf_write+0x80/0xb0
[c000000deaf13d00] [c0000000003963e8] kernfs_fop_write+0x188/0x200
[c000000deaf13d50] [c0000000002e0f6c] __vfs_write+0x6c/0xe0
[c000000deaf13d90] [c0000000002e1ca0] vfs_write+0xc0/0x230
[c000000deaf13de0] [c0000000002e2cdc] SyS_write+0x6c/0x110
[c000000deaf13e30] [c000000000009204] system_call+0x38/0xb4
The fix is to allow the timeout work to execute in the window between
dropping the initial refcount reference and the release of the last
reference, which actually marks the freeze completion. This can be
achieved with percpu_refcount_tryget, which does not require the counter
to be alive. This way the timeout work can do it's job and terminate a
stuck request even during a freeze, returning its reference and avoiding
the deadlock.
Allowing the timeout to run is just a part of the fix, since for some
devices, we might get stuck again inside the device driver's timeout
handler, should it attempt to allocate a new request in that path -
which is a quite common action for Abort commands, which need to be sent
after a timeout. In NVMe, for instance, we call blk_mq_alloc_request
from inside the timeout handler, which will fail during a freeze, since
it also tries to acquire a queue reference.
I considered a similar change to blk_mq_alloc_request as a generic
solution for further device driver hangs, but we can't do that, since it
would allow new requests to disturb the freeze process. I thought about
creating a new function in the block layer to support unfreezable
requests for these occasions, but after working on it for a while, I
feel like this should be handled in a per-driver basis. I'm now
experimenting with changes to the NVMe timeout path, but I'm open to
suggestions of ways to make this generic.
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: linux-nvme@lists.infradead.org
Cc: linux-block@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-08-01 08:23:39 -06:00
|
|
|
* consumed, marked by the instant q_usage_counter reaches
|
|
|
|
* zero.
|
|
|
|
*/
|
|
|
|
if (!percpu_ref_tryget(&q->q_usage_counter))
|
2015-10-30 20:57:30 +08:00
|
|
|
return;
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
/* scan for the expired ones and set their ->aborted_gstate */
|
2015-09-27 21:01:51 +02:00
|
|
|
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
if (data.nr_expired) {
|
|
|
|
bool has_rcu = false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait till everyone sees ->aborted_gstate. The
|
|
|
|
* sequential waits for SRCUs aren't ideal. If this ever
|
|
|
|
* becomes a problem, we can add per-hw_ctx rcu_head and
|
|
|
|
* wait in parallel.
|
|
|
|
*/
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
|
|
if (!hctx->nr_expired)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!(hctx->flags & BLK_MQ_F_BLOCKING))
|
|
|
|
has_rcu = true;
|
|
|
|
else
|
2018-01-09 08:29:53 -08:00
|
|
|
synchronize_srcu(hctx->srcu);
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
|
|
|
|
hctx->nr_expired = 0;
|
|
|
|
}
|
|
|
|
if (has_rcu)
|
|
|
|
synchronize_rcu();
|
|
|
|
|
|
|
|
/* terminate the ones we won */
|
|
|
|
blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
|
|
|
|
}
|
|
|
|
|
2014-09-13 16:40:11 -07:00
|
|
|
if (data.next_set) {
|
|
|
|
data.next = blk_rq_timeout(round_jiffies_up(data.next));
|
|
|
|
mod_timer(&q->timeout, data.next);
|
2014-05-13 15:10:52 -06:00
|
|
|
} else {
|
2018-01-10 08:33:33 -08:00
|
|
|
/*
|
|
|
|
* Request timeouts are handled as a forward rolling timer. If
|
|
|
|
* we end up here it means that no requests are pending and
|
|
|
|
* also that no request has been pending for a while. Mark
|
|
|
|
* each hctx as idle.
|
|
|
|
*/
|
2015-04-21 10:00:19 +08:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
|
|
/* the hctx may be unmapped, so check it here */
|
|
|
|
if (blk_mq_hw_queue_mapped(hctx))
|
|
|
|
blk_mq_tag_idle(hctx);
|
|
|
|
}
|
2014-05-13 15:10:52 -06:00
|
|
|
}
|
2015-10-30 20:57:30 +08:00
|
|
|
blk_queue_exit(q);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2016-09-17 08:38:44 -06:00
|
|
|
struct flush_busy_ctx_data {
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
struct list_head *list;
|
|
|
|
};
|
|
|
|
|
|
|
|
static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
|
|
|
|
{
|
|
|
|
struct flush_busy_ctx_data *flush_data = data;
|
|
|
|
struct blk_mq_hw_ctx *hctx = flush_data->hctx;
|
|
|
|
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
|
|
|
|
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
list_splice_tail_init(&ctx->rq_list, flush_data->list);
|
2018-02-27 16:56:42 -08:00
|
|
|
sbitmap_clear_bit(sb, bitnr);
|
2016-09-17 08:38:44 -06:00
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-05-19 09:23:55 -06:00
|
|
|
/*
|
|
|
|
* Process software queues that have been marked busy, splicing them
|
|
|
|
* to the for-dispatch
|
|
|
|
*/
|
2016-12-14 14:34:47 -07:00
|
|
|
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
|
2014-05-19 09:23:55 -06:00
|
|
|
{
|
2016-09-17 08:38:44 -06:00
|
|
|
struct flush_busy_ctx_data data = {
|
|
|
|
.hctx = hctx,
|
|
|
|
.list = list,
|
|
|
|
};
|
2014-05-19 09:23:55 -06:00
|
|
|
|
2016-09-17 08:38:44 -06:00
|
|
|
sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
|
2014-05-19 09:23:55 -06:00
|
|
|
}
|
2016-12-14 14:34:47 -07:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
|
2014-05-19 09:23:55 -06:00
|
|
|
|
blk-mq-sched: improve dispatching from sw queue
SCSI devices use host-wide tagset, and the shared driver tag space is
often quite big. However, there is also a queue depth for each lun(
.cmd_per_lun), which is often small, for example, on both lpfc and
qla2xxx, .cmd_per_lun is just 3.
So lots of requests may stay in sw queue, and we always flush all
belonging to same hw queue and dispatch them all to driver.
Unfortunately it is easy to cause queue busy because of the small
.cmd_per_lun. Once these requests are flushed out, they have to stay in
hctx->dispatch, and no bio merge can happen on these requests, and
sequential IO performance is harmed.
This patch introduces blk_mq_dequeue_from_ctx for dequeuing a request
from a sw queue, so that we can dispatch them in scheduler's way. We can
then avoid dequeueing too many requests from sw queue, since we don't
flush ->dispatch completely.
This patch improves dispatching from sw queue by using the .get_budget
and .put_budget callbacks.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-14 17:22:30 +08:00
|
|
|
struct dispatch_rq_data {
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
struct request *rq;
|
|
|
|
};
|
|
|
|
|
|
|
|
static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
struct dispatch_rq_data *dispatch_data = data;
|
|
|
|
struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
|
|
|
|
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
|
|
|
|
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
if (unlikely(!list_empty(&ctx->rq_list))) {
|
|
|
|
dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
|
|
|
|
list_del_init(&dispatch_data->rq->queuelist);
|
|
|
|
if (list_empty(&ctx->rq_list))
|
|
|
|
sbitmap_clear_bit(sb, bitnr);
|
|
|
|
}
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
|
|
|
|
return !dispatch_data->rq;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct blk_mq_ctx *start)
|
|
|
|
{
|
|
|
|
unsigned off = start ? start->index_hw : 0;
|
|
|
|
struct dispatch_rq_data data = {
|
|
|
|
.hctx = hctx,
|
|
|
|
.rq = NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
__sbitmap_for_each_set(&hctx->ctx_map, off,
|
|
|
|
dispatch_rq_from_ctx, &data);
|
|
|
|
|
|
|
|
return data.rq;
|
|
|
|
}
|
|
|
|
|
2016-09-16 13:59:14 -06:00
|
|
|
static inline unsigned int queued_to_index(unsigned int queued)
|
|
|
|
{
|
|
|
|
if (!queued)
|
|
|
|
return 0;
|
2014-05-19 09:23:55 -06:00
|
|
|
|
2016-09-16 13:59:14 -06:00
|
|
|
return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
|
2014-05-19 09:23:55 -06:00
|
|
|
}
|
|
|
|
|
2017-01-27 01:00:47 -07:00
|
|
|
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
|
|
|
|
bool wait)
|
2017-01-17 06:03:22 -07:00
|
|
|
{
|
|
|
|
struct blk_mq_alloc_data data = {
|
|
|
|
.q = rq->q,
|
|
|
|
.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
|
|
|
|
.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
|
|
|
|
};
|
|
|
|
|
2017-04-20 17:23:13 -06:00
|
|
|
might_sleep_if(wait);
|
|
|
|
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
if (rq->tag != -1)
|
|
|
|
goto done;
|
2017-01-17 06:03:22 -07:00
|
|
|
|
2017-02-27 10:04:39 -07:00
|
|
|
if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
|
|
|
|
data.flags |= BLK_MQ_REQ_RESERVED;
|
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
rq->tag = blk_mq_get_tag(&data);
|
|
|
|
if (rq->tag >= 0) {
|
2017-01-25 08:11:38 -07:00
|
|
|
if (blk_mq_tag_busy(data.hctx)) {
|
|
|
|
rq->rq_flags |= RQF_MQ_INFLIGHT;
|
|
|
|
atomic_inc(&data.hctx->nr_active);
|
|
|
|
}
|
2017-01-17 06:03:22 -07:00
|
|
|
data.hctx->tags->rqs[rq->tag] = rq;
|
|
|
|
}
|
|
|
|
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
done:
|
|
|
|
if (hctx)
|
|
|
|
*hctx = data.hctx;
|
|
|
|
return rq->tag != -1;
|
2017-01-17 06:03:22 -07:00
|
|
|
}
|
|
|
|
|
2017-11-09 08:32:43 -07:00
|
|
|
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
|
|
|
|
int flags, void *key)
|
2017-02-22 10:58:29 -08:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
|
|
|
|
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
|
|
|
|
|
2017-11-09 08:32:43 -07:00
|
|
|
list_del_init(&wait->entry);
|
2017-02-22 10:58:29 -08:00
|
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2017-11-09 16:10:13 -07:00
|
|
|
/*
|
|
|
|
* Mark us waiting for a tag. For shared tags, this involves hooking us into
|
2018-01-09 10:09:15 -08:00
|
|
|
* the tag wakeups. For non-shared tags, we can simply mark us needing a
|
|
|
|
* restart. For both cases, take care to check the condition again after
|
2017-11-09 16:10:13 -07:00
|
|
|
* marking us as waiting.
|
|
|
|
*/
|
|
|
|
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
|
|
|
|
struct request *rq)
|
2017-02-22 10:58:29 -08:00
|
|
|
{
|
2017-11-09 08:32:43 -07:00
|
|
|
struct blk_mq_hw_ctx *this_hctx = *hctx;
|
2017-02-22 10:58:29 -08:00
|
|
|
struct sbq_wait_state *ws;
|
2017-11-09 16:10:13 -07:00
|
|
|
wait_queue_entry_t *wait;
|
|
|
|
bool ret;
|
2017-02-22 10:58:29 -08:00
|
|
|
|
2018-01-10 13:41:21 -08:00
|
|
|
if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
|
2017-11-09 16:10:13 -07:00
|
|
|
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
|
|
|
|
set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
|
|
|
|
|
2018-01-10 13:41:21 -08:00
|
|
|
/*
|
|
|
|
* It's possible that a tag was freed in the window between the
|
|
|
|
* allocation failure and adding the hardware queue to the wait
|
|
|
|
* queue.
|
|
|
|
*
|
|
|
|
* Don't clear RESTART here, someone else could have set it.
|
|
|
|
* At most this will cost an extra queue run.
|
|
|
|
*/
|
|
|
|
return blk_mq_get_driver_tag(rq, hctx, false);
|
2017-11-09 08:32:43 -07:00
|
|
|
}
|
|
|
|
|
2018-01-10 13:41:21 -08:00
|
|
|
wait = &this_hctx->dispatch_wait;
|
|
|
|
if (!list_empty_careful(&wait->entry))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
spin_lock(&this_hctx->lock);
|
|
|
|
if (!list_empty(&wait->entry)) {
|
|
|
|
spin_unlock(&this_hctx->lock);
|
|
|
|
return false;
|
2017-11-09 08:32:43 -07:00
|
|
|
}
|
|
|
|
|
2018-01-10 13:41:21 -08:00
|
|
|
ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
|
|
|
|
add_wait_queue(&ws->wait, wait);
|
|
|
|
|
2017-02-22 10:58:29 -08:00
|
|
|
/*
|
2017-11-09 08:32:43 -07:00
|
|
|
* It's possible that a tag was freed in the window between the
|
|
|
|
* allocation failure and adding the hardware queue to the wait
|
|
|
|
* queue.
|
2017-02-22 10:58:29 -08:00
|
|
|
*/
|
2017-11-09 16:10:13 -07:00
|
|
|
ret = blk_mq_get_driver_tag(rq, hctx, false);
|
2018-01-10 13:41:21 -08:00
|
|
|
if (!ret) {
|
2017-11-09 08:32:43 -07:00
|
|
|
spin_unlock(&this_hctx->lock);
|
2018-01-10 13:41:21 -08:00
|
|
|
return false;
|
2017-11-09 08:32:43 -07:00
|
|
|
}
|
2018-01-10 13:41:21 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We got a tag, remove ourselves from the wait queue to ensure
|
|
|
|
* someone else gets the wakeup.
|
|
|
|
*/
|
|
|
|
spin_lock_irq(&ws->wait.lock);
|
|
|
|
list_del_init(&wait->entry);
|
|
|
|
spin_unlock_irq(&ws->wait.lock);
|
|
|
|
spin_unlock(&this_hctx->lock);
|
|
|
|
|
|
|
|
return true;
|
2017-02-22 10:58:29 -08:00
|
|
|
}
|
|
|
|
|
2018-01-30 22:04:57 -05:00
|
|
|
#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
|
|
|
|
|
2017-10-14 17:22:29 +08:00
|
|
|
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
|
2017-11-09 08:32:43 -07:00
|
|
|
bool got_budget)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
struct blk_mq_hw_ctx *hctx;
|
2017-11-02 23:24:32 +08:00
|
|
|
struct request *rq, *nxt;
|
2017-11-09 08:32:43 -07:00
|
|
|
bool no_tag = false;
|
2017-06-03 09:38:05 +02:00
|
|
|
int errors, queued;
|
2018-01-30 22:04:57 -05:00
|
|
|
blk_status_t ret = BLK_STS_OK;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
if (list_empty(list))
|
|
|
|
return false;
|
|
|
|
|
2017-10-14 17:22:29 +08:00
|
|
|
WARN_ON(!list_is_singular(list) && got_budget);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
/*
|
|
|
|
* Now process all the entries, sending them to the driver.
|
|
|
|
*/
|
2017-03-24 12:04:19 -06:00
|
|
|
errors = queued = 0;
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
do {
|
2014-10-29 11:14:52 -06:00
|
|
|
struct blk_mq_queue_data bd;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2016-12-07 08:41:17 -07:00
|
|
|
rq = list_first_entry(list, struct request, queuelist);
|
2017-01-17 06:03:22 -07:00
|
|
|
if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
|
2017-01-26 12:50:36 -07:00
|
|
|
/*
|
2017-02-22 10:58:29 -08:00
|
|
|
* The initial allocation attempt failed, so we need to
|
2017-11-09 08:32:43 -07:00
|
|
|
* rerun the hardware queue when a tag is freed. The
|
|
|
|
* waitqueue takes care of that. If the queue is run
|
|
|
|
* before we add this entry back on the dispatch list,
|
|
|
|
* we'll re-run it below.
|
2017-01-26 12:50:36 -07:00
|
|
|
*/
|
2017-11-09 16:10:13 -07:00
|
|
|
if (!blk_mq_mark_tag_wait(&hctx, rq)) {
|
2017-10-14 17:22:29 +08:00
|
|
|
if (got_budget)
|
|
|
|
blk_mq_put_dispatch_budget(hctx);
|
2017-11-09 16:10:13 -07:00
|
|
|
/*
|
|
|
|
* For non-shared tags, the RESTART check
|
|
|
|
* will suffice.
|
|
|
|
*/
|
|
|
|
if (hctx->flags & BLK_MQ_F_TAG_SHARED)
|
|
|
|
no_tag = true;
|
2017-10-14 17:22:29 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-08 09:11:22 +08:00
|
|
|
if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
|
|
|
|
blk_mq_put_driver_tag(rq);
|
2017-11-05 02:21:12 +08:00
|
|
|
break;
|
2017-11-08 09:11:22 +08:00
|
|
|
}
|
2017-02-22 10:58:29 -08:00
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
list_del_init(&rq->queuelist);
|
|
|
|
|
2014-10-29 11:14:52 -06:00
|
|
|
bd.rq = rq;
|
2017-03-02 13:26:04 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Flag last if we have no more requests, or if we have more
|
|
|
|
* but can't assign a driver tag to it.
|
|
|
|
*/
|
|
|
|
if (list_empty(list))
|
|
|
|
bd.last = true;
|
|
|
|
else {
|
|
|
|
nxt = list_first_entry(list, struct request, queuelist);
|
|
|
|
bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
|
|
|
|
}
|
2014-10-29 11:14:52 -06:00
|
|
|
|
|
|
|
ret = q->mq_ops->queue_rq(hctx, &bd);
|
2018-01-30 22:04:57 -05:00
|
|
|
if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
|
2017-11-02 23:24:32 +08:00
|
|
|
/*
|
|
|
|
* If an I/O scheduler has been configured and we got a
|
2017-11-10 22:05:12 -07:00
|
|
|
* driver tag for the next request already, free it
|
|
|
|
* again.
|
2017-11-02 23:24:32 +08:00
|
|
|
*/
|
|
|
|
if (!list_empty(list)) {
|
|
|
|
nxt = list_first_entry(list, struct request, queuelist);
|
|
|
|
blk_mq_put_driver_tag(nxt);
|
|
|
|
}
|
2016-12-07 08:41:17 -07:00
|
|
|
list_add(&rq->queuelist, list);
|
2014-04-16 09:44:57 +02:00
|
|
|
__blk_mq_requeue_request(rq);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
break;
|
2017-06-03 09:38:05 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(ret != BLK_STS_OK)) {
|
2017-03-24 12:04:19 -06:00
|
|
|
errors++;
|
2017-06-03 09:38:04 +02:00
|
|
|
blk_mq_end_request(rq, BLK_STS_IOERR);
|
2017-06-03 09:38:05 +02:00
|
|
|
continue;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-06-03 09:38:05 +02:00
|
|
|
queued++;
|
blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.
The fix is twofold:
1. Make sure we save which hardware queue we were trying to get a
request for in blk_mq_get_driver_tag() regardless of whether it
succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
blk_mq_hw_queue to make it clear that it must handle multiple
hardware queues, since I've already messed this up on a couple of
occasions.
This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
|
|
|
} while (!list_empty(list));
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2016-09-16 13:59:14 -06:00
|
|
|
hctx->dispatched[queued_to_index(queued)]++;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Any items that need requeuing? Stuff them into hctx->dispatch,
|
|
|
|
* that is where we will continue on next queue run.
|
|
|
|
*/
|
2016-12-07 08:41:17 -07:00
|
|
|
if (!list_empty(list)) {
|
2018-01-30 22:04:57 -05:00
|
|
|
bool needs_restart;
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
spin_lock(&hctx->lock);
|
2017-01-26 12:40:07 -07:00
|
|
|
list_splice_init(list, &hctx->dispatch);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
spin_unlock(&hctx->lock);
|
2016-12-07 08:41:17 -07:00
|
|
|
|
2015-05-04 14:32:48 -06:00
|
|
|
/*
|
2017-04-07 11:16:51 -07:00
|
|
|
* If SCHED_RESTART was set by the caller of this function and
|
|
|
|
* it is no longer set that means that it was cleared by another
|
|
|
|
* thread and hence that a queue rerun is needed.
|
2015-05-04 14:32:48 -06:00
|
|
|
*
|
2017-11-09 08:32:43 -07:00
|
|
|
* If 'no_tag' is set, that means that we failed getting
|
|
|
|
* a driver tag with an I/O scheduler attached. If our dispatch
|
|
|
|
* waitqueue is no longer active, ensure that we run the queue
|
|
|
|
* AFTER adding our entries back to the list.
|
2017-01-17 06:03:22 -07:00
|
|
|
*
|
2017-04-07 11:16:51 -07:00
|
|
|
* If no I/O scheduler has been configured it is possible that
|
|
|
|
* the hardware queue got stopped and restarted before requests
|
|
|
|
* were pushed back onto the dispatch list. Rerun the queue to
|
|
|
|
* avoid starvation. Notes:
|
|
|
|
* - blk_mq_run_hw_queue() checks whether or not a queue has
|
|
|
|
* been stopped before rerunning a queue.
|
|
|
|
* - Some but not all block drivers stop a queue before
|
2017-06-03 09:38:05 +02:00
|
|
|
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
|
2017-04-07 11:16:51 -07:00
|
|
|
* and dm-rq.
|
2018-01-30 22:04:57 -05:00
|
|
|
*
|
|
|
|
* If driver returns BLK_STS_RESOURCE and SCHED_RESTART
|
|
|
|
* bit is set, run queue after a delay to avoid IO stalls
|
|
|
|
* that could otherwise occur if the queue is idle.
|
2017-01-17 06:03:22 -07:00
|
|
|
*/
|
2018-01-30 22:04:57 -05:00
|
|
|
needs_restart = blk_mq_sched_needs_restart(hctx);
|
|
|
|
if (!needs_restart ||
|
2017-11-09 08:32:43 -07:00
|
|
|
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_mq_run_hw_queue(hctx, true);
|
2018-01-30 22:04:57 -05:00
|
|
|
else if (needs_restart && (ret == BLK_STS_RESOURCE))
|
|
|
|
blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2016-12-07 08:41:17 -07:00
|
|
|
|
2017-03-24 12:04:19 -06:00
|
|
|
return (queued + errors) != 0;
|
2016-12-07 08:41:17 -07:00
|
|
|
}
|
|
|
|
|
2016-11-02 10:09:51 -06:00
|
|
|
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
|
|
|
|
{
|
|
|
|
int srcu_idx;
|
|
|
|
|
2017-08-01 09:28:24 -06:00
|
|
|
/*
|
|
|
|
* We should be running this queue from one of the CPUs that
|
|
|
|
* are mapped to it.
|
2018-01-18 00:41:52 +08:00
|
|
|
*
|
|
|
|
* There are at least two related races now between setting
|
|
|
|
* hctx->next_cpu from blk_mq_hctx_next_cpu() and running
|
|
|
|
* __blk_mq_run_hw_queue():
|
|
|
|
*
|
|
|
|
* - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
|
|
|
|
* but later it becomes online, then this warning is harmless
|
|
|
|
* at all
|
|
|
|
*
|
|
|
|
* - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
|
|
|
|
* but later it becomes offline, then the warning can't be
|
|
|
|
* triggered, and we depend on blk-mq timeout handler to
|
|
|
|
* handle dispatched requests to this hctx
|
2017-08-01 09:28:24 -06:00
|
|
|
*/
|
2018-01-18 00:41:52 +08:00
|
|
|
if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
|
|
|
|
cpu_online(hctx->next_cpu)) {
|
|
|
|
printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
|
|
|
|
raw_smp_processor_id(),
|
|
|
|
cpumask_empty(hctx->cpumask) ? "inactive": "active");
|
|
|
|
dump_stack();
|
|
|
|
}
|
2016-11-02 10:09:51 -06:00
|
|
|
|
2017-08-01 09:28:24 -06:00
|
|
|
/*
|
|
|
|
* We can't run the queue inline with ints disabled. Ensure that
|
|
|
|
* we catch bad users of this early.
|
|
|
|
*/
|
|
|
|
WARN_ON_ONCE(in_interrupt());
|
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
|
2017-03-30 12:30:39 -06:00
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
hctx_lock(hctx, &srcu_idx);
|
|
|
|
blk_mq_sched_dispatch_requests(hctx);
|
|
|
|
hctx_unlock(hctx, srcu_idx);
|
2016-11-02 10:09:51 -06:00
|
|
|
}
|
|
|
|
|
2014-05-07 10:26:44 -06:00
|
|
|
/*
|
|
|
|
* It'd be great if the workqueue API had a way to pass
|
|
|
|
* in a mask and had some smarts for more clever placement.
|
|
|
|
* For now we just round-robin here, switching for every
|
|
|
|
* BLK_MQ_CPU_WORK_BATCH queued items.
|
|
|
|
*/
|
|
|
|
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
|
|
|
|
{
|
blk-mq: make sure hctx->next_cpu is set correctly
When hctx->next_cpu is set from possible online CPUs, there is one
race in which hctx->next_cpu may be set as >= nr_cpu_ids, and finally
break workqueue.
The race can be triggered in the following two sitations:
1) when one CPU is becoming DEAD, blk_mq_hctx_notify_dead() is called
to dispatch requests from the DEAD cpu context, but at that
time, this DEAD CPU has been cleared from 'cpu_online_mask', so all
CPUs in hctx->cpumask may become offline, and cause hctx->next_cpu set
a bad value.
2) blk_mq_delay_run_hw_queue() is called from CPU B, and found the queue
should be run on the other CPU A, then CPU A may become offline at the
same time and all CPUs in hctx->cpumask become offline.
This patch deals with this issue by re-selecting next CPU, and making
sure it is set correctly.
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Tested-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Fixes: 20e4d81393 ("blk-mq: simplify queue mapping & schedule with each possisble CPU")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18 00:41:51 +08:00
|
|
|
bool tried = false;
|
|
|
|
|
2014-11-24 09:27:23 +01:00
|
|
|
if (hctx->queue->nr_hw_queues == 1)
|
|
|
|
return WORK_CPU_UNBOUND;
|
2014-05-07 10:26:44 -06:00
|
|
|
|
|
|
|
if (--hctx->next_cpu_batch <= 0) {
|
2016-09-28 00:24:24 -03:00
|
|
|
int next_cpu;
|
blk-mq: make sure hctx->next_cpu is set correctly
When hctx->next_cpu is set from possible online CPUs, there is one
race in which hctx->next_cpu may be set as >= nr_cpu_ids, and finally
break workqueue.
The race can be triggered in the following two sitations:
1) when one CPU is becoming DEAD, blk_mq_hctx_notify_dead() is called
to dispatch requests from the DEAD cpu context, but at that
time, this DEAD CPU has been cleared from 'cpu_online_mask', so all
CPUs in hctx->cpumask may become offline, and cause hctx->next_cpu set
a bad value.
2) blk_mq_delay_run_hw_queue() is called from CPU B, and found the queue
should be run on the other CPU A, then CPU A may become offline at the
same time and all CPUs in hctx->cpumask become offline.
This patch deals with this issue by re-selecting next CPU, and making
sure it is set correctly.
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Tested-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Fixes: 20e4d81393 ("blk-mq: simplify queue mapping & schedule with each possisble CPU")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18 00:41:51 +08:00
|
|
|
select_cpu:
|
2018-01-12 10:53:06 +08:00
|
|
|
next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
|
|
|
|
cpu_online_mask);
|
2014-05-07 10:26:44 -06:00
|
|
|
if (next_cpu >= nr_cpu_ids)
|
2018-01-12 10:53:06 +08:00
|
|
|
next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
|
2014-05-07 10:26:44 -06:00
|
|
|
|
blk-mq: make sure hctx->next_cpu is set correctly
When hctx->next_cpu is set from possible online CPUs, there is one
race in which hctx->next_cpu may be set as >= nr_cpu_ids, and finally
break workqueue.
The race can be triggered in the following two sitations:
1) when one CPU is becoming DEAD, blk_mq_hctx_notify_dead() is called
to dispatch requests from the DEAD cpu context, but at that
time, this DEAD CPU has been cleared from 'cpu_online_mask', so all
CPUs in hctx->cpumask may become offline, and cause hctx->next_cpu set
a bad value.
2) blk_mq_delay_run_hw_queue() is called from CPU B, and found the queue
should be run on the other CPU A, then CPU A may become offline at the
same time and all CPUs in hctx->cpumask become offline.
This patch deals with this issue by re-selecting next CPU, and making
sure it is set correctly.
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Tested-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Fixes: 20e4d81393 ("blk-mq: simplify queue mapping & schedule with each possisble CPU")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18 00:41:51 +08:00
|
|
|
/*
|
|
|
|
* No online CPU is found, so have to make sure hctx->next_cpu
|
|
|
|
* is set correctly for not breaking workqueue.
|
|
|
|
*/
|
|
|
|
if (next_cpu >= nr_cpu_ids)
|
|
|
|
hctx->next_cpu = cpumask_first(hctx->cpumask);
|
|
|
|
else
|
|
|
|
hctx->next_cpu = next_cpu;
|
2014-05-07 10:26:44 -06:00
|
|
|
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
|
|
|
|
}
|
|
|
|
|
blk-mq: make sure hctx->next_cpu is set correctly
When hctx->next_cpu is set from possible online CPUs, there is one
race in which hctx->next_cpu may be set as >= nr_cpu_ids, and finally
break workqueue.
The race can be triggered in the following two sitations:
1) when one CPU is becoming DEAD, blk_mq_hctx_notify_dead() is called
to dispatch requests from the DEAD cpu context, but at that
time, this DEAD CPU has been cleared from 'cpu_online_mask', so all
CPUs in hctx->cpumask may become offline, and cause hctx->next_cpu set
a bad value.
2) blk_mq_delay_run_hw_queue() is called from CPU B, and found the queue
should be run on the other CPU A, then CPU A may become offline at the
same time and all CPUs in hctx->cpumask become offline.
This patch deals with this issue by re-selecting next CPU, and making
sure it is set correctly.
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Tested-by: "jianchao.wang" <jianchao.w.wang@oracle.com>
Fixes: 20e4d81393 ("blk-mq: simplify queue mapping & schedule with each possisble CPU")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18 00:41:51 +08:00
|
|
|
/*
|
|
|
|
* Do unbound schedule if we can't find a online CPU for this hctx,
|
|
|
|
* and it should only happen in the path of handling CPU DEAD.
|
|
|
|
*/
|
|
|
|
if (!cpu_online(hctx->next_cpu)) {
|
|
|
|
if (!tried) {
|
|
|
|
tried = true;
|
|
|
|
goto select_cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure to re-select CPU next time once after CPUs
|
|
|
|
* in hctx->cpumask become online again.
|
|
|
|
*/
|
|
|
|
hctx->next_cpu_batch = 1;
|
|
|
|
return WORK_CPU_UNBOUND;
|
|
|
|
}
|
2014-11-24 09:27:23 +01:00
|
|
|
return hctx->next_cpu;
|
2014-05-07 10:26:44 -06:00
|
|
|
}
|
|
|
|
|
2017-04-07 11:16:52 -07:00
|
|
|
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
|
|
|
|
unsigned long msecs)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2017-06-20 11:15:49 -07:00
|
|
|
if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (unlikely(blk_mq_hctx_stopped(hctx)))
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
return;
|
|
|
|
|
2016-09-21 10:12:13 -06:00
|
|
|
if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
|
2014-11-07 23:04:00 +01:00
|
|
|
int cpu = get_cpu();
|
|
|
|
if (cpumask_test_cpu(cpu, hctx->cpumask)) {
|
2014-11-07 23:03:59 +01:00
|
|
|
__blk_mq_run_hw_queue(hctx);
|
2014-11-07 23:04:00 +01:00
|
|
|
put_cpu();
|
2014-11-07 23:03:59 +01:00
|
|
|
return;
|
|
|
|
}
|
2014-04-09 10:18:23 -06:00
|
|
|
|
2014-11-07 23:04:00 +01:00
|
|
|
put_cpu();
|
2014-04-09 10:18:23 -06:00
|
|
|
}
|
2014-11-07 23:03:59 +01:00
|
|
|
|
2018-01-19 08:58:55 -08:00
|
|
|
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
|
|
|
|
msecs_to_jiffies(msecs));
|
2017-04-07 11:16:52 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
|
|
|
|
{
|
|
|
|
__blk_mq_delay_run_hw_queue(hctx, true, msecs);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
|
|
|
|
|
2017-11-10 09:13:21 -07:00
|
|
|
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
|
2017-04-07 11:16:52 -07:00
|
|
|
{
|
2018-01-06 16:27:38 +08:00
|
|
|
int srcu_idx;
|
|
|
|
bool need_run;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When queue is quiesced, we may be switching io scheduler, or
|
|
|
|
* updating nr_hw_queues, or other things, and we can't run queue
|
|
|
|
* any more, even __blk_mq_hctx_has_pending() can't be called safely.
|
|
|
|
*
|
|
|
|
* And queue will be rerun in blk_mq_unquiesce_queue() if it is
|
|
|
|
* quiesced.
|
|
|
|
*/
|
2018-01-09 08:29:46 -08:00
|
|
|
hctx_lock(hctx, &srcu_idx);
|
|
|
|
need_run = !blk_queue_quiesced(hctx->queue) &&
|
|
|
|
blk_mq_hctx_has_pending(hctx);
|
|
|
|
hctx_unlock(hctx, srcu_idx);
|
2018-01-06 16:27:38 +08:00
|
|
|
|
|
|
|
if (need_run) {
|
2017-11-10 09:13:21 -07:00
|
|
|
__blk_mq_delay_run_hw_queue(hctx, async, 0);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2017-04-14 01:00:00 -07:00
|
|
|
EXPORT_SYMBOL(blk_mq_run_hw_queue);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-03-11 23:56:38 -04:00
|
|
|
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
2017-11-10 09:13:21 -07:00
|
|
|
if (blk_mq_hctx_stopped(hctx))
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
continue;
|
|
|
|
|
2015-03-11 23:56:38 -04:00
|
|
|
blk_mq_run_hw_queue(hctx, async);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
}
|
2015-03-11 23:56:38 -04:00
|
|
|
EXPORT_SYMBOL(blk_mq_run_hw_queues);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2016-10-28 17:19:37 -07:00
|
|
|
/**
|
|
|
|
* blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
|
|
|
|
* @q: request queue.
|
|
|
|
*
|
|
|
|
* The caller is responsible for serializing this function against
|
|
|
|
* blk_mq_{start,stop}_hw_queue().
|
|
|
|
*/
|
|
|
|
bool blk_mq_queue_stopped(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
|
|
if (blk_mq_hctx_stopped(hctx))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_queue_stopped);
|
|
|
|
|
2017-06-06 23:22:09 +08:00
|
|
|
/*
|
|
|
|
* This function is often used for pausing .queue_rq() by driver when
|
|
|
|
* there isn't enough resource or some conditions aren't satisfied, and
|
2017-08-17 16:23:00 -07:00
|
|
|
* BLK_STS_RESOURCE is usually returned.
|
2017-06-06 23:22:09 +08:00
|
|
|
*
|
|
|
|
* We do not guarantee that dispatch can be drained or blocked
|
|
|
|
* after blk_mq_stop_hw_queue() returns. Please use
|
|
|
|
* blk_mq_quiesce_queue() for that requirement.
|
|
|
|
*/
|
2017-05-03 11:08:14 -06:00
|
|
|
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
|
|
|
|
{
|
2017-06-06 23:22:10 +08:00
|
|
|
cancel_delayed_work(&hctx->run_work);
|
2013-10-25 14:45:58 +01:00
|
|
|
|
2017-06-06 23:22:10 +08:00
|
|
|
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
|
2017-05-03 11:08:14 -06:00
|
|
|
}
|
2017-06-06 23:22:10 +08:00
|
|
|
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
|
2017-05-03 11:08:14 -06:00
|
|
|
|
2017-06-06 23:22:09 +08:00
|
|
|
/*
|
|
|
|
* This function is often used for pausing .queue_rq() by driver when
|
|
|
|
* there isn't enough resource or some conditions aren't satisfied, and
|
2017-08-17 16:23:00 -07:00
|
|
|
* BLK_STS_RESOURCE is usually returned.
|
2017-06-06 23:22:09 +08:00
|
|
|
*
|
|
|
|
* We do not guarantee that dispatch can be drained or blocked
|
|
|
|
* after blk_mq_stop_hw_queues() returns. Please use
|
|
|
|
* blk_mq_quiesce_queue() for that requirement.
|
|
|
|
*/
|
2017-05-03 11:08:14 -06:00
|
|
|
void blk_mq_stop_hw_queues(struct request_queue *q)
|
|
|
|
{
|
2017-06-06 23:22:10 +08:00
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
|
|
blk_mq_stop_hw_queue(hctx);
|
2013-10-25 14:45:58 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
|
|
|
|
{
|
|
|
|
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
|
2014-04-09 10:18:23 -06:00
|
|
|
|
2014-06-25 08:22:34 -06:00
|
|
|
blk_mq_run_hw_queue(hctx, false);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_start_hw_queue);
|
|
|
|
|
2014-04-16 09:44:56 +02:00
|
|
|
void blk_mq_start_hw_queues(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
|
|
blk_mq_start_hw_queue(hctx);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_start_hw_queues);
|
|
|
|
|
2016-12-08 13:19:30 -07:00
|
|
|
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
|
|
|
|
{
|
|
|
|
if (!blk_mq_hctx_stopped(hctx))
|
|
|
|
return;
|
|
|
|
|
|
|
|
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
|
|
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
|
|
|
|
|
2014-04-16 09:44:54 +02:00
|
|
|
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
2016-12-08 13:19:30 -07:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
|
|
blk_mq_start_stopped_hw_queue(hctx, async);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
|
|
|
|
|
2014-04-16 10:48:08 -06:00
|
|
|
static void blk_mq_run_work_fn(struct work_struct *work)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
|
2017-04-10 09:54:54 -06:00
|
|
|
hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-04-10 09:54:56 -06:00
|
|
|
/*
|
|
|
|
* If we are stopped, don't run the queue. The exception is if
|
|
|
|
* BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
|
|
|
|
* the STOPPED bit and run it.
|
|
|
|
*/
|
|
|
|
if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
|
|
|
|
if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
|
|
|
|
return;
|
2017-04-07 11:16:52 -07:00
|
|
|
|
2017-04-10 09:54:56 -06:00
|
|
|
clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
|
|
|
|
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
|
|
|
|
}
|
2017-04-07 11:16:52 -07:00
|
|
|
|
|
|
|
__blk_mq_run_hw_queue(hctx);
|
|
|
|
}
|
|
|
|
|
2014-04-16 10:48:08 -06:00
|
|
|
|
|
|
|
void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
|
|
|
|
{
|
2017-06-20 11:15:49 -07:00
|
|
|
if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
|
2014-12-03 19:38:04 +08:00
|
|
|
return;
|
2014-04-16 10:48:08 -06:00
|
|
|
|
2017-04-10 09:54:56 -06:00
|
|
|
/*
|
|
|
|
* Stop the hw queue, then modify currently delayed work.
|
|
|
|
* This should prevent us from running the queue prematurely.
|
|
|
|
* Mark the queue as auto-clearing STOPPED when it runs.
|
|
|
|
*/
|
2017-01-19 07:58:59 -07:00
|
|
|
blk_mq_stop_hw_queue(hctx);
|
2017-04-10 09:54:56 -06:00
|
|
|
set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
|
|
|
|
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
|
|
|
|
&hctx->run_work,
|
|
|
|
msecs_to_jiffies(msecs));
|
2014-04-16 10:48:08 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_delay_queue);
|
|
|
|
|
2015-10-20 23:13:57 +08:00
|
|
|
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq,
|
|
|
|
bool at_head)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2016-08-24 15:34:35 -06:00
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
|
|
|
2017-06-20 11:15:47 -07:00
|
|
|
lockdep_assert_held(&ctx->lock);
|
|
|
|
|
2013-11-19 18:59:10 -07:00
|
|
|
trace_block_rq_insert(hctx->queue, rq);
|
|
|
|
|
2014-02-07 10:22:36 -08:00
|
|
|
if (at_head)
|
|
|
|
list_add(&rq->queuelist, &ctx->rq_list);
|
|
|
|
else
|
|
|
|
list_add_tail(&rq->queuelist, &ctx->rq_list);
|
2015-10-20 23:13:57 +08:00
|
|
|
}
|
2014-05-09 09:36:49 -06:00
|
|
|
|
2016-12-14 14:34:47 -07:00
|
|
|
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
|
|
|
|
bool at_head)
|
2015-10-20 23:13:57 +08:00
|
|
|
{
|
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
|
|
|
2017-06-20 11:15:47 -07:00
|
|
|
lockdep_assert_held(&ctx->lock);
|
|
|
|
|
2016-08-24 15:34:35 -06:00
|
|
|
__blk_mq_insert_req_list(hctx, rq, at_head);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
blk_mq_hctx_mark_pending(hctx, ctx);
|
|
|
|
}
|
|
|
|
|
2017-09-11 16:43:57 -06:00
|
|
|
/*
|
|
|
|
* Should only be used carefully, when the caller knows we want to
|
|
|
|
* bypass a potential IO scheduler on the target device.
|
|
|
|
*/
|
2017-11-02 23:24:34 +08:00
|
|
|
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
|
2017-09-11 16:43:57 -06:00
|
|
|
{
|
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
|
|
|
|
|
|
|
|
spin_lock(&hctx->lock);
|
|
|
|
list_add_tail(&rq->queuelist, &hctx->dispatch);
|
|
|
|
spin_unlock(&hctx->lock);
|
|
|
|
|
2017-11-02 23:24:34 +08:00
|
|
|
if (run_queue)
|
|
|
|
blk_mq_run_hw_queue(hctx, false);
|
2017-09-11 16:43:57 -06:00
|
|
|
}
|
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
|
|
|
|
struct list_head *list)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* preemption doesn't flush plug list, so it's possible ctx->cpu is
|
|
|
|
* offline now
|
|
|
|
*/
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
while (!list_empty(list)) {
|
|
|
|
struct request *rq;
|
|
|
|
|
|
|
|
rq = list_first_entry(list, struct request, queuelist);
|
2016-08-24 15:34:35 -06:00
|
|
|
BUG_ON(rq->mq_ctx != ctx);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
list_del_init(&rq->queuelist);
|
2016-08-24 15:34:35 -06:00
|
|
|
__blk_mq_insert_req_list(hctx, rq, false);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2015-10-20 23:13:57 +08:00
|
|
|
blk_mq_hctx_mark_pending(hctx, ctx);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
|
|
{
|
|
|
|
struct request *rqa = container_of(a, struct request, queuelist);
|
|
|
|
struct request *rqb = container_of(b, struct request, queuelist);
|
|
|
|
|
|
|
|
return !(rqa->mq_ctx < rqb->mq_ctx ||
|
|
|
|
(rqa->mq_ctx == rqb->mq_ctx &&
|
|
|
|
blk_rq_pos(rqa) < blk_rq_pos(rqb)));
|
|
|
|
}
|
|
|
|
|
|
|
|
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
|
|
|
|
{
|
|
|
|
struct blk_mq_ctx *this_ctx;
|
|
|
|
struct request_queue *this_q;
|
|
|
|
struct request *rq;
|
|
|
|
LIST_HEAD(list);
|
|
|
|
LIST_HEAD(ctx_list);
|
|
|
|
unsigned int depth;
|
|
|
|
|
|
|
|
list_splice_init(&plug->mq_list, &list);
|
|
|
|
|
|
|
|
list_sort(NULL, &list, plug_ctx_cmp);
|
|
|
|
|
|
|
|
this_q = NULL;
|
|
|
|
this_ctx = NULL;
|
|
|
|
depth = 0;
|
|
|
|
|
|
|
|
while (!list_empty(&list)) {
|
|
|
|
rq = list_entry_rq(list.next);
|
|
|
|
list_del_init(&rq->queuelist);
|
|
|
|
BUG_ON(!rq->q);
|
|
|
|
if (rq->mq_ctx != this_ctx) {
|
|
|
|
if (this_ctx) {
|
2017-01-17 06:03:22 -07:00
|
|
|
trace_block_unplug(this_q, depth, from_schedule);
|
|
|
|
blk_mq_sched_insert_requests(this_q, this_ctx,
|
|
|
|
&ctx_list,
|
|
|
|
from_schedule);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
this_ctx = rq->mq_ctx;
|
|
|
|
this_q = rq->q;
|
|
|
|
depth = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
depth++;
|
|
|
|
list_add_tail(&rq->queuelist, &ctx_list);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If 'this_ctx' is set, we know we have entries to complete
|
|
|
|
* on 'ctx_list'. Do those.
|
|
|
|
*/
|
|
|
|
if (this_ctx) {
|
2017-01-17 06:03:22 -07:00
|
|
|
trace_block_unplug(this_q, depth, from_schedule);
|
|
|
|
blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
|
|
|
|
from_schedule);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
|
|
|
|
{
|
2017-04-19 14:01:24 -07:00
|
|
|
blk_init_request_from_bio(rq, bio);
|
2014-05-29 11:00:11 -06:00
|
|
|
|
2017-10-06 17:56:00 -07:00
|
|
|
blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
|
|
|
|
|
2016-12-02 20:00:14 -07:00
|
|
|
blk_account_io_start(rq, true);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-05-26 19:53:19 +08:00
|
|
|
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct blk_mq_ctx *ctx,
|
|
|
|
struct request *rq)
|
|
|
|
{
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
__blk_mq_insert_request(hctx, rq, false);
|
|
|
|
spin_unlock(&ctx->lock);
|
2014-05-22 10:40:51 -06:00
|
|
|
}
|
2014-02-07 13:45:39 -07:00
|
|
|
|
2017-01-12 10:04:45 -07:00
|
|
|
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
|
|
|
|
{
|
2017-01-17 06:03:22 -07:00
|
|
|
if (rq->tag != -1)
|
|
|
|
return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
|
|
|
|
|
|
|
|
return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
|
2017-01-12 10:04:45 -07:00
|
|
|
}
|
|
|
|
|
2018-01-17 11:25:56 -05:00
|
|
|
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq,
|
|
|
|
blk_qc_t *cookie)
|
2015-05-08 10:51:32 -07:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
|
|
|
struct blk_mq_queue_data bd = {
|
|
|
|
.rq = rq,
|
2017-04-05 12:01:36 -07:00
|
|
|
.last = true,
|
2015-05-08 10:51:32 -07:00
|
|
|
};
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_qc_t new_cookie;
|
2017-06-12 11:22:46 -06:00
|
|
|
blk_status_t ret;
|
2018-01-17 11:25:56 -05:00
|
|
|
|
|
|
|
new_cookie = request_to_qc_t(hctx, rq);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For OK queue, we are done. For error, caller may kill it.
|
|
|
|
* Any other error (busy), just add it to our list as we
|
|
|
|
* previously would have done.
|
|
|
|
*/
|
|
|
|
ret = q->mq_ops->queue_rq(hctx, &bd);
|
|
|
|
switch (ret) {
|
|
|
|
case BLK_STS_OK:
|
|
|
|
*cookie = new_cookie;
|
|
|
|
break;
|
|
|
|
case BLK_STS_RESOURCE:
|
2018-01-30 22:04:57 -05:00
|
|
|
case BLK_STS_DEV_RESOURCE:
|
2018-01-17 11:25:56 -05:00
|
|
|
__blk_mq_requeue_request(rq);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*cookie = BLK_QC_T_NONE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq,
|
2018-01-17 11:25:57 -05:00
|
|
|
blk_qc_t *cookie,
|
|
|
|
bool bypass_insert)
|
2018-01-17 11:25:56 -05:00
|
|
|
{
|
|
|
|
struct request_queue *q = rq->q;
|
2017-06-06 23:22:00 +08:00
|
|
|
bool run_queue = true;
|
|
|
|
|
2018-01-18 12:06:59 +08:00
|
|
|
/*
|
|
|
|
* RCU or SRCU read lock is needed before checking quiesced flag.
|
|
|
|
*
|
|
|
|
* When queue is stopped or quiesced, ignore 'bypass_insert' from
|
2018-01-19 08:58:54 -08:00
|
|
|
* blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
|
2018-01-18 12:06:59 +08:00
|
|
|
* and avoid driver to try to dispatch again.
|
|
|
|
*/
|
2017-06-18 14:24:27 -06:00
|
|
|
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
|
2017-06-06 23:22:00 +08:00
|
|
|
run_queue = false;
|
2018-01-18 12:06:59 +08:00
|
|
|
bypass_insert = false;
|
2017-06-06 23:22:00 +08:00
|
|
|
goto insert;
|
|
|
|
}
|
2015-05-08 10:51:32 -07:00
|
|
|
|
2018-01-17 11:25:57 -05:00
|
|
|
if (q->elevator && !bypass_insert)
|
2016-10-28 17:20:02 -07:00
|
|
|
goto insert;
|
|
|
|
|
2017-06-06 23:22:00 +08:00
|
|
|
if (!blk_mq_get_driver_tag(rq, NULL, false))
|
2017-01-17 06:03:22 -07:00
|
|
|
goto insert;
|
|
|
|
|
2017-11-05 02:21:12 +08:00
|
|
|
if (!blk_mq_get_dispatch_budget(hctx)) {
|
2017-10-14 17:22:29 +08:00
|
|
|
blk_mq_put_driver_tag(rq);
|
|
|
|
goto insert;
|
2017-11-05 02:21:12 +08:00
|
|
|
}
|
2017-10-14 17:22:29 +08:00
|
|
|
|
2018-01-17 11:25:56 -05:00
|
|
|
return __blk_mq_issue_directly(hctx, rq, cookie);
|
2016-10-28 17:20:02 -07:00
|
|
|
insert:
|
2018-01-17 11:25:57 -05:00
|
|
|
if (bypass_insert)
|
|
|
|
return BLK_STS_RESOURCE;
|
2018-01-17 11:25:56 -05:00
|
|
|
|
2018-01-18 12:06:59 +08:00
|
|
|
blk_mq_sched_insert_request(rq, false, run_queue, false);
|
2018-01-17 11:25:56 -05:00
|
|
|
return BLK_STS_OK;
|
2015-05-08 10:51:32 -07:00
|
|
|
}
|
|
|
|
|
2017-03-22 15:01:51 -04:00
|
|
|
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq, blk_qc_t *cookie)
|
|
|
|
{
|
2018-01-17 11:25:56 -05:00
|
|
|
blk_status_t ret;
|
2018-01-09 08:29:46 -08:00
|
|
|
int srcu_idx;
|
2017-03-30 12:30:39 -06:00
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
|
2017-03-30 12:30:39 -06:00
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
hctx_lock(hctx, &srcu_idx);
|
2018-01-17 11:25:56 -05:00
|
|
|
|
2018-01-17 11:25:57 -05:00
|
|
|
ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
|
2018-01-30 22:04:57 -05:00
|
|
|
if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
|
2018-01-18 12:06:59 +08:00
|
|
|
blk_mq_sched_insert_request(rq, false, true, false);
|
2018-01-17 11:25:56 -05:00
|
|
|
else if (ret != BLK_STS_OK)
|
|
|
|
blk_mq_end_request(rq, ret);
|
|
|
|
|
2018-01-09 08:29:46 -08:00
|
|
|
hctx_unlock(hctx, srcu_idx);
|
2017-03-22 15:01:51 -04:00
|
|
|
}
|
|
|
|
|
2018-01-19 08:58:54 -08:00
|
|
|
blk_status_t blk_mq_request_issue_directly(struct request *rq)
|
2018-01-17 11:25:57 -05:00
|
|
|
{
|
|
|
|
blk_status_t ret;
|
|
|
|
int srcu_idx;
|
|
|
|
blk_qc_t unused_cookie;
|
|
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
|
|
|
|
|
|
|
|
hctx_lock(hctx, &srcu_idx);
|
|
|
|
ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
|
|
|
|
hctx_unlock(hctx, srcu_idx);
|
|
|
|
|
|
|
|
return ret;
|
2017-03-22 15:01:51 -04:00
|
|
|
}
|
|
|
|
|
2015-11-05 10:41:16 -07:00
|
|
|
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
|
2014-05-22 10:40:51 -06:00
|
|
|
{
|
2016-10-28 08:48:16 -06:00
|
|
|
const int is_sync = op_is_sync(bio->bi_opf);
|
2017-01-27 08:30:47 -07:00
|
|
|
const int is_flush_fua = op_is_flush(bio->bi_opf);
|
2017-01-26 12:22:11 -07:00
|
|
|
struct blk_mq_alloc_data data = { .flags = 0 };
|
2014-05-22 10:40:51 -06:00
|
|
|
struct request *rq;
|
2017-03-22 15:01:51 -04:00
|
|
|
unsigned int request_count = 0;
|
2015-05-08 10:51:32 -07:00
|
|
|
struct blk_plug *plug;
|
2015-05-08 10:51:33 -07:00
|
|
|
struct request *same_queue_rq = NULL;
|
2015-11-05 10:41:40 -07:00
|
|
|
blk_qc_t cookie;
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
unsigned int wb_acct;
|
2014-05-22 10:40:51 -06:00
|
|
|
|
|
|
|
blk_queue_bounce(q, &bio);
|
|
|
|
|
2017-06-18 14:38:57 +10:00
|
|
|
blk_queue_split(q, &bio);
|
blk-mq: NVMe 512B/4K+T10 DIF/DIX format returns I/O error on dd with split op
When formatting NVMe to 512B/4K + T10 DIf/DIX, dd with split op returns
"Input/output error". Looks block layer split the bio after calling
bio_integrity_prep(bio). This patch fixes the issue.
Below is how we debug this issue:
(1)format nvme to 4K block # size with type 2 DIF
(2)dd with block size bigger than 1024k.
oflag=direct
dd: error writing '/dev/nvme0n1': Input/output error
We added some debug code in nvme device driver. It showed us the first
op and the second op have the same bi and pi address. This is not
correct.
1st op: nvme0n1 Op:Wr slba 0x505 length 0x100, PI ctrl=0x1400,
dsmgmt=0x0, AT=0x0 & RT=0x505
Guard 0x00b1, AT 0x0000, RT physical 0x00000505 RT virtual 0x00002828
2nd op: nvme0n1 Op:Wr slba 0x605 length 0x1, PI ctrl=0x1400, dsmgmt=0x0,
AT=0x0 & RT=0x605 ==> This op fails and subsequent 5 retires..
Guard 0x00b1, AT 0x0000, RT physical 0x00000605 RT virtual 0x00002828
With the fix, It showed us both of the first op and the second op have
correct bi and pi address.
1st op: nvme2n1 Op:Wr slba 0x505 length 0x100, PI ctrl=0x1400,
dsmgmt=0x0, AT=0x0 & RT=0x505
Guard 0x5ccb, AT 0x0000, RT physical 0x00000505 RT virtual
0x00002828
2nd op: nvme2n1 Op:Wr slba 0x605 length 0x1, PI ctrl=0x1400, dsmgmt=0x0,
AT=0x0 & RT=0x605
Guard 0xab4c, AT 0x0000, RT physical 0x00000605 RT virtual
0x00003028
Signed-off-by: Wen Xiong <wenxiong@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-05-10 08:54:11 -05:00
|
|
|
|
2017-06-29 11:31:11 -07:00
|
|
|
if (!bio_integrity_prep(bio))
|
2015-11-05 10:41:16 -07:00
|
|
|
return BLK_QC_T_NONE;
|
2014-05-22 10:40:51 -06:00
|
|
|
|
2016-06-01 22:18:48 -07:00
|
|
|
if (!is_flush_fua && !blk_queue_nomerges(q) &&
|
|
|
|
blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
|
|
|
|
return BLK_QC_T_NONE;
|
2015-05-08 10:51:32 -07:00
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
if (blk_mq_sched_bio_merge(q, bio))
|
|
|
|
return BLK_QC_T_NONE;
|
|
|
|
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
wb_acct = wbt_wait(q->rq_wb, bio, NULL);
|
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
trace_block_getrq(q, bio, bio->bi_opf);
|
|
|
|
|
2017-06-16 18:15:19 +02:00
|
|
|
rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
if (unlikely(!rq)) {
|
|
|
|
__wbt_done(q->rq_wb, wb_acct);
|
2017-06-20 07:05:46 -05:00
|
|
|
if (bio->bi_opf & REQ_NOWAIT)
|
|
|
|
bio_wouldblock_error(bio);
|
2015-11-05 10:41:16 -07:00
|
|
|
return BLK_QC_T_NONE;
|
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot
more smooth, and has way less impact on other system activity.
Background writeback should be, by definition, background
activity. The fact that we flush huge bundles of it at the time
means that it potentially has heavy impacts on foreground workloads,
which isn't ideal. We can't easily limit the sizes of writes that
we do, since that would impact file system layout in the presence
of delayed allocation. So just throttle back buffered writeback,
unless someone is waiting for it.
The algorithm for when to throttle takes its inspiration in the
CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors
the minimum latencies of requests over a window of time. In that
window of time, if the minimum latency of any request exceeds a
given target, then a scale count is incremented and the queue depth
is shrunk. The next monitoring window is shrunk accordingly. Unlike
CoDel, if we hit a window that exhibits good behavior, then we
simply increment the scale count and re-calculate the limits for that
scale value. This prevents us from oscillating between a
close-to-ideal value and max all the time, instead remaining in the
windows where we get good behavior.
Unlike CoDel, blk-wb allows the scale count to to negative. This
happens if we primarily have writes going on. Unlike positive
scale counts, this doesn't change the size of the monitoring window.
When the heavy writers finish, blk-bw quickly snaps back to it's
stable state of a zero scale count.
The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency
target to me met. It defaults to 2 msec for non-rotational storage, and
75 msec for rotational storage. Setting this value to '0' disables
blk-wb. Generally, a user would not have to touch this setting.
We don't enable WBT on devices that are managed with CFQ, and have
a non-root block cgroup attached. If we have a proportional share setup
on this particular disk, then the wbt throttling will interfere with
that. We don't have a strong need for wbt for that case, since we will
rely on CFQ doing that for us.
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-09 12:38:14 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
wbt_track(&rq->issue_stat, wb_acct);
|
2014-05-22 10:40:51 -06:00
|
|
|
|
2017-01-12 10:04:45 -07:00
|
|
|
cookie = request_to_qc_t(data.hctx, rq);
|
2014-05-22 10:40:51 -06:00
|
|
|
|
2015-05-08 10:51:32 -07:00
|
|
|
plug = current->plug;
|
2014-05-22 10:40:51 -06:00
|
|
|
if (unlikely(is_flush_fua)) {
|
2015-05-08 10:51:32 -07:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
2014-05-22 10:40:51 -06:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
2017-11-02 23:24:38 +08:00
|
|
|
|
|
|
|
/* bypass scheduler for flush rq */
|
|
|
|
blk_insert_flush(rq);
|
|
|
|
blk_mq_run_hw_queue(data.hctx, true);
|
2017-03-22 15:01:53 -04:00
|
|
|
} else if (plug && q->nr_hw_queues == 1) {
|
2016-11-03 17:03:54 -07:00
|
|
|
struct request *last = NULL;
|
|
|
|
|
2017-04-20 16:40:36 -06:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
2015-05-08 10:51:30 -07:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
2016-11-16 18:07:05 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* @request_count may become stale because of schedule
|
|
|
|
* out, so check the list again.
|
|
|
|
*/
|
|
|
|
if (list_empty(&plug->mq_list))
|
|
|
|
request_count = 0;
|
2017-03-22 15:01:50 -04:00
|
|
|
else if (blk_queue_nomerges(q))
|
|
|
|
request_count = blk_plug_queued_count(q);
|
|
|
|
|
2015-10-20 23:13:56 +08:00
|
|
|
if (!request_count)
|
2015-05-08 10:51:30 -07:00
|
|
|
trace_block_plug(q);
|
2016-11-03 17:03:54 -07:00
|
|
|
else
|
|
|
|
last = list_entry_rq(plug->mq_list.prev);
|
blk-mq: fix calling unplug callbacks with preempt disabled
Liu reported that running certain parts of xfstests threw the
following error:
BUG: sleeping function called from invalid context at mm/page_alloc.c:3190
in_atomic(): 1, irqs_disabled(): 0, pid: 6, name: kworker/u16:0
3 locks held by kworker/u16:0/6:
#0: ("writeback"){++++.+}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#1: ((&(&wb->dwork)->work)){+.+.+.}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#2: (&type->s_umount_key#44){+++++.}, at: [<ffffffff811e6805>] trylock_super+0x25/0x60
CPU: 5 PID: 6 Comm: kworker/u16:0 Tainted: G OE 4.3.0+ #3
Hardware name: Red Hat KVM, BIOS Bochs 01/01/2011
Workqueue: writeback wb_workfn (flush-btrfs-108)
ffffffff81a3abab ffff88042e282ba8 ffffffff8130191b ffffffff81a3abab
0000000000000c76 ffff88042e282ba8 ffff88042e27c180 ffff88042e282bd8
ffffffff8108ed95 ffff880400000004 0000000000000000 0000000000000c76
Call Trace:
[<ffffffff8130191b>] dump_stack+0x4f/0x74
[<ffffffff8108ed95>] ___might_sleep+0x185/0x240
[<ffffffff8108eea2>] __might_sleep+0x52/0x90
[<ffffffff811817e8>] __alloc_pages_nodemask+0x268/0x410
[<ffffffff8109a43c>] ? sched_clock_local+0x1c/0x90
[<ffffffff8109a6d1>] ? local_clock+0x21/0x40
[<ffffffff810b9eb0>] ? __lock_release+0x420/0x510
[<ffffffff810b534c>] ? __lock_acquired+0x16c/0x3c0
[<ffffffff811ca265>] alloc_pages_current+0xc5/0x210
[<ffffffffa0577105>] ? rbio_is_full+0x55/0x70 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff81666d50>] ? _raw_spin_unlock_irqrestore+0x40/0x60
[<ffffffffa0578c0a>] full_stripe_write+0x5a/0xc0 [btrfs]
[<ffffffffa0578ca9>] __raid56_parity_write+0x39/0x60 [btrfs]
[<ffffffffa0578deb>] run_plug+0x11b/0x140 [btrfs]
[<ffffffffa0578e33>] btrfs_raid_unplug+0x23/0x70 [btrfs]
[<ffffffff812d36c2>] blk_flush_plug_list+0x82/0x1f0
[<ffffffff812e0349>] blk_sq_make_request+0x1f9/0x740
[<ffffffff812ceba2>] ? generic_make_request_checks+0x222/0x7c0
[<ffffffff812cf264>] ? blk_queue_enter+0x124/0x310
[<ffffffff812cf1d2>] ? blk_queue_enter+0x92/0x310
[<ffffffff812d0ae2>] generic_make_request+0x172/0x2c0
[<ffffffff812d0ad4>] ? generic_make_request+0x164/0x2c0
[<ffffffff812d0ca0>] submit_bio+0x70/0x140
[<ffffffffa0577b29>] ? rbio_add_io_page+0x99/0x150 [btrfs]
[<ffffffffa0578a89>] finish_rmw+0x4d9/0x600 [btrfs]
[<ffffffffa0578c4c>] full_stripe_write+0x9c/0xc0 [btrfs]
[<ffffffffa057ab7f>] raid56_parity_write+0xef/0x160 [btrfs]
[<ffffffffa052bd83>] btrfs_map_bio+0xe3/0x2d0 [btrfs]
[<ffffffffa04fbd6d>] btrfs_submit_bio_hook+0x8d/0x1d0 [btrfs]
[<ffffffffa05173c4>] submit_one_bio+0x74/0xb0 [btrfs]
[<ffffffffa0517f55>] submit_extent_page+0xe5/0x1c0 [btrfs]
[<ffffffffa0519b18>] __extent_writepage_io+0x408/0x4c0 [btrfs]
[<ffffffffa05179c0>] ? alloc_dummy_extent_buffer+0x140/0x140 [btrfs]
[<ffffffffa051dc88>] __extent_writepage+0x218/0x3a0 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffffa051e2c9>] extent_write_cache_pages.clone.0+0x2f9/0x400 [btrfs]
[<ffffffffa051e422>] extent_writepages+0x52/0x70 [btrfs]
[<ffffffffa05001f0>] ? btrfs_set_inode_index+0x70/0x70 [btrfs]
[<ffffffffa04fcc17>] btrfs_writepages+0x27/0x30 [btrfs]
[<ffffffff81184df3>] do_writepages+0x23/0x40
[<ffffffff81212229>] __writeback_single_inode+0x89/0x4d0
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff8121295f>] ? writeback_sb_inodes+0x15f/0x480
[<ffffffff81212ad2>] writeback_sb_inodes+0x2d2/0x480
[<ffffffff810b1397>] ? down_read_trylock+0x57/0x60
[<ffffffff811e6805>] ? trylock_super+0x25/0x60
[<ffffffff810d629f>] ? rcu_read_lock_sched_held+0x4f/0x90
[<ffffffff81212d0c>] __writeback_inodes_wb+0x8c/0xc0
[<ffffffff812130b5>] wb_writeback+0x2b5/0x500
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff810660a8>] ? __local_bh_enable_ip+0x68/0xc0
[<ffffffff81213362>] ? wb_do_writeback+0x62/0x310
[<ffffffff812133c1>] wb_do_writeback+0xc1/0x310
[<ffffffff8107c3d9>] ? set_worker_desc+0x79/0x90
[<ffffffff81213842>] wb_workfn+0x92/0x330
[<ffffffff8107f133>] process_one_work+0x223/0x730
[<ffffffff8107f083>] ? process_one_work+0x173/0x730
[<ffffffff8108035f>] ? worker_thread+0x18f/0x430
[<ffffffff810802ed>] worker_thread+0x11d/0x430
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810858df>] kthread+0xef/0x110
[<ffffffff8108f74e>] ? schedule_tail+0x1e/0xd0
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
[<ffffffff816673bf>] ret_from_fork+0x3f/0x70
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
The issue is that we've got the software context pinned while
calling blk_flush_plug_list(), which flushes callbacks that
are allowed to sleep. btrfs and raid has such callbacks.
Flip the checks around a bit, so we can enable preempt a bit
earlier and flush plugs without having preempt disabled.
This only affects blk-mq driven devices, and only those that
register a single queue.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-11-20 20:29:45 -07:00
|
|
|
|
2016-11-03 17:03:54 -07:00
|
|
|
if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
|
|
|
|
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
|
2015-05-08 10:51:30 -07:00
|
|
|
blk_flush_plug_list(plug, false);
|
|
|
|
trace_block_plug(q);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
blk-mq: fix calling unplug callbacks with preempt disabled
Liu reported that running certain parts of xfstests threw the
following error:
BUG: sleeping function called from invalid context at mm/page_alloc.c:3190
in_atomic(): 1, irqs_disabled(): 0, pid: 6, name: kworker/u16:0
3 locks held by kworker/u16:0/6:
#0: ("writeback"){++++.+}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#1: ((&(&wb->dwork)->work)){+.+.+.}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#2: (&type->s_umount_key#44){+++++.}, at: [<ffffffff811e6805>] trylock_super+0x25/0x60
CPU: 5 PID: 6 Comm: kworker/u16:0 Tainted: G OE 4.3.0+ #3
Hardware name: Red Hat KVM, BIOS Bochs 01/01/2011
Workqueue: writeback wb_workfn (flush-btrfs-108)
ffffffff81a3abab ffff88042e282ba8 ffffffff8130191b ffffffff81a3abab
0000000000000c76 ffff88042e282ba8 ffff88042e27c180 ffff88042e282bd8
ffffffff8108ed95 ffff880400000004 0000000000000000 0000000000000c76
Call Trace:
[<ffffffff8130191b>] dump_stack+0x4f/0x74
[<ffffffff8108ed95>] ___might_sleep+0x185/0x240
[<ffffffff8108eea2>] __might_sleep+0x52/0x90
[<ffffffff811817e8>] __alloc_pages_nodemask+0x268/0x410
[<ffffffff8109a43c>] ? sched_clock_local+0x1c/0x90
[<ffffffff8109a6d1>] ? local_clock+0x21/0x40
[<ffffffff810b9eb0>] ? __lock_release+0x420/0x510
[<ffffffff810b534c>] ? __lock_acquired+0x16c/0x3c0
[<ffffffff811ca265>] alloc_pages_current+0xc5/0x210
[<ffffffffa0577105>] ? rbio_is_full+0x55/0x70 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff81666d50>] ? _raw_spin_unlock_irqrestore+0x40/0x60
[<ffffffffa0578c0a>] full_stripe_write+0x5a/0xc0 [btrfs]
[<ffffffffa0578ca9>] __raid56_parity_write+0x39/0x60 [btrfs]
[<ffffffffa0578deb>] run_plug+0x11b/0x140 [btrfs]
[<ffffffffa0578e33>] btrfs_raid_unplug+0x23/0x70 [btrfs]
[<ffffffff812d36c2>] blk_flush_plug_list+0x82/0x1f0
[<ffffffff812e0349>] blk_sq_make_request+0x1f9/0x740
[<ffffffff812ceba2>] ? generic_make_request_checks+0x222/0x7c0
[<ffffffff812cf264>] ? blk_queue_enter+0x124/0x310
[<ffffffff812cf1d2>] ? blk_queue_enter+0x92/0x310
[<ffffffff812d0ae2>] generic_make_request+0x172/0x2c0
[<ffffffff812d0ad4>] ? generic_make_request+0x164/0x2c0
[<ffffffff812d0ca0>] submit_bio+0x70/0x140
[<ffffffffa0577b29>] ? rbio_add_io_page+0x99/0x150 [btrfs]
[<ffffffffa0578a89>] finish_rmw+0x4d9/0x600 [btrfs]
[<ffffffffa0578c4c>] full_stripe_write+0x9c/0xc0 [btrfs]
[<ffffffffa057ab7f>] raid56_parity_write+0xef/0x160 [btrfs]
[<ffffffffa052bd83>] btrfs_map_bio+0xe3/0x2d0 [btrfs]
[<ffffffffa04fbd6d>] btrfs_submit_bio_hook+0x8d/0x1d0 [btrfs]
[<ffffffffa05173c4>] submit_one_bio+0x74/0xb0 [btrfs]
[<ffffffffa0517f55>] submit_extent_page+0xe5/0x1c0 [btrfs]
[<ffffffffa0519b18>] __extent_writepage_io+0x408/0x4c0 [btrfs]
[<ffffffffa05179c0>] ? alloc_dummy_extent_buffer+0x140/0x140 [btrfs]
[<ffffffffa051dc88>] __extent_writepage+0x218/0x3a0 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffffa051e2c9>] extent_write_cache_pages.clone.0+0x2f9/0x400 [btrfs]
[<ffffffffa051e422>] extent_writepages+0x52/0x70 [btrfs]
[<ffffffffa05001f0>] ? btrfs_set_inode_index+0x70/0x70 [btrfs]
[<ffffffffa04fcc17>] btrfs_writepages+0x27/0x30 [btrfs]
[<ffffffff81184df3>] do_writepages+0x23/0x40
[<ffffffff81212229>] __writeback_single_inode+0x89/0x4d0
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff8121295f>] ? writeback_sb_inodes+0x15f/0x480
[<ffffffff81212ad2>] writeback_sb_inodes+0x2d2/0x480
[<ffffffff810b1397>] ? down_read_trylock+0x57/0x60
[<ffffffff811e6805>] ? trylock_super+0x25/0x60
[<ffffffff810d629f>] ? rcu_read_lock_sched_held+0x4f/0x90
[<ffffffff81212d0c>] __writeback_inodes_wb+0x8c/0xc0
[<ffffffff812130b5>] wb_writeback+0x2b5/0x500
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff810660a8>] ? __local_bh_enable_ip+0x68/0xc0
[<ffffffff81213362>] ? wb_do_writeback+0x62/0x310
[<ffffffff812133c1>] wb_do_writeback+0xc1/0x310
[<ffffffff8107c3d9>] ? set_worker_desc+0x79/0x90
[<ffffffff81213842>] wb_workfn+0x92/0x330
[<ffffffff8107f133>] process_one_work+0x223/0x730
[<ffffffff8107f083>] ? process_one_work+0x173/0x730
[<ffffffff8108035f>] ? worker_thread+0x18f/0x430
[<ffffffff810802ed>] worker_thread+0x11d/0x430
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810858df>] kthread+0xef/0x110
[<ffffffff8108f74e>] ? schedule_tail+0x1e/0xd0
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
[<ffffffff816673bf>] ret_from_fork+0x3f/0x70
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
The issue is that we've got the software context pinned while
calling blk_flush_plug_list(), which flushes callbacks that
are allowed to sleep. btrfs and raid has such callbacks.
Flip the checks around a bit, so we can enable preempt a bit
earlier and flush plugs without having preempt disabled.
This only affects blk-mq driven devices, and only those that
register a single queue.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-11-20 20:29:45 -07:00
|
|
|
|
2015-05-08 10:51:30 -07:00
|
|
|
list_add_tail(&rq->queuelist, &plug->mq_list);
|
2017-03-22 15:01:52 -04:00
|
|
|
} else if (plug && !blk_queue_nomerges(q)) {
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
2014-05-22 10:40:51 -06:00
|
|
|
|
|
|
|
/*
|
2016-11-02 10:09:51 -06:00
|
|
|
* We do limited plugging. If the bio can be merged, do that.
|
2015-05-08 10:51:32 -07:00
|
|
|
* Otherwise the existing request in the plug list will be
|
|
|
|
* issued. So the plug list will have one request at most
|
2017-03-22 15:01:52 -04:00
|
|
|
* The plug list might get flushed before this. If that happens,
|
|
|
|
* the plug list is empty, and same_queue_rq is invalid.
|
2014-05-22 10:40:51 -06:00
|
|
|
*/
|
2017-03-22 15:01:52 -04:00
|
|
|
if (list_empty(&plug->mq_list))
|
|
|
|
same_queue_rq = NULL;
|
|
|
|
if (same_queue_rq)
|
|
|
|
list_del_init(&same_queue_rq->queuelist);
|
|
|
|
list_add_tail(&rq->queuelist, &plug->mq_list);
|
|
|
|
|
2017-03-30 12:30:39 -06:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
|
|
|
|
2017-06-06 23:21:59 +08:00
|
|
|
if (same_queue_rq) {
|
|
|
|
data.hctx = blk_mq_map_queue(q,
|
|
|
|
same_queue_rq->mq_ctx->cpu);
|
2017-03-22 15:01:52 -04:00
|
|
|
blk_mq_try_issue_directly(data.hctx, same_queue_rq,
|
|
|
|
&cookie);
|
2017-06-06 23:21:59 +08:00
|
|
|
}
|
2017-03-22 15:01:53 -04:00
|
|
|
} else if (q->nr_hw_queues > 1 && is_sync) {
|
2017-03-30 12:30:39 -06:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
2017-03-22 15:01:52 -04:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
|
|
|
blk_mq_try_issue_directly(data.hctx, rq, &cookie);
|
2017-03-22 15:01:53 -04:00
|
|
|
} else if (q->elevator) {
|
2017-04-20 16:40:36 -06:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
2017-01-17 06:03:22 -07:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
2018-01-17 11:25:58 -05:00
|
|
|
blk_mq_sched_insert_request(rq, false, true, true);
|
2017-05-26 19:53:19 +08:00
|
|
|
} else {
|
2017-04-20 16:40:36 -06:00
|
|
|
blk_mq_put_ctx(data.ctx);
|
2017-05-26 19:53:19 +08:00
|
|
|
blk_mq_bio_to_request(rq, bio);
|
|
|
|
blk_mq_queue_io(data.hctx, data.ctx, rq);
|
2017-03-22 15:01:53 -04:00
|
|
|
blk_mq_run_hw_queue(data.hctx, true);
|
2017-05-26 19:53:19 +08:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-11-05 10:41:40 -07:00
|
|
|
return cookie;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
|
|
|
|
unsigned int hctx_idx)
|
2014-03-14 10:43:15 -06:00
|
|
|
{
|
2014-04-15 13:59:10 -06:00
|
|
|
struct page *page;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
if (tags->rqs && set->ops->exit_request) {
|
2014-04-15 13:59:10 -06:00
|
|
|
int i;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
for (i = 0; i < tags->nr_tags; i++) {
|
2017-01-13 14:39:30 -07:00
|
|
|
struct request *rq = tags->static_rqs[i];
|
|
|
|
|
|
|
|
if (!rq)
|
2014-04-15 13:59:10 -06:00
|
|
|
continue;
|
2017-05-01 10:19:08 -06:00
|
|
|
set->ops->exit_request(set, rq, hctx_idx);
|
2017-01-13 14:39:30 -07:00
|
|
|
tags->static_rqs[i] = NULL;
|
2014-04-15 13:59:10 -06:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
while (!list_empty(&tags->page_list)) {
|
|
|
|
page = list_first_entry(&tags->page_list, struct page, lru);
|
2014-01-08 20:17:46 -07:00
|
|
|
list_del_init(&page->lru);
|
2015-09-14 18:16:02 +01:00
|
|
|
/*
|
|
|
|
* Remove kmemleak object previously allocated in
|
|
|
|
* blk_mq_init_rq_map().
|
|
|
|
*/
|
|
|
|
kmemleak_free(page_address(page));
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
__free_pages(page, page->private);
|
|
|
|
}
|
2017-01-11 14:29:56 -07:00
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
|
|
|
|
{
|
2014-04-15 14:14:00 -06:00
|
|
|
kfree(tags->rqs);
|
2017-01-11 14:29:56 -07:00
|
|
|
tags->rqs = NULL;
|
2017-01-13 14:39:30 -07:00
|
|
|
kfree(tags->static_rqs);
|
|
|
|
tags->static_rqs = NULL;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
blk_mq_free_tags(tags);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
|
|
|
|
unsigned int hctx_idx,
|
|
|
|
unsigned int nr_tags,
|
|
|
|
unsigned int reserved_tags)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2014-04-15 14:14:00 -06:00
|
|
|
struct blk_mq_tags *tags;
|
2017-02-01 09:53:14 -08:00
|
|
|
int node;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-02-01 09:53:14 -08:00
|
|
|
node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
|
|
node = set->numa_node;
|
|
|
|
|
|
|
|
tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
|
2015-01-23 14:18:00 -07:00
|
|
|
BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
|
2014-04-15 14:14:00 -06:00
|
|
|
if (!tags)
|
|
|
|
return NULL;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
|
2016-12-06 13:31:44 -02:00
|
|
|
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
|
2017-02-01 09:53:14 -08:00
|
|
|
node);
|
2014-04-15 14:14:00 -06:00
|
|
|
if (!tags->rqs) {
|
|
|
|
blk_mq_free_tags(tags);
|
|
|
|
return NULL;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-01-13 14:39:30 -07:00
|
|
|
tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
|
|
|
|
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
|
2017-02-01 09:53:14 -08:00
|
|
|
node);
|
2017-01-13 14:39:30 -07:00
|
|
|
if (!tags->static_rqs) {
|
|
|
|
kfree(tags->rqs);
|
|
|
|
blk_mq_free_tags(tags);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
return tags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t order_to_size(unsigned int order)
|
|
|
|
{
|
|
|
|
return (size_t)PAGE_SIZE << order;
|
|
|
|
}
|
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
|
|
|
|
unsigned int hctx_idx, int node)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (set->ops->init_request) {
|
|
|
|
ret = set->ops->init_request(set, rq, hctx_idx, node);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
seqcount_init(&rq->gstate_seq);
|
|
|
|
u64_stats_init(&rq->aborted_gstate_sync);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
|
|
|
|
unsigned int hctx_idx, unsigned int depth)
|
|
|
|
{
|
|
|
|
unsigned int i, j, entries_per_page, max_order = 4;
|
|
|
|
size_t rq_size, left;
|
2017-02-01 09:53:14 -08:00
|
|
|
int node;
|
|
|
|
|
|
|
|
node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
|
|
node = set->numa_node;
|
2017-01-11 14:29:56 -07:00
|
|
|
|
|
|
|
INIT_LIST_HEAD(&tags->page_list);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
/*
|
|
|
|
* rq_size is the size of the request plus driver payload, rounded
|
|
|
|
* to the cacheline size
|
|
|
|
*/
|
2014-04-15 14:14:00 -06:00
|
|
|
rq_size = round_up(sizeof(struct request) + set->cmd_size,
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
cache_line_size());
|
2017-01-11 14:29:56 -07:00
|
|
|
left = rq_size * depth;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
for (i = 0; i < depth; ) {
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
int this_order = max_order;
|
|
|
|
struct page *page;
|
|
|
|
int to_do;
|
|
|
|
void *p;
|
|
|
|
|
2016-05-16 09:54:47 -06:00
|
|
|
while (this_order && left < order_to_size(this_order - 1))
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
this_order--;
|
|
|
|
|
|
|
|
do {
|
2017-02-01 09:53:14 -08:00
|
|
|
page = alloc_pages_node(node,
|
2016-12-06 13:31:44 -02:00
|
|
|
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
|
2014-09-10 09:02:03 -06:00
|
|
|
this_order);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
if (page)
|
|
|
|
break;
|
|
|
|
if (!this_order--)
|
|
|
|
break;
|
|
|
|
if (order_to_size(this_order) < rq_size)
|
|
|
|
break;
|
|
|
|
} while (1);
|
|
|
|
|
|
|
|
if (!page)
|
2014-04-15 14:14:00 -06:00
|
|
|
goto fail;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
page->private = this_order;
|
2014-04-15 14:14:00 -06:00
|
|
|
list_add_tail(&page->lru, &tags->page_list);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
p = page_address(page);
|
2015-09-14 18:16:02 +01:00
|
|
|
/*
|
|
|
|
* Allow kmemleak to scan these pages as they contain pointers
|
|
|
|
* to additional allocations like via ops->init_request().
|
|
|
|
*/
|
2016-12-06 13:31:44 -02:00
|
|
|
kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
entries_per_page = order_to_size(this_order) / rq_size;
|
2017-01-11 14:29:56 -07:00
|
|
|
to_do = min(entries_per_page, depth - i);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
left -= to_do * rq_size;
|
|
|
|
for (j = 0; j < to_do; j++) {
|
2017-01-13 14:39:30 -07:00
|
|
|
struct request *rq = p;
|
|
|
|
|
|
|
|
tags->static_rqs[i] = rq;
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
if (blk_mq_init_request(set, rq, hctx_idx, node)) {
|
|
|
|
tags->static_rqs[i] = NULL;
|
|
|
|
goto fail;
|
2014-04-15 13:59:10 -06:00
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
p += rq_size;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
2017-01-11 14:29:56 -07:00
|
|
|
return 0;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
fail:
|
2017-01-11 14:29:56 -07:00
|
|
|
blk_mq_free_rqs(set, tags, hctx_idx);
|
|
|
|
return -ENOMEM;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2016-08-24 15:34:35 -06:00
|
|
|
/*
|
|
|
|
* 'cpu' is going away. splice any existing rq_list entries from this
|
|
|
|
* software queue to the hw queue dispatch list, and ensure that it
|
|
|
|
* gets run.
|
|
|
|
*/
|
2016-09-22 08:05:17 -06:00
|
|
|
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
|
2014-05-21 14:01:15 -06:00
|
|
|
{
|
2016-09-22 08:05:17 -06:00
|
|
|
struct blk_mq_hw_ctx *hctx;
|
2014-05-21 14:01:15 -06:00
|
|
|
struct blk_mq_ctx *ctx;
|
|
|
|
LIST_HEAD(tmp);
|
|
|
|
|
2016-09-22 08:05:17 -06:00
|
|
|
hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
|
2016-08-24 15:34:35 -06:00
|
|
|
ctx = __blk_mq_get_ctx(hctx->queue, cpu);
|
2014-05-21 14:01:15 -06:00
|
|
|
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
if (!list_empty(&ctx->rq_list)) {
|
|
|
|
list_splice_init(&ctx->rq_list, &tmp);
|
|
|
|
blk_mq_hctx_clear_pending(hctx, ctx);
|
|
|
|
}
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
|
|
|
|
if (list_empty(&tmp))
|
2016-09-22 08:05:17 -06:00
|
|
|
return 0;
|
2014-05-21 14:01:15 -06:00
|
|
|
|
2016-08-24 15:34:35 -06:00
|
|
|
spin_lock(&hctx->lock);
|
|
|
|
list_splice_tail_init(&tmp, &hctx->dispatch);
|
|
|
|
spin_unlock(&hctx->lock);
|
2014-05-21 14:01:15 -06:00
|
|
|
|
|
|
|
blk_mq_run_hw_queue(hctx, true);
|
2016-09-22 08:05:17 -06:00
|
|
|
return 0;
|
2014-05-21 14:01:15 -06:00
|
|
|
}
|
|
|
|
|
2016-09-22 08:05:17 -06:00
|
|
|
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
|
2014-05-21 14:01:15 -06:00
|
|
|
{
|
2016-09-22 08:05:17 -06:00
|
|
|
cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
|
|
|
|
&hctx->cpuhp_dead);
|
2014-05-21 14:01:15 -06:00
|
|
|
}
|
|
|
|
|
2015-06-04 22:25:04 +08:00
|
|
|
/* hctx->ctxs will be freed in queue's release handler */
|
2014-09-25 23:23:38 +08:00
|
|
|
static void blk_mq_exit_hctx(struct request_queue *q,
|
|
|
|
struct blk_mq_tag_set *set,
|
|
|
|
struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
|
|
|
|
{
|
2017-05-04 08:17:21 -06:00
|
|
|
blk_mq_debugfs_unregister_hctx(hctx);
|
|
|
|
|
2018-01-09 21:28:29 +08:00
|
|
|
if (blk_mq_hw_queue_mapped(hctx))
|
|
|
|
blk_mq_tag_idle(hctx);
|
2014-09-25 23:23:38 +08:00
|
|
|
|
2014-09-25 23:23:47 +08:00
|
|
|
if (set->ops->exit_request)
|
2017-05-01 10:19:08 -06:00
|
|
|
set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
|
2014-09-25 23:23:47 +08:00
|
|
|
|
2017-04-05 12:01:31 -07:00
|
|
|
blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
|
|
|
|
|
2014-09-25 23:23:38 +08:00
|
|
|
if (set->ops->exit_hctx)
|
|
|
|
set->ops->exit_hctx(hctx, hctx_idx);
|
|
|
|
|
2016-11-02 10:09:51 -06:00
|
|
|
if (hctx->flags & BLK_MQ_F_BLOCKING)
|
2018-01-09 08:29:53 -08:00
|
|
|
cleanup_srcu_struct(hctx->srcu);
|
2016-11-02 10:09:51 -06:00
|
|
|
|
2016-09-22 08:05:17 -06:00
|
|
|
blk_mq_remove_cpuhp(hctx);
|
2014-09-25 23:23:47 +08:00
|
|
|
blk_free_flush_queue(hctx->fq);
|
2016-09-17 08:38:44 -06:00
|
|
|
sbitmap_free(&hctx->ctx_map);
|
2014-09-25 23:23:38 +08:00
|
|
|
}
|
|
|
|
|
2014-05-27 23:35:13 +08:00
|
|
|
static void blk_mq_exit_hw_queues(struct request_queue *q,
|
|
|
|
struct blk_mq_tag_set *set, int nr_queue)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
|
|
if (i == nr_queue)
|
|
|
|
break;
|
2014-09-25 23:23:38 +08:00
|
|
|
blk_mq_exit_hctx(q, set, hctx, i);
|
2014-05-27 23:35:13 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-25 23:23:38 +08:00
|
|
|
static int blk_mq_init_hctx(struct request_queue *q,
|
|
|
|
struct blk_mq_tag_set *set,
|
|
|
|
struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2014-09-25 23:23:38 +08:00
|
|
|
int node;
|
|
|
|
|
|
|
|
node = hctx->numa_node;
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
|
|
node = hctx->numa_node = set->numa_node;
|
|
|
|
|
2017-04-10 09:54:54 -06:00
|
|
|
INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
|
2014-09-25 23:23:38 +08:00
|
|
|
spin_lock_init(&hctx->lock);
|
|
|
|
INIT_LIST_HEAD(&hctx->dispatch);
|
|
|
|
hctx->queue = q;
|
2015-11-03 10:40:06 -05:00
|
|
|
hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
|
2014-09-25 23:23:38 +08:00
|
|
|
|
2016-09-22 08:05:17 -06:00
|
|
|
cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
|
2014-09-25 23:23:38 +08:00
|
|
|
|
|
|
|
hctx->tags = set->tags[hctx_idx];
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
/*
|
2014-09-25 23:23:38 +08:00
|
|
|
* Allocate space for all possible cpus to avoid allocation at
|
|
|
|
* runtime
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
*/
|
2017-11-15 17:32:33 -08:00
|
|
|
hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
|
2014-09-25 23:23:38 +08:00
|
|
|
GFP_KERNEL, node);
|
|
|
|
if (!hctx->ctxs)
|
|
|
|
goto unregister_cpu_notifier;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2016-09-17 08:38:44 -06:00
|
|
|
if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
|
|
|
|
node))
|
2014-09-25 23:23:38 +08:00
|
|
|
goto free_ctxs;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-09-25 23:23:38 +08:00
|
|
|
hctx->nr_ctx = 0;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-11-09 08:32:43 -07:00
|
|
|
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
|
|
|
|
INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
|
|
|
|
|
2014-09-25 23:23:38 +08:00
|
|
|
if (set->ops->init_hctx &&
|
|
|
|
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
|
|
|
|
goto free_bitmap;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-04-05 12:01:31 -07:00
|
|
|
if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
|
|
|
|
goto exit_hctx;
|
|
|
|
|
2014-09-25 23:23:47 +08:00
|
|
|
hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
|
|
|
|
if (!hctx->fq)
|
2017-04-05 12:01:31 -07:00
|
|
|
goto sched_exit_hctx;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
blk-mq: replace timeout synchronization with a RCU and generation based scheme
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-09 08:29:48 -08:00
|
|
|
if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
|
2014-09-25 23:23:47 +08:00
|
|
|
goto free_fq;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2016-11-02 10:09:51 -06:00
|
|
|
if (hctx->flags & BLK_MQ_F_BLOCKING)
|
2018-01-09 08:29:53 -08:00
|
|
|
init_srcu_struct(hctx->srcu);
|
2016-11-02 10:09:51 -06:00
|
|
|
|
2017-05-04 08:17:21 -06:00
|
|
|
blk_mq_debugfs_register_hctx(q, hctx);
|
|
|
|
|
2014-09-25 23:23:38 +08:00
|
|
|
return 0;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-09-25 23:23:47 +08:00
|
|
|
free_fq:
|
|
|
|
kfree(hctx->fq);
|
2017-04-05 12:01:31 -07:00
|
|
|
sched_exit_hctx:
|
|
|
|
blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
|
2014-09-25 23:23:47 +08:00
|
|
|
exit_hctx:
|
|
|
|
if (set->ops->exit_hctx)
|
|
|
|
set->ops->exit_hctx(hctx, hctx_idx);
|
2014-09-25 23:23:38 +08:00
|
|
|
free_bitmap:
|
2016-09-17 08:38:44 -06:00
|
|
|
sbitmap_free(&hctx->ctx_map);
|
2014-09-25 23:23:38 +08:00
|
|
|
free_ctxs:
|
|
|
|
kfree(hctx->ctxs);
|
|
|
|
unregister_cpu_notifier:
|
2016-09-22 08:05:17 -06:00
|
|
|
blk_mq_remove_cpuhp(hctx);
|
2014-09-25 23:23:38 +08:00
|
|
|
return -1;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
static void blk_mq_init_cpu_queues(struct request_queue *q,
|
|
|
|
unsigned int nr_hw_queues)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for_each_possible_cpu(i) {
|
|
|
|
struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
|
|
|
|
__ctx->cpu = i;
|
|
|
|
spin_lock_init(&__ctx->lock);
|
|
|
|
INIT_LIST_HEAD(&__ctx->rq_list);
|
|
|
|
__ctx->queue = q;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set local node, IFF we have more than one hw queue. If
|
|
|
|
* not, we remain on the home node of the device
|
|
|
|
*/
|
2018-01-12 10:53:06 +08:00
|
|
|
hctx = blk_mq_map_queue(q, i);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
|
2015-12-02 16:59:05 +05:30
|
|
|
hctx->numa_node = local_memory_node(cpu_to_node(i));
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
|
|
|
|
set->queue_depth, set->reserved_tags);
|
|
|
|
if (!set->tags[hctx_idx])
|
|
|
|
return false;
|
|
|
|
|
|
|
|
ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
|
|
|
|
set->queue_depth);
|
|
|
|
if (!ret)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
blk_mq_free_rq_map(set->tags[hctx_idx]);
|
|
|
|
set->tags[hctx_idx] = NULL;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
|
|
|
|
unsigned int hctx_idx)
|
|
|
|
{
|
2017-01-17 06:03:22 -07:00
|
|
|
if (set->tags[hctx_idx]) {
|
|
|
|
blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
|
|
|
|
blk_mq_free_rq_map(set->tags[hctx_idx]);
|
|
|
|
set->tags[hctx_idx] = NULL;
|
|
|
|
}
|
2017-01-11 14:29:56 -07:00
|
|
|
}
|
|
|
|
|
2017-06-26 12:20:57 +02:00
|
|
|
static void blk_mq_map_swqueue(struct request_queue *q)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
blk-mq: Fix failed allocation path when mapping queues
In blk_mq_map_swqueue, there is a memory optimization that frees the
tags of a queue that has gone unmapped. Later, if that hctx is remapped
after another topology change, the tags need to be reallocated.
If this allocation fails, a simple WARN_ON triggers, but the block layer
ends up with an active hctx without any corresponding set of tags.
Then, any income IO to that hctx can trigger an Oops.
I can reproduce it consistently by running IO, flipping CPUs on and off
and eventually injecting a memory allocation failure in that path.
In the fix below, if the system experiences a failed allocation of any
hctx's tags, we remap all the ctxs of that queue to the hctx_0, which
should always keep it's tags. There is a minor performance hit, since
our mapping just got worse after the error path, but this is
the simplest solution to handle this error path. The performance hit
will disappear after another successful remap.
I considered dropping the memory optimization all together, but it
seemed a bad trade-off to handle this very specific error case.
This should apply cleanly on top of Jens' for-next branch.
The Oops is the one below:
SP (3fff935ce4d0) is in userspace
1:mon> e
cpu 0x1: Vector: 300 (Data Access) at [c000000fe99eb110]
pc: c0000000005e868c: __sbitmap_queue_get+0x2c/0x180
lr: c000000000575328: __bt_get+0x48/0xd0
sp: c000000fe99eb390
msr: 900000010280b033
dar: 28
dsisr: 40000000
current = 0xc000000fe9966800
paca = 0xc000000007e80300 softe: 0 irq_happened: 0x01
pid = 11035, comm = aio-stress
Linux version 4.8.0-rc6+ (root@bean) (gcc version 5.4.0 20160609
(Ubuntu/IBM 5.4.0-6ubuntu1~16.04.2) ) #3 SMP Mon Oct 10 20:16:53 CDT 2016
1:mon> s
[c000000fe99eb3d0] c000000000575328 __bt_get+0x48/0xd0
[c000000fe99eb400] c000000000575838 bt_get.isra.1+0x78/0x2d0
[c000000fe99eb480] c000000000575cb4 blk_mq_get_tag+0x44/0x100
[c000000fe99eb4b0] c00000000056f6f4 __blk_mq_alloc_request+0x44/0x220
[c000000fe99eb500] c000000000570050 blk_mq_map_request+0x100/0x1f0
[c000000fe99eb580] c000000000574650 blk_mq_make_request+0xf0/0x540
[c000000fe99eb640] c000000000561c44 generic_make_request+0x144/0x230
[c000000fe99eb690] c000000000561e00 submit_bio+0xd0/0x200
[c000000fe99eb740] c0000000003ef740 ext4_io_submit+0x90/0xb0
[c000000fe99eb770] c0000000003e95d8 ext4_writepages+0x588/0xdd0
[c000000fe99eb910] c00000000025a9f0 do_writepages+0x60/0xc0
[c000000fe99eb940] c000000000246c88 __filemap_fdatawrite_range+0xf8/0x180
[c000000fe99eb9e0] c000000000246f90 filemap_write_and_wait_range+0x70/0xf0
[c000000fe99eba20] c0000000003dd844 ext4_sync_file+0x214/0x540
[c000000fe99eba80] c000000000364718 vfs_fsync_range+0x78/0x130
[c000000fe99ebad0] c0000000003dd46c ext4_file_write_iter+0x35c/0x430
[c000000fe99ebb90] c00000000038c280 aio_run_iocb+0x3b0/0x450
[c000000fe99ebce0] c00000000038dc28 do_io_submit+0x368/0x730
[c000000fe99ebe30] c000000000009404 system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Reviewed-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-12-14 18:48:36 -02:00
|
|
|
unsigned int i, hctx_idx;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
struct blk_mq_ctx *ctx;
|
2015-04-21 10:00:20 +08:00
|
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-09-27 02:09:25 +09:00
|
|
|
/*
|
|
|
|
* Avoid others reading imcomplete hctx->cpumask through sysfs
|
|
|
|
*/
|
|
|
|
mutex_lock(&q->sysfs_lock);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
2014-04-09 10:18:23 -06:00
|
|
|
cpumask_clear(hctx->cpumask);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
hctx->nr_ctx = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2017-06-26 12:20:57 +02:00
|
|
|
* Map software to hardware queues.
|
|
|
|
*
|
|
|
|
* If the cpu isn't present, the cpu is mapped to first hctx.
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
*/
|
2018-01-12 10:53:06 +08:00
|
|
|
for_each_possible_cpu(i) {
|
blk-mq: Fix failed allocation path when mapping queues
In blk_mq_map_swqueue, there is a memory optimization that frees the
tags of a queue that has gone unmapped. Later, if that hctx is remapped
after another topology change, the tags need to be reallocated.
If this allocation fails, a simple WARN_ON triggers, but the block layer
ends up with an active hctx without any corresponding set of tags.
Then, any income IO to that hctx can trigger an Oops.
I can reproduce it consistently by running IO, flipping CPUs on and off
and eventually injecting a memory allocation failure in that path.
In the fix below, if the system experiences a failed allocation of any
hctx's tags, we remap all the ctxs of that queue to the hctx_0, which
should always keep it's tags. There is a minor performance hit, since
our mapping just got worse after the error path, but this is
the simplest solution to handle this error path. The performance hit
will disappear after another successful remap.
I considered dropping the memory optimization all together, but it
seemed a bad trade-off to handle this very specific error case.
This should apply cleanly on top of Jens' for-next branch.
The Oops is the one below:
SP (3fff935ce4d0) is in userspace
1:mon> e
cpu 0x1: Vector: 300 (Data Access) at [c000000fe99eb110]
pc: c0000000005e868c: __sbitmap_queue_get+0x2c/0x180
lr: c000000000575328: __bt_get+0x48/0xd0
sp: c000000fe99eb390
msr: 900000010280b033
dar: 28
dsisr: 40000000
current = 0xc000000fe9966800
paca = 0xc000000007e80300 softe: 0 irq_happened: 0x01
pid = 11035, comm = aio-stress
Linux version 4.8.0-rc6+ (root@bean) (gcc version 5.4.0 20160609
(Ubuntu/IBM 5.4.0-6ubuntu1~16.04.2) ) #3 SMP Mon Oct 10 20:16:53 CDT 2016
1:mon> s
[c000000fe99eb3d0] c000000000575328 __bt_get+0x48/0xd0
[c000000fe99eb400] c000000000575838 bt_get.isra.1+0x78/0x2d0
[c000000fe99eb480] c000000000575cb4 blk_mq_get_tag+0x44/0x100
[c000000fe99eb4b0] c00000000056f6f4 __blk_mq_alloc_request+0x44/0x220
[c000000fe99eb500] c000000000570050 blk_mq_map_request+0x100/0x1f0
[c000000fe99eb580] c000000000574650 blk_mq_make_request+0xf0/0x540
[c000000fe99eb640] c000000000561c44 generic_make_request+0x144/0x230
[c000000fe99eb690] c000000000561e00 submit_bio+0xd0/0x200
[c000000fe99eb740] c0000000003ef740 ext4_io_submit+0x90/0xb0
[c000000fe99eb770] c0000000003e95d8 ext4_writepages+0x588/0xdd0
[c000000fe99eb910] c00000000025a9f0 do_writepages+0x60/0xc0
[c000000fe99eb940] c000000000246c88 __filemap_fdatawrite_range+0xf8/0x180
[c000000fe99eb9e0] c000000000246f90 filemap_write_and_wait_range+0x70/0xf0
[c000000fe99eba20] c0000000003dd844 ext4_sync_file+0x214/0x540
[c000000fe99eba80] c000000000364718 vfs_fsync_range+0x78/0x130
[c000000fe99ebad0] c0000000003dd46c ext4_file_write_iter+0x35c/0x430
[c000000fe99ebb90] c00000000038c280 aio_run_iocb+0x3b0/0x450
[c000000fe99ebce0] c00000000038dc28 do_io_submit+0x368/0x730
[c000000fe99ebe30] c000000000009404 system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Reviewed-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-12-14 18:48:36 -02:00
|
|
|
hctx_idx = q->mq_map[i];
|
|
|
|
/* unmapped hw queue can be remapped after CPU topo changed */
|
2017-01-11 14:29:56 -07:00
|
|
|
if (!set->tags[hctx_idx] &&
|
|
|
|
!__blk_mq_alloc_rq_map(set, hctx_idx)) {
|
blk-mq: Fix failed allocation path when mapping queues
In blk_mq_map_swqueue, there is a memory optimization that frees the
tags of a queue that has gone unmapped. Later, if that hctx is remapped
after another topology change, the tags need to be reallocated.
If this allocation fails, a simple WARN_ON triggers, but the block layer
ends up with an active hctx without any corresponding set of tags.
Then, any income IO to that hctx can trigger an Oops.
I can reproduce it consistently by running IO, flipping CPUs on and off
and eventually injecting a memory allocation failure in that path.
In the fix below, if the system experiences a failed allocation of any
hctx's tags, we remap all the ctxs of that queue to the hctx_0, which
should always keep it's tags. There is a minor performance hit, since
our mapping just got worse after the error path, but this is
the simplest solution to handle this error path. The performance hit
will disappear after another successful remap.
I considered dropping the memory optimization all together, but it
seemed a bad trade-off to handle this very specific error case.
This should apply cleanly on top of Jens' for-next branch.
The Oops is the one below:
SP (3fff935ce4d0) is in userspace
1:mon> e
cpu 0x1: Vector: 300 (Data Access) at [c000000fe99eb110]
pc: c0000000005e868c: __sbitmap_queue_get+0x2c/0x180
lr: c000000000575328: __bt_get+0x48/0xd0
sp: c000000fe99eb390
msr: 900000010280b033
dar: 28
dsisr: 40000000
current = 0xc000000fe9966800
paca = 0xc000000007e80300 softe: 0 irq_happened: 0x01
pid = 11035, comm = aio-stress
Linux version 4.8.0-rc6+ (root@bean) (gcc version 5.4.0 20160609
(Ubuntu/IBM 5.4.0-6ubuntu1~16.04.2) ) #3 SMP Mon Oct 10 20:16:53 CDT 2016
1:mon> s
[c000000fe99eb3d0] c000000000575328 __bt_get+0x48/0xd0
[c000000fe99eb400] c000000000575838 bt_get.isra.1+0x78/0x2d0
[c000000fe99eb480] c000000000575cb4 blk_mq_get_tag+0x44/0x100
[c000000fe99eb4b0] c00000000056f6f4 __blk_mq_alloc_request+0x44/0x220
[c000000fe99eb500] c000000000570050 blk_mq_map_request+0x100/0x1f0
[c000000fe99eb580] c000000000574650 blk_mq_make_request+0xf0/0x540
[c000000fe99eb640] c000000000561c44 generic_make_request+0x144/0x230
[c000000fe99eb690] c000000000561e00 submit_bio+0xd0/0x200
[c000000fe99eb740] c0000000003ef740 ext4_io_submit+0x90/0xb0
[c000000fe99eb770] c0000000003e95d8 ext4_writepages+0x588/0xdd0
[c000000fe99eb910] c00000000025a9f0 do_writepages+0x60/0xc0
[c000000fe99eb940] c000000000246c88 __filemap_fdatawrite_range+0xf8/0x180
[c000000fe99eb9e0] c000000000246f90 filemap_write_and_wait_range+0x70/0xf0
[c000000fe99eba20] c0000000003dd844 ext4_sync_file+0x214/0x540
[c000000fe99eba80] c000000000364718 vfs_fsync_range+0x78/0x130
[c000000fe99ebad0] c0000000003dd46c ext4_file_write_iter+0x35c/0x430
[c000000fe99ebb90] c00000000038c280 aio_run_iocb+0x3b0/0x450
[c000000fe99ebce0] c00000000038dc28 do_io_submit+0x368/0x730
[c000000fe99ebe30] c000000000009404 system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Reviewed-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-12-14 18:48:36 -02:00
|
|
|
/*
|
|
|
|
* If tags initialization fail for some hctx,
|
|
|
|
* that hctx won't be brought online. In this
|
|
|
|
* case, remap the current ctx to hctx[0] which
|
|
|
|
* is guaranteed to always have tags allocated
|
|
|
|
*/
|
2017-01-11 14:29:56 -07:00
|
|
|
q->mq_map[i] = 0;
|
blk-mq: Fix failed allocation path when mapping queues
In blk_mq_map_swqueue, there is a memory optimization that frees the
tags of a queue that has gone unmapped. Later, if that hctx is remapped
after another topology change, the tags need to be reallocated.
If this allocation fails, a simple WARN_ON triggers, but the block layer
ends up with an active hctx without any corresponding set of tags.
Then, any income IO to that hctx can trigger an Oops.
I can reproduce it consistently by running IO, flipping CPUs on and off
and eventually injecting a memory allocation failure in that path.
In the fix below, if the system experiences a failed allocation of any
hctx's tags, we remap all the ctxs of that queue to the hctx_0, which
should always keep it's tags. There is a minor performance hit, since
our mapping just got worse after the error path, but this is
the simplest solution to handle this error path. The performance hit
will disappear after another successful remap.
I considered dropping the memory optimization all together, but it
seemed a bad trade-off to handle this very specific error case.
This should apply cleanly on top of Jens' for-next branch.
The Oops is the one below:
SP (3fff935ce4d0) is in userspace
1:mon> e
cpu 0x1: Vector: 300 (Data Access) at [c000000fe99eb110]
pc: c0000000005e868c: __sbitmap_queue_get+0x2c/0x180
lr: c000000000575328: __bt_get+0x48/0xd0
sp: c000000fe99eb390
msr: 900000010280b033
dar: 28
dsisr: 40000000
current = 0xc000000fe9966800
paca = 0xc000000007e80300 softe: 0 irq_happened: 0x01
pid = 11035, comm = aio-stress
Linux version 4.8.0-rc6+ (root@bean) (gcc version 5.4.0 20160609
(Ubuntu/IBM 5.4.0-6ubuntu1~16.04.2) ) #3 SMP Mon Oct 10 20:16:53 CDT 2016
1:mon> s
[c000000fe99eb3d0] c000000000575328 __bt_get+0x48/0xd0
[c000000fe99eb400] c000000000575838 bt_get.isra.1+0x78/0x2d0
[c000000fe99eb480] c000000000575cb4 blk_mq_get_tag+0x44/0x100
[c000000fe99eb4b0] c00000000056f6f4 __blk_mq_alloc_request+0x44/0x220
[c000000fe99eb500] c000000000570050 blk_mq_map_request+0x100/0x1f0
[c000000fe99eb580] c000000000574650 blk_mq_make_request+0xf0/0x540
[c000000fe99eb640] c000000000561c44 generic_make_request+0x144/0x230
[c000000fe99eb690] c000000000561e00 submit_bio+0xd0/0x200
[c000000fe99eb740] c0000000003ef740 ext4_io_submit+0x90/0xb0
[c000000fe99eb770] c0000000003e95d8 ext4_writepages+0x588/0xdd0
[c000000fe99eb910] c00000000025a9f0 do_writepages+0x60/0xc0
[c000000fe99eb940] c000000000246c88 __filemap_fdatawrite_range+0xf8/0x180
[c000000fe99eb9e0] c000000000246f90 filemap_write_and_wait_range+0x70/0xf0
[c000000fe99eba20] c0000000003dd844 ext4_sync_file+0x214/0x540
[c000000fe99eba80] c000000000364718 vfs_fsync_range+0x78/0x130
[c000000fe99ebad0] c0000000003dd46c ext4_file_write_iter+0x35c/0x430
[c000000fe99ebb90] c00000000038c280 aio_run_iocb+0x3b0/0x450
[c000000fe99ebce0] c00000000038dc28 do_io_submit+0x368/0x730
[c000000fe99ebe30] c000000000009404 system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Reviewed-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-12-14 18:48:36 -02:00
|
|
|
}
|
|
|
|
|
2016-03-19 11:30:33 +01:00
|
|
|
ctx = per_cpu_ptr(q->queue_ctx, i);
|
2016-09-14 16:18:54 +02:00
|
|
|
hctx = blk_mq_map_queue(q, i);
|
2015-12-17 17:08:14 -07:00
|
|
|
|
2014-04-09 10:18:23 -06:00
|
|
|
cpumask_set_cpu(i, hctx->cpumask);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
ctx->index_hw = hctx->nr_ctx;
|
|
|
|
hctx->ctxs[hctx->nr_ctx++] = ctx;
|
|
|
|
}
|
2014-05-07 10:26:44 -06:00
|
|
|
|
2015-09-27 02:09:25 +09:00
|
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
|
2014-05-07 10:26:44 -06:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
2014-05-21 14:01:15 -06:00
|
|
|
/*
|
2014-08-15 13:19:15 -06:00
|
|
|
* If no software queues are mapped to this hardware queue,
|
|
|
|
* disable it and free the request entries.
|
2014-05-21 14:01:15 -06:00
|
|
|
*/
|
|
|
|
if (!hctx->nr_ctx) {
|
blk-mq: Fix failed allocation path when mapping queues
In blk_mq_map_swqueue, there is a memory optimization that frees the
tags of a queue that has gone unmapped. Later, if that hctx is remapped
after another topology change, the tags need to be reallocated.
If this allocation fails, a simple WARN_ON triggers, but the block layer
ends up with an active hctx without any corresponding set of tags.
Then, any income IO to that hctx can trigger an Oops.
I can reproduce it consistently by running IO, flipping CPUs on and off
and eventually injecting a memory allocation failure in that path.
In the fix below, if the system experiences a failed allocation of any
hctx's tags, we remap all the ctxs of that queue to the hctx_0, which
should always keep it's tags. There is a minor performance hit, since
our mapping just got worse after the error path, but this is
the simplest solution to handle this error path. The performance hit
will disappear after another successful remap.
I considered dropping the memory optimization all together, but it
seemed a bad trade-off to handle this very specific error case.
This should apply cleanly on top of Jens' for-next branch.
The Oops is the one below:
SP (3fff935ce4d0) is in userspace
1:mon> e
cpu 0x1: Vector: 300 (Data Access) at [c000000fe99eb110]
pc: c0000000005e868c: __sbitmap_queue_get+0x2c/0x180
lr: c000000000575328: __bt_get+0x48/0xd0
sp: c000000fe99eb390
msr: 900000010280b033
dar: 28
dsisr: 40000000
current = 0xc000000fe9966800
paca = 0xc000000007e80300 softe: 0 irq_happened: 0x01
pid = 11035, comm = aio-stress
Linux version 4.8.0-rc6+ (root@bean) (gcc version 5.4.0 20160609
(Ubuntu/IBM 5.4.0-6ubuntu1~16.04.2) ) #3 SMP Mon Oct 10 20:16:53 CDT 2016
1:mon> s
[c000000fe99eb3d0] c000000000575328 __bt_get+0x48/0xd0
[c000000fe99eb400] c000000000575838 bt_get.isra.1+0x78/0x2d0
[c000000fe99eb480] c000000000575cb4 blk_mq_get_tag+0x44/0x100
[c000000fe99eb4b0] c00000000056f6f4 __blk_mq_alloc_request+0x44/0x220
[c000000fe99eb500] c000000000570050 blk_mq_map_request+0x100/0x1f0
[c000000fe99eb580] c000000000574650 blk_mq_make_request+0xf0/0x540
[c000000fe99eb640] c000000000561c44 generic_make_request+0x144/0x230
[c000000fe99eb690] c000000000561e00 submit_bio+0xd0/0x200
[c000000fe99eb740] c0000000003ef740 ext4_io_submit+0x90/0xb0
[c000000fe99eb770] c0000000003e95d8 ext4_writepages+0x588/0xdd0
[c000000fe99eb910] c00000000025a9f0 do_writepages+0x60/0xc0
[c000000fe99eb940] c000000000246c88 __filemap_fdatawrite_range+0xf8/0x180
[c000000fe99eb9e0] c000000000246f90 filemap_write_and_wait_range+0x70/0xf0
[c000000fe99eba20] c0000000003dd844 ext4_sync_file+0x214/0x540
[c000000fe99eba80] c000000000364718 vfs_fsync_range+0x78/0x130
[c000000fe99ebad0] c0000000003dd46c ext4_file_write_iter+0x35c/0x430
[c000000fe99ebb90] c00000000038c280 aio_run_iocb+0x3b0/0x450
[c000000fe99ebce0] c00000000038dc28 do_io_submit+0x368/0x730
[c000000fe99ebe30] c000000000009404 system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Reviewed-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-12-14 18:48:36 -02:00
|
|
|
/* Never unmap queue 0. We need it as a
|
|
|
|
* fallback in case of a new remap fails
|
|
|
|
* allocation
|
|
|
|
*/
|
2017-01-11 14:29:56 -07:00
|
|
|
if (i && set->tags[i])
|
|
|
|
blk_mq_free_map_and_requests(set, i);
|
|
|
|
|
2015-04-21 10:00:20 +08:00
|
|
|
hctx->tags = NULL;
|
2014-05-21 14:01:15 -06:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2015-04-21 10:00:20 +08:00
|
|
|
hctx->tags = set->tags[i];
|
|
|
|
WARN_ON(!hctx->tags);
|
|
|
|
|
2015-04-15 11:39:29 -06:00
|
|
|
/*
|
|
|
|
* Set the map size to the number of mapped software queues.
|
|
|
|
* This is more accurate and more efficient than looping
|
|
|
|
* over all possibly mapped software queues.
|
|
|
|
*/
|
2016-09-17 08:38:44 -06:00
|
|
|
sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
|
2015-04-15 11:39:29 -06:00
|
|
|
|
2014-05-21 14:01:15 -06:00
|
|
|
/*
|
|
|
|
* Initialize batch roundrobin counts
|
|
|
|
*/
|
2018-01-12 10:53:06 +08:00
|
|
|
hctx->next_cpu = cpumask_first_and(hctx->cpumask,
|
|
|
|
cpu_online_mask);
|
2014-05-07 10:26:44 -06:00
|
|
|
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
|
|
|
|
}
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2017-06-20 17:56:13 -06:00
|
|
|
/*
|
|
|
|
* Caller needs to ensure that we're either frozen/quiesced, or that
|
|
|
|
* the queue isn't live yet.
|
|
|
|
*/
|
2015-11-03 10:40:06 -05:00
|
|
|
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
|
2014-05-13 15:10:52 -06:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i;
|
|
|
|
|
2015-11-03 10:40:06 -05:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
2017-06-20 17:56:13 -06:00
|
|
|
if (shared) {
|
|
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
|
|
atomic_inc(&q->shared_hctx_restart);
|
2015-11-03 10:40:06 -05:00
|
|
|
hctx->flags |= BLK_MQ_F_TAG_SHARED;
|
2017-06-20 17:56:13 -06:00
|
|
|
} else {
|
|
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
|
|
atomic_dec(&q->shared_hctx_restart);
|
2015-11-03 10:40:06 -05:00
|
|
|
hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
|
2017-06-20 17:56:13 -06:00
|
|
|
}
|
2015-11-03 10:40:06 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-20 17:56:13 -06:00
|
|
|
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
|
|
|
|
bool shared)
|
2015-11-03 10:40:06 -05:00
|
|
|
{
|
|
|
|
struct request_queue *q;
|
2014-05-13 15:10:52 -06:00
|
|
|
|
2017-04-07 11:16:49 -07:00
|
|
|
lockdep_assert_held(&set->tag_list_lock);
|
|
|
|
|
2014-05-13 15:10:52 -06:00
|
|
|
list_for_each_entry(q, &set->tag_list, tag_set_list) {
|
|
|
|
blk_mq_freeze_queue(q);
|
2015-11-03 10:40:06 -05:00
|
|
|
queue_set_hctx_shared(q, shared);
|
2014-05-13 15:10:52 -06:00
|
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_del_queue_tag_set(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
|
|
|
|
|
|
mutex_lock(&set->tag_list_lock);
|
2017-04-07 11:16:49 -07:00
|
|
|
list_del_rcu(&q->tag_set_list);
|
|
|
|
INIT_LIST_HEAD(&q->tag_set_list);
|
2015-11-03 10:40:06 -05:00
|
|
|
if (list_is_singular(&set->tag_list)) {
|
|
|
|
/* just transitioned to unshared */
|
|
|
|
set->flags &= ~BLK_MQ_F_TAG_SHARED;
|
|
|
|
/* update existing queue */
|
|
|
|
blk_mq_update_tag_set_depth(set, false);
|
|
|
|
}
|
2014-05-13 15:10:52 -06:00
|
|
|
mutex_unlock(&set->tag_list_lock);
|
2017-04-07 11:16:49 -07:00
|
|
|
|
|
|
|
synchronize_rcu();
|
2014-05-13 15:10:52 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
|
|
|
|
struct request_queue *q)
|
|
|
|
{
|
|
|
|
q->tag_set = set;
|
|
|
|
|
|
|
|
mutex_lock(&set->tag_list_lock);
|
2015-11-03 10:40:06 -05:00
|
|
|
|
2017-11-10 22:05:12 -07:00
|
|
|
/*
|
|
|
|
* Check to see if we're transitioning to shared (from 1 to 2 queues).
|
|
|
|
*/
|
|
|
|
if (!list_empty(&set->tag_list) &&
|
|
|
|
!(set->flags & BLK_MQ_F_TAG_SHARED)) {
|
2015-11-03 10:40:06 -05:00
|
|
|
set->flags |= BLK_MQ_F_TAG_SHARED;
|
|
|
|
/* update existing queue */
|
|
|
|
blk_mq_update_tag_set_depth(set, true);
|
|
|
|
}
|
|
|
|
if (set->flags & BLK_MQ_F_TAG_SHARED)
|
|
|
|
queue_set_hctx_shared(q, true);
|
2017-04-07 11:16:49 -07:00
|
|
|
list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
|
2015-11-03 10:40:06 -05:00
|
|
|
|
2014-05-13 15:10:52 -06:00
|
|
|
mutex_unlock(&set->tag_list_lock);
|
|
|
|
}
|
|
|
|
|
2015-01-29 20:17:27 +08:00
|
|
|
/*
|
|
|
|
* It is the actual release handler for mq, but we do it from
|
|
|
|
* request queue's release handler for avoiding use-after-free
|
|
|
|
* and headache because q->mq_kobj shouldn't have been introduced,
|
|
|
|
* but we can't group ctx/kctx kobj without it.
|
|
|
|
*/
|
|
|
|
void blk_mq_release(struct request_queue *q)
|
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
/* hctx kobj stays in hctx */
|
2015-06-04 22:25:04 +08:00
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
|
|
if (!hctx)
|
|
|
|
continue;
|
2017-02-22 18:14:01 +08:00
|
|
|
kobject_put(&hctx->kobj);
|
2015-06-04 22:25:04 +08:00
|
|
|
}
|
2015-01-29 20:17:27 +08:00
|
|
|
|
2015-09-27 02:09:21 +09:00
|
|
|
q->mq_map = NULL;
|
|
|
|
|
2015-01-29 20:17:27 +08:00
|
|
|
kfree(q->queue_hw_ctx);
|
|
|
|
|
2017-02-22 18:14:00 +08:00
|
|
|
/*
|
|
|
|
* release .mq_kobj and sw queue's kobject now because
|
|
|
|
* both share lifetime with request queue.
|
|
|
|
*/
|
|
|
|
blk_mq_sysfs_deinit(q);
|
|
|
|
|
2015-01-29 20:17:27 +08:00
|
|
|
free_percpu(q->queue_ctx);
|
|
|
|
}
|
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
|
2015-03-12 23:56:02 -04:00
|
|
|
{
|
|
|
|
struct request_queue *uninit_q, *q;
|
|
|
|
|
2018-02-28 10:15:31 -08:00
|
|
|
uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
|
2015-03-12 23:56:02 -04:00
|
|
|
if (!uninit_q)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
q = blk_mq_init_allocated_queue(set, uninit_q);
|
|
|
|
if (IS_ERR(q))
|
|
|
|
blk_cleanup_queue(uninit_q);
|
|
|
|
|
|
|
|
return q;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_init_queue);
|
|
|
|
|
2017-06-20 11:15:38 -07:00
|
|
|
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
|
|
|
|
{
|
|
|
|
int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
|
|
|
|
|
2018-01-09 08:29:53 -08:00
|
|
|
BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
|
2017-06-20 11:15:38 -07:00
|
|
|
__alignof__(struct blk_mq_hw_ctx)) !=
|
|
|
|
sizeof(struct blk_mq_hw_ctx));
|
|
|
|
|
|
|
|
if (tag_set->flags & BLK_MQ_F_BLOCKING)
|
|
|
|
hw_ctx_size += sizeof(struct srcu_struct);
|
|
|
|
|
|
|
|
return hw_ctx_size;
|
|
|
|
}
|
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
|
|
|
|
struct request_queue *q)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2015-12-17 17:08:14 -07:00
|
|
|
int i, j;
|
|
|
|
struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
|
2014-05-27 12:06:53 -06:00
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
blk_mq_sysfs_unregister(q);
|
2018-01-06 16:27:40 +08:00
|
|
|
|
|
|
|
/* protect against switching io scheduler */
|
|
|
|
mutex_lock(&q->sysfs_lock);
|
2014-04-15 14:14:00 -06:00
|
|
|
for (i = 0; i < set->nr_hw_queues; i++) {
|
2015-12-17 17:08:14 -07:00
|
|
|
int node;
|
2014-05-27 12:06:53 -06:00
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
if (hctxs[i])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
node = blk_mq_hw_queue_to_node(q->mq_map, i);
|
2017-06-20 11:15:38 -07:00
|
|
|
hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
|
2014-05-28 18:11:06 +02:00
|
|
|
GFP_KERNEL, node);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
if (!hctxs[i])
|
2015-12-17 17:08:14 -07:00
|
|
|
break;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-10-13 15:41:54 -06:00
|
|
|
if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
|
2015-12-17 17:08:14 -07:00
|
|
|
node)) {
|
|
|
|
kfree(hctxs[i]);
|
|
|
|
hctxs[i] = NULL;
|
|
|
|
break;
|
|
|
|
}
|
2014-04-09 10:18:23 -06:00
|
|
|
|
2014-05-13 15:10:52 -06:00
|
|
|
atomic_set(&hctxs[i]->nr_active, 0);
|
2014-05-27 12:06:53 -06:00
|
|
|
hctxs[i]->numa_node = node;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
hctxs[i]->queue_num = i;
|
2015-12-17 17:08:14 -07:00
|
|
|
|
|
|
|
if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
|
|
|
|
free_cpumask_var(hctxs[i]->cpumask);
|
|
|
|
kfree(hctxs[i]);
|
|
|
|
hctxs[i] = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
blk_mq_hctx_kobj_init(hctxs[i]);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
2015-12-17 17:08:14 -07:00
|
|
|
for (j = i; j < q->nr_hw_queues; j++) {
|
|
|
|
struct blk_mq_hw_ctx *hctx = hctxs[j];
|
|
|
|
|
|
|
|
if (hctx) {
|
2017-01-11 14:29:56 -07:00
|
|
|
if (hctx->tags)
|
|
|
|
blk_mq_free_map_and_requests(set, j);
|
2015-12-17 17:08:14 -07:00
|
|
|
blk_mq_exit_hctx(q, set, hctx, j);
|
|
|
|
kobject_put(&hctx->kobj);
|
|
|
|
hctxs[j] = NULL;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->nr_hw_queues = i;
|
2018-01-06 16:27:40 +08:00
|
|
|
mutex_unlock(&q->sysfs_lock);
|
2015-12-17 17:08:14 -07:00
|
|
|
blk_mq_sysfs_register(q);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
|
|
|
|
struct request_queue *q)
|
|
|
|
{
|
2016-02-12 15:27:00 +08:00
|
|
|
/* mark the queue as mq asap */
|
|
|
|
q->mq_ops = set->ops;
|
|
|
|
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
|
2017-04-07 06:24:03 -06:00
|
|
|
blk_mq_poll_stats_bkt,
|
|
|
|
BLK_MQ_POLL_STATS_BKTS, q);
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
if (!q->poll_cb)
|
|
|
|
goto err_exit;
|
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
|
|
|
|
if (!q->queue_ctx)
|
2016-05-25 23:23:27 -07:00
|
|
|
goto err_exit;
|
2015-12-17 17:08:14 -07:00
|
|
|
|
2017-02-22 18:13:59 +08:00
|
|
|
/* init q->mq_kobj and sw queues' kobjects */
|
|
|
|
blk_mq_sysfs_init(q);
|
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
|
|
|
|
GFP_KERNEL, set->numa_node);
|
|
|
|
if (!q->queue_hw_ctx)
|
|
|
|
goto err_percpu;
|
|
|
|
|
2016-09-14 16:18:53 +02:00
|
|
|
q->mq_map = set->mq_map;
|
2015-12-17 17:08:14 -07:00
|
|
|
|
|
|
|
blk_mq_realloc_hw_ctxs(set, q);
|
|
|
|
if (!q->nr_hw_queues)
|
|
|
|
goto err_hctxs;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2015-10-30 20:57:30 +08:00
|
|
|
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
|
2015-07-16 19:53:22 +08:00
|
|
|
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
q->nr_queues = nr_cpu_ids;
|
|
|
|
|
2013-11-19 09:25:07 -07:00
|
|
|
q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-05-29 09:53:32 -06:00
|
|
|
if (!(set->flags & BLK_MQ_F_SG_MERGE))
|
2018-03-07 17:10:03 -08:00
|
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
|
2014-05-29 09:53:32 -06:00
|
|
|
|
2014-02-07 10:22:39 -08:00
|
|
|
q->sg_reserved_size = INT_MAX;
|
|
|
|
|
2016-09-14 13:28:30 -04:00
|
|
|
INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
|
2014-05-28 08:08:02 -06:00
|
|
|
INIT_LIST_HEAD(&q->requeue_list);
|
|
|
|
spin_lock_init(&q->requeue_lock);
|
|
|
|
|
2017-03-22 15:01:50 -04:00
|
|
|
blk_queue_make_request(q, blk_mq_make_request);
|
2017-11-02 21:29:54 +03:00
|
|
|
if (q->mq_ops->poll)
|
|
|
|
q->poll_fn = blk_mq_poll;
|
2014-05-22 10:40:51 -06:00
|
|
|
|
2014-05-20 15:17:27 -06:00
|
|
|
/*
|
|
|
|
* Do this after blk_queue_make_request() overrides it...
|
|
|
|
*/
|
|
|
|
q->nr_requests = set->queue_depth;
|
|
|
|
|
2016-11-14 13:03:03 -07:00
|
|
|
/*
|
|
|
|
* Default to classic polling
|
|
|
|
*/
|
|
|
|
q->poll_nsec = -1;
|
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
if (set->ops->complete)
|
|
|
|
blk_queue_softirq_done(q, set->ops->complete);
|
2014-02-10 03:24:38 -08:00
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
blk_mq_init_cpu_queues(q, set->nr_hw_queues);
|
2014-05-13 15:10:52 -06:00
|
|
|
blk_mq_add_queue_tag_set(set, q);
|
2017-06-26 12:20:57 +02:00
|
|
|
blk_mq_map_swqueue(q);
|
2015-09-27 02:09:20 +09:00
|
|
|
|
2017-01-13 14:43:58 -07:00
|
|
|
if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = blk_mq_sched_init(q);
|
|
|
|
if (ret)
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
return q;
|
2014-02-10 09:29:00 -07:00
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
err_hctxs:
|
2015-12-17 17:08:14 -07:00
|
|
|
kfree(q->queue_hw_ctx);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
err_percpu:
|
2015-12-17 17:08:14 -07:00
|
|
|
free_percpu(q->queue_ctx);
|
2016-05-25 23:23:27 -07:00
|
|
|
err_exit:
|
|
|
|
q->mq_ops = NULL;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
}
|
2015-03-12 23:56:02 -04:00
|
|
|
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
|
|
|
void blk_mq_free_queue(struct request_queue *q)
|
|
|
|
{
|
2014-05-27 23:35:13 +08:00
|
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-05-13 15:10:52 -06:00
|
|
|
blk_mq_del_queue_tag_set(q);
|
2014-05-27 23:35:13 +08:00
|
|
|
blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Basically redo blk_mq_init_queue with queue frozen */
|
2017-06-26 12:20:57 +02:00
|
|
|
static void blk_mq_queue_reinit(struct request_queue *q)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
{
|
2015-05-07 09:38:13 +02:00
|
|
|
WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2017-05-04 08:17:21 -06:00
|
|
|
blk_mq_debugfs_unregister_hctxs(q);
|
2014-05-30 08:25:36 -06:00
|
|
|
blk_mq_sysfs_unregister(q);
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
/*
|
|
|
|
* redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
|
2017-11-10 22:05:12 -07:00
|
|
|
* we should change hctx numa_node according to the new topology (this
|
|
|
|
* involves freeing and re-allocating memory, worth doing?)
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
*/
|
2017-06-26 12:20:57 +02:00
|
|
|
blk_mq_map_swqueue(q);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
|
2014-05-30 08:25:36 -06:00
|
|
|
blk_mq_sysfs_register(q);
|
2017-05-04 08:17:21 -06:00
|
|
|
blk_mq_debugfs_register_hctxs(q);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
}
|
|
|
|
|
2014-09-10 09:02:03 -06:00
|
|
|
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
for (i = 0; i < set->nr_hw_queues; i++)
|
|
|
|
if (!__blk_mq_alloc_rq_map(set, i))
|
2014-09-10 09:02:03 -06:00
|
|
|
goto out_unwind;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_unwind:
|
|
|
|
while (--i >= 0)
|
2017-01-11 14:29:56 -07:00
|
|
|
blk_mq_free_rq_map(set->tags[i]);
|
2014-09-10 09:02:03 -06:00
|
|
|
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate the request maps associated with this tag_set. Note that this
|
|
|
|
* may reduce the depth asked for, if memory is tight. set->queue_depth
|
|
|
|
* will be updated to reflect the allocated depth.
|
|
|
|
*/
|
|
|
|
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
|
|
|
|
{
|
|
|
|
unsigned int depth;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
depth = set->queue_depth;
|
|
|
|
do {
|
|
|
|
err = __blk_mq_alloc_rq_maps(set);
|
|
|
|
if (!err)
|
|
|
|
break;
|
|
|
|
|
|
|
|
set->queue_depth >>= 1;
|
|
|
|
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while (set->queue_depth);
|
|
|
|
|
|
|
|
if (!set->queue_depth || err) {
|
|
|
|
pr_err("blk-mq: failed to allocate request map\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (depth != set->queue_depth)
|
|
|
|
pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
|
|
|
|
depth, set->queue_depth);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-04-07 08:53:11 -06:00
|
|
|
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
|
|
|
|
{
|
2018-01-06 16:27:39 +08:00
|
|
|
if (set->ops->map_queues) {
|
|
|
|
int cpu;
|
|
|
|
/*
|
|
|
|
* transport .map_queues is usually done in the following
|
|
|
|
* way:
|
|
|
|
*
|
|
|
|
* for (queue = 0; queue < set->nr_hw_queues; queue++) {
|
|
|
|
* mask = get_cpu_mask(queue)
|
|
|
|
* for_each_cpu(cpu, mask)
|
|
|
|
* set->mq_map[cpu] = queue;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* When we need to remap, the table has to be cleared for
|
|
|
|
* killing stale mapping since one CPU may not be mapped
|
|
|
|
* to any hw queue.
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
set->mq_map[cpu] = 0;
|
|
|
|
|
2017-04-07 08:53:11 -06:00
|
|
|
return set->ops->map_queues(set);
|
2018-01-06 16:27:39 +08:00
|
|
|
} else
|
2017-04-07 08:53:11 -06:00
|
|
|
return blk_mq_map_queues(set);
|
|
|
|
}
|
|
|
|
|
2014-06-05 15:21:56 -06:00
|
|
|
/*
|
|
|
|
* Alloc a tag set to be associated with one or more request queues.
|
|
|
|
* May fail with EINVAL for various error conditions. May adjust the
|
|
|
|
* requested depth down, if if it too large. In that case, the set
|
|
|
|
* value will be stored in set->queue_depth.
|
|
|
|
*/
|
2014-04-15 14:14:00 -06:00
|
|
|
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
|
|
|
|
{
|
2016-09-14 16:18:55 +02:00
|
|
|
int ret;
|
|
|
|
|
2014-10-30 14:45:11 +01:00
|
|
|
BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
|
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
if (!set->nr_hw_queues)
|
|
|
|
return -EINVAL;
|
2014-06-05 15:21:56 -06:00
|
|
|
if (!set->queue_depth)
|
2014-04-15 14:14:00 -06:00
|
|
|
return -EINVAL;
|
|
|
|
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2016-09-14 16:18:54 +02:00
|
|
|
if (!set->ops->queue_rq)
|
2014-04-15 14:14:00 -06:00
|
|
|
return -EINVAL;
|
|
|
|
|
2017-10-14 17:22:29 +08:00
|
|
|
if (!set->ops->get_budget ^ !set->ops->put_budget)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2014-06-05 15:21:56 -06:00
|
|
|
if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
|
|
|
|
pr_info("blk-mq: reduced tag depth to %u\n",
|
|
|
|
BLK_MQ_MAX_DEPTH);
|
|
|
|
set->queue_depth = BLK_MQ_MAX_DEPTH;
|
|
|
|
}
|
2014-04-15 14:14:00 -06:00
|
|
|
|
2014-11-30 16:00:58 -08:00
|
|
|
/*
|
|
|
|
* If a crashdump is active, then we are potentially in a very
|
|
|
|
* memory constrained environment. Limit us to 1 queue and
|
|
|
|
* 64 tags to prevent using too much memory.
|
|
|
|
*/
|
|
|
|
if (is_kdump_kernel()) {
|
|
|
|
set->nr_hw_queues = 1;
|
|
|
|
set->queue_depth = min(64U, set->queue_depth);
|
|
|
|
}
|
2015-12-17 17:08:14 -07:00
|
|
|
/*
|
|
|
|
* There is no use for more h/w queues than cpus.
|
|
|
|
*/
|
|
|
|
if (set->nr_hw_queues > nr_cpu_ids)
|
|
|
|
set->nr_hw_queues = nr_cpu_ids;
|
2014-11-30 16:00:58 -08:00
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
|
2014-04-15 14:14:00 -06:00
|
|
|
GFP_KERNEL, set->numa_node);
|
|
|
|
if (!set->tags)
|
2014-09-10 09:02:03 -06:00
|
|
|
return -ENOMEM;
|
2014-04-15 14:14:00 -06:00
|
|
|
|
2016-09-14 16:18:55 +02:00
|
|
|
ret = -ENOMEM;
|
|
|
|
set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
|
|
|
|
GFP_KERNEL, set->numa_node);
|
2016-09-14 16:18:53 +02:00
|
|
|
if (!set->mq_map)
|
|
|
|
goto out_free_tags;
|
|
|
|
|
2017-04-07 08:53:11 -06:00
|
|
|
ret = blk_mq_update_queue_map(set);
|
2016-09-14 16:18:55 +02:00
|
|
|
if (ret)
|
|
|
|
goto out_free_mq_map;
|
|
|
|
|
|
|
|
ret = blk_mq_alloc_rq_maps(set);
|
|
|
|
if (ret)
|
2016-09-14 16:18:53 +02:00
|
|
|
goto out_free_mq_map;
|
2014-04-15 14:14:00 -06:00
|
|
|
|
2014-05-13 15:10:52 -06:00
|
|
|
mutex_init(&set->tag_list_lock);
|
|
|
|
INIT_LIST_HEAD(&set->tag_list);
|
|
|
|
|
2014-04-15 14:14:00 -06:00
|
|
|
return 0;
|
2016-09-14 16:18:53 +02:00
|
|
|
|
|
|
|
out_free_mq_map:
|
|
|
|
kfree(set->mq_map);
|
|
|
|
set->mq_map = NULL;
|
|
|
|
out_free_tags:
|
2014-09-02 11:38:44 -05:00
|
|
|
kfree(set->tags);
|
|
|
|
set->tags = NULL;
|
2016-09-14 16:18:55 +02:00
|
|
|
return ret;
|
2014-04-15 14:14:00 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_alloc_tag_set);
|
|
|
|
|
|
|
|
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2017-01-11 14:29:56 -07:00
|
|
|
for (i = 0; i < nr_cpu_ids; i++)
|
|
|
|
blk_mq_free_map_and_requests(set, i);
|
2014-05-21 14:01:15 -06:00
|
|
|
|
2016-09-14 16:18:53 +02:00
|
|
|
kfree(set->mq_map);
|
|
|
|
set->mq_map = NULL;
|
|
|
|
|
2014-04-24 00:07:34 +08:00
|
|
|
kfree(set->tags);
|
2014-09-02 11:38:44 -05:00
|
|
|
set->tags = NULL;
|
2014-04-15 14:14:00 -06:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(blk_mq_free_tag_set);
|
|
|
|
|
2014-05-20 11:49:02 -06:00
|
|
|
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
|
|
|
|
{
|
|
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
int i, ret;
|
|
|
|
|
2017-01-17 06:03:22 -07:00
|
|
|
if (!set)
|
2014-05-20 11:49:02 -06:00
|
|
|
return -EINVAL;
|
|
|
|
|
2017-01-19 10:59:07 -07:00
|
|
|
blk_mq_freeze_queue(q);
|
2018-01-06 16:27:38 +08:00
|
|
|
blk_mq_quiesce_queue(q);
|
2017-01-19 10:59:07 -07:00
|
|
|
|
2014-05-20 11:49:02 -06:00
|
|
|
ret = 0;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
2016-02-18 14:56:35 -07:00
|
|
|
if (!hctx->tags)
|
|
|
|
continue;
|
2017-01-17 06:03:22 -07:00
|
|
|
/*
|
|
|
|
* If we're using an MQ scheduler, just update the scheduler
|
|
|
|
* queue depth. This is similar to what the old code would do.
|
|
|
|
*/
|
2017-01-19 10:59:07 -07:00
|
|
|
if (!hctx->sched_tags) {
|
2017-09-22 23:36:28 +08:00
|
|
|
ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
|
2017-01-19 10:59:07 -07:00
|
|
|
false);
|
|
|
|
} else {
|
|
|
|
ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
|
|
|
|
nr, true);
|
|
|
|
}
|
2014-05-20 11:49:02 -06:00
|
|
|
if (ret)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ret)
|
|
|
|
q->nr_requests = nr;
|
|
|
|
|
2018-01-06 16:27:38 +08:00
|
|
|
blk_mq_unquiesce_queue(q);
|
2017-01-19 10:59:07 -07:00
|
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
|
2014-05-20 11:49:02 -06:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-05-30 14:39:11 -04:00
|
|
|
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
|
|
|
|
int nr_hw_queues)
|
2015-12-17 17:08:14 -07:00
|
|
|
{
|
|
|
|
struct request_queue *q;
|
|
|
|
|
2017-04-07 11:16:49 -07:00
|
|
|
lockdep_assert_held(&set->tag_list_lock);
|
|
|
|
|
2015-12-17 17:08:14 -07:00
|
|
|
if (nr_hw_queues > nr_cpu_ids)
|
|
|
|
nr_hw_queues = nr_cpu_ids;
|
|
|
|
if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
|
|
|
|
return;
|
|
|
|
|
|
|
|
list_for_each_entry(q, &set->tag_list, tag_set_list)
|
|
|
|
blk_mq_freeze_queue(q);
|
|
|
|
|
|
|
|
set->nr_hw_queues = nr_hw_queues;
|
2017-04-07 08:53:11 -06:00
|
|
|
blk_mq_update_queue_map(set);
|
2015-12-17 17:08:14 -07:00
|
|
|
list_for_each_entry(q, &set->tag_list, tag_set_list) {
|
|
|
|
blk_mq_realloc_hw_ctxs(set, q);
|
2017-06-26 12:20:57 +02:00
|
|
|
blk_mq_queue_reinit(q);
|
2015-12-17 17:08:14 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry(q, &set->tag_list, tag_set_list)
|
|
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
}
|
2017-05-30 14:39:11 -04:00
|
|
|
|
|
|
|
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
|
|
|
|
{
|
|
|
|
mutex_lock(&set->tag_list_lock);
|
|
|
|
__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
|
|
|
|
mutex_unlock(&set->tag_list_lock);
|
|
|
|
}
|
2015-12-17 17:08:14 -07:00
|
|
|
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
|
|
|
|
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
/* Enable polling stats and return whether they were already enabled. */
|
|
|
|
static bool blk_poll_stats_enable(struct request_queue *q)
|
|
|
|
{
|
|
|
|
if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
|
|
|
|
test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
|
|
|
|
return true;
|
|
|
|
blk_stat_add_callback(q, q->poll_cb);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_poll_stats_start(struct request_queue *q)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We don't arm the callback if polling stats are not enabled or the
|
|
|
|
* callback is already active.
|
|
|
|
*/
|
|
|
|
if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
|
|
|
|
blk_stat_is_active(q->poll_cb))
|
|
|
|
return;
|
|
|
|
|
|
|
|
blk_stat_activate_msecs(q->poll_cb, 100);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
|
|
|
|
{
|
|
|
|
struct request_queue *q = cb->data;
|
2017-04-07 06:24:03 -06:00
|
|
|
int bucket;
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
|
2017-04-07 06:24:03 -06:00
|
|
|
for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
|
|
|
|
if (cb->stat[bucket].nr_samples)
|
|
|
|
q->poll_stat[bucket] = cb->stat[bucket];
|
|
|
|
}
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
}
|
|
|
|
|
2016-11-14 13:03:03 -07:00
|
|
|
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
|
|
|
|
struct blk_mq_hw_ctx *hctx,
|
|
|
|
struct request *rq)
|
|
|
|
{
|
|
|
|
unsigned long ret = 0;
|
2017-04-07 06:24:03 -06:00
|
|
|
int bucket;
|
2016-11-14 13:03:03 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If stats collection isn't on, don't sleep but turn it on for
|
|
|
|
* future users
|
|
|
|
*/
|
blk-stat: convert to callback-based statistics reporting
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 08:56:08 -07:00
|
|
|
if (!blk_poll_stats_enable(q))
|
2016-11-14 13:03:03 -07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* As an optimistic guess, use half of the mean service time
|
|
|
|
* for this type of request. We can (and should) make this smarter.
|
|
|
|
* For instance, if the completion latencies are tight, we can
|
|
|
|
* get closer than just half the mean. This is especially
|
|
|
|
* important on devices where the completion latencies are longer
|
2017-04-07 06:24:03 -06:00
|
|
|
* than ~10 usec. We do use the stats for the relevant IO size
|
|
|
|
* if available which does lead to better estimates.
|
2016-11-14 13:03:03 -07:00
|
|
|
*/
|
2017-04-07 06:24:03 -06:00
|
|
|
bucket = blk_mq_poll_stats_bkt(rq);
|
|
|
|
if (bucket < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (q->poll_stat[bucket].nr_samples)
|
|
|
|
ret = (q->poll_stat[bucket].mean + 1) / 2;
|
2016-11-14 13:03:03 -07:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-11-14 13:01:59 -07:00
|
|
|
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
|
2016-11-14 13:03:03 -07:00
|
|
|
struct blk_mq_hw_ctx *hctx,
|
2016-11-14 13:01:59 -07:00
|
|
|
struct request *rq)
|
|
|
|
{
|
|
|
|
struct hrtimer_sleeper hs;
|
|
|
|
enum hrtimer_mode mode;
|
2016-11-14 13:03:03 -07:00
|
|
|
unsigned int nsecs;
|
2016-11-14 13:01:59 -07:00
|
|
|
ktime_t kt;
|
|
|
|
|
2018-01-10 11:30:56 -07:00
|
|
|
if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
|
2016-11-14 13:03:03 -07:00
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* poll_nsec can be:
|
|
|
|
*
|
|
|
|
* -1: don't ever hybrid sleep
|
|
|
|
* 0: use half of prev avg
|
|
|
|
* >0: use this specific value
|
|
|
|
*/
|
|
|
|
if (q->poll_nsec == -1)
|
|
|
|
return false;
|
|
|
|
else if (q->poll_nsec > 0)
|
|
|
|
nsecs = q->poll_nsec;
|
|
|
|
else
|
|
|
|
nsecs = blk_mq_poll_nsecs(q, hctx, rq);
|
|
|
|
|
|
|
|
if (!nsecs)
|
2016-11-14 13:01:59 -07:00
|
|
|
return false;
|
|
|
|
|
2018-01-10 11:30:56 -07:00
|
|
|
rq->rq_flags |= RQF_MQ_POLL_SLEPT;
|
2016-11-14 13:01:59 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This will be replaced with the stats tracking code, using
|
|
|
|
* 'avg_completion_time / 2' as the pre-sleep target.
|
|
|
|
*/
|
2016-12-25 12:30:41 +01:00
|
|
|
kt = nsecs;
|
2016-11-14 13:01:59 -07:00
|
|
|
|
|
|
|
mode = HRTIMER_MODE_REL;
|
|
|
|
hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
|
|
|
|
hrtimer_set_expires(&hs.timer, kt);
|
|
|
|
|
|
|
|
hrtimer_init_sleeper(&hs, current);
|
|
|
|
do {
|
2018-01-09 08:29:52 -08:00
|
|
|
if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
|
2016-11-14 13:01:59 -07:00
|
|
|
break;
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
hrtimer_start_expires(&hs.timer, mode);
|
|
|
|
if (hs.task)
|
|
|
|
io_schedule();
|
|
|
|
hrtimer_cancel(&hs.timer);
|
|
|
|
mode = HRTIMER_MODE_ABS;
|
|
|
|
} while (hs.task && !signal_pending(current));
|
|
|
|
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
destroy_hrtimer_on_stack(&hs.timer);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-11-04 09:34:34 -06:00
|
|
|
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
|
|
|
|
{
|
|
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
long state;
|
|
|
|
|
2016-11-14 13:01:59 -07:00
|
|
|
/*
|
|
|
|
* If we sleep, have the caller restart the poll loop to reset
|
|
|
|
* the state. Like for the other success return cases, the
|
|
|
|
* caller is responsible for checking if the IO completed. If
|
|
|
|
* the IO isn't complete, we'll get called again and will go
|
|
|
|
* straight to the busy poll loop.
|
|
|
|
*/
|
2016-11-14 13:03:03 -07:00
|
|
|
if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
|
2016-11-14 13:01:59 -07:00
|
|
|
return true;
|
|
|
|
|
2016-11-04 09:34:34 -06:00
|
|
|
hctx->poll_considered++;
|
|
|
|
|
|
|
|
state = current->state;
|
|
|
|
while (!need_resched()) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
hctx->poll_invoked++;
|
|
|
|
|
|
|
|
ret = q->mq_ops->poll(hctx, rq->tag);
|
|
|
|
if (ret > 0) {
|
|
|
|
hctx->poll_success++;
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (signal_pending_state(state, current))
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
|
|
|
|
if (current->state == TASK_RUNNING)
|
|
|
|
return true;
|
|
|
|
if (ret < 0)
|
|
|
|
break;
|
|
|
|
cpu_relax();
|
|
|
|
}
|
|
|
|
|
2018-02-13 21:18:12 +05:30
|
|
|
__set_current_state(TASK_RUNNING);
|
2016-11-04 09:34:34 -06:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-11-02 21:29:54 +03:00
|
|
|
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
|
2016-11-04 09:34:34 -06:00
|
|
|
{
|
|
|
|
struct blk_mq_hw_ctx *hctx;
|
|
|
|
struct request *rq;
|
|
|
|
|
2017-11-02 21:29:54 +03:00
|
|
|
if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
|
2016-11-04 09:34:34 -06:00
|
|
|
return false;
|
|
|
|
|
|
|
|
hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
|
2017-01-17 06:03:22 -07:00
|
|
|
if (!blk_qc_t_is_internal(cookie))
|
|
|
|
rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
|
2017-04-20 14:53:28 -06:00
|
|
|
else {
|
2017-01-17 06:03:22 -07:00
|
|
|
rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
|
2017-04-20 14:53:28 -06:00
|
|
|
/*
|
|
|
|
* With scheduling, if the request has completed, we'll
|
|
|
|
* get a NULL return here, as we clear the sched tag when
|
|
|
|
* that happens. The request still remains valid, like always,
|
|
|
|
* so we should be safe with just the NULL check.
|
|
|
|
*/
|
|
|
|
if (!rq)
|
|
|
|
return false;
|
|
|
|
}
|
2016-11-04 09:34:34 -06:00
|
|
|
|
|
|
|
return __blk_mq_poll(hctx, rq);
|
|
|
|
}
|
|
|
|
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
static int __init blk_mq_init(void)
|
|
|
|
{
|
2016-09-22 08:05:17 -06:00
|
|
|
cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
|
|
|
|
blk_mq_hctx_notify_dead);
|
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
subsys_initcall(blk_mq_init);
|