linux-next/drivers/irqchip/irq-gic-v3-its.c

5852 lines
143 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/cpu.h>
#include <linux/crash_dump.h>
#include <linux/delay.h>
#include <linux/efi.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/irqdomain.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/mem_encrypt.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/percpu.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/irqchip/arm-gic-v4.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include "irq-gic-common.h"
#include "irq-msi-lib.h"
#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
#define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
#define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4)
#define RD_LOCAL_LPI_ENABLED BIT(0)
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
#define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
#define RD_LOCAL_MEMRESERVE_DONE BIT(2)
static u32 lpi_id_bits;
/*
* We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
* deal with (one configuration byte per interrupt). PENDBASE has to
* be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
*/
#define LPI_NRBITS lpi_id_bits
#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
static u8 __ro_after_init lpi_prop_prio;
static struct its_node *find_4_1_its(void);
/*
* Collection structure - just an ID, and a redistributor address to
* ping. We use one per CPU as a bag of interrupts assigned to this
* CPU.
*/
struct its_collection {
u64 target_address;
u16 col_id;
};
/*
* The ITS_BASER structure - contains memory information, cached
* value of BASER register configuration and ITS page size.
*/
struct its_baser {
void *base;
u64 val;
u32 order;
u32 psz;
};
struct its_device;
/*
* The ITS structure - contains most of the infrastructure, with the
* top-level MSI domain, the command queue, the collections, and the
* list of devices writing to it.
*
* dev_alloc_lock has to be taken for device allocations, while the
* spinlock must be taken to parse data structures such as the device
* list.
*/
struct its_node {
raw_spinlock_t lock;
struct mutex dev_alloc_lock;
struct list_head entry;
void __iomem *base;
void __iomem *sgir_base;
phys_addr_t phys_base;
struct its_cmd_block *cmd_base;
struct its_cmd_block *cmd_write;
struct its_baser tables[GITS_BASER_NR_REGS];
struct its_collection *collections;
struct fwnode_handle *fwnode_handle;
u64 (*get_msi_base)(struct its_device *its_dev);
u64 typer;
u64 cbaser_save;
u32 ctlr_save;
u32 mpidr;
struct list_head its_device_list;
u64 flags;
unsigned long list_nr;
int numa_node;
unsigned int msi_domain_flags;
u32 pre_its_base; /* for Socionext Synquacer */
int vlpi_redist_offset;
};
#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
#define ITS_ITT_ALIGN SZ_256
/* The maximum number of VPEID bits supported by VLPI commands */
#define ITS_MAX_VPEID_BITS \
({ \
int nvpeid = 16; \
if (gic_rdists->has_rvpeid && \
gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
nvpeid = 1 + (gic_rdists->gicd_typer2 & \
GICD_TYPER2_VID); \
\
nvpeid; \
})
#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
/* Convert page order to size in bytes */
#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
struct event_lpi_map {
unsigned long *lpi_map;
u16 *col_map;
irq_hw_number_t lpi_base;
int nr_lpis;
raw_spinlock_t vlpi_lock;
struct its_vm *vm;
struct its_vlpi_map *vlpi_maps;
int nr_vlpis;
};
/*
* The ITS view of a device - belongs to an ITS, owns an interrupt
* translation table, and a list of interrupts. If it some of its
* LPIs are injected into a guest (GICv4), the event_map.vm field
* indicates which one.
*/
struct its_device {
struct list_head entry;
struct its_node *its;
struct event_lpi_map event_map;
void *itt;
u32 itt_sz;
u32 nr_ites;
u32 device_id;
bool shared;
};
static struct {
raw_spinlock_t lock;
struct its_device *dev;
struct its_vpe **vpes;
int next_victim;
} vpe_proxy;
struct cpu_lpi_count {
atomic_t managed;
atomic_t unmanaged;
};
static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
static LIST_HEAD(its_nodes);
static DEFINE_RAW_SPINLOCK(its_lock);
static struct rdists *gic_rdists;
static struct irq_domain *its_parent;
static unsigned long its_list_map;
static u16 vmovp_seq_num;
static DEFINE_RAW_SPINLOCK(vmovp_lock);
static DEFINE_IDA(its_vpeid_ida);
#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
static struct page *its_alloc_pages_node(int node, gfp_t gfp,
unsigned int order)
{
struct page *page;
int ret = 0;
page = alloc_pages_node(node, gfp, order);
if (!page)
return NULL;
ret = set_memory_decrypted((unsigned long)page_address(page),
1 << order);
/*
* If set_memory_decrypted() fails then we don't know what state the
* page is in, so we can't free it. Instead we leak it.
* set_memory_decrypted() will already have WARNed.
*/
if (ret)
return NULL;
return page;
}
static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
{
return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
}
static void its_free_pages(void *addr, unsigned int order)
{
/*
* If the memory cannot be encrypted again then we must leak the pages.
* set_memory_encrypted() will already have WARNed.
*/
if (set_memory_encrypted((unsigned long)addr, 1 << order))
return;
free_pages((unsigned long)addr, order);
}
static struct gen_pool *itt_pool;
static void *itt_alloc_pool(int node, int size)
{
unsigned long addr;
struct page *page;
if (size >= PAGE_SIZE) {
page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
return page ? page_address(page) : NULL;
}
do {
addr = gen_pool_alloc(itt_pool, size);
if (addr)
break;
page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
if (!page)
break;
gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
} while (!addr);
return (void *)addr;
}
static void itt_free_pool(void *addr, int size)
{
if (!addr)
return;
if (size >= PAGE_SIZE) {
its_free_pages(addr, get_order(size));
return;
}
gen_pool_free(itt_pool, (unsigned long)addr, size);
}
/*
* Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
* always have vSGIs mapped.
*/
static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
{
return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
}
static bool rdists_support_shareable(void)
{
return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
}
static u16 get_its_list(struct its_vm *vm)
{
struct its_node *its;
unsigned long its_list = 0;
list_for_each_entry(its, &its_nodes, entry) {
if (!is_v4(its))
continue;
if (require_its_list_vmovp(vm, its))
__set_bit(its->list_nr, &its_list);
}
return (u16)its_list;
}
static inline u32 its_get_event_id(struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
return d->hwirq - its_dev->event_map.lpi_base;
}
static struct its_collection *dev_event_to_col(struct its_device *its_dev,
u32 event)
{
struct its_node *its = its_dev->its;
return its->collections + its_dev->event_map.col_map[event];
}
static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
u32 event)
{
if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
return NULL;
return &its_dev->event_map.vlpi_maps[event];
}
static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
{
if (irqd_is_forwarded_to_vcpu(d)) {
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
return dev_event_to_vlpi_map(its_dev, event);
}
return NULL;
}
static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
{
raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
return vpe->col_idx;
}
static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
{
raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
}
static struct irq_chip its_vpe_irq_chip;
static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
{
struct its_vpe *vpe = NULL;
int cpu;
if (d->chip == &its_vpe_irq_chip) {
vpe = irq_data_get_irq_chip_data(d);
} else {
struct its_vlpi_map *map = get_vlpi_map(d);
if (map)
vpe = map->vpe;
}
if (vpe) {
cpu = vpe_to_cpuid_lock(vpe, flags);
} else {
/* Physical LPIs are already locked via the irq_desc lock */
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
cpu = its_dev->event_map.col_map[its_get_event_id(d)];
/* Keep GCC quiet... */
*flags = 0;
}
return cpu;
}
static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
{
struct its_vpe *vpe = NULL;
if (d->chip == &its_vpe_irq_chip) {
vpe = irq_data_get_irq_chip_data(d);
} else {
struct its_vlpi_map *map = get_vlpi_map(d);
if (map)
vpe = map->vpe;
}
if (vpe)
vpe_to_cpuid_unlock(vpe, flags);
}
2018-06-22 09:52:52 +00:00
static struct its_collection *valid_col(struct its_collection *col)
{
if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
2018-06-22 09:52:52 +00:00
return NULL;
return col;
}
static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
{
if (valid_col(its->collections + vpe->col_idx))
return vpe;
return NULL;
}
/*
* ITS command descriptors - parameters to be encoded in a command
* block.
*/
struct its_cmd_desc {
union {
struct {
struct its_device *dev;
u32 event_id;
} its_inv_cmd;
struct {
struct its_device *dev;
u32 event_id;
} its_clear_cmd;
struct {
struct its_device *dev;
u32 event_id;
} its_int_cmd;
struct {
struct its_device *dev;
int valid;
} its_mapd_cmd;
struct {
struct its_collection *col;
int valid;
} its_mapc_cmd;
struct {
struct its_device *dev;
u32 phys_id;
u32 event_id;
} its_mapti_cmd;
struct {
struct its_device *dev;
struct its_collection *col;
u32 event_id;
} its_movi_cmd;
struct {
struct its_device *dev;
u32 event_id;
} its_discard_cmd;
struct {
struct its_collection *col;
} its_invall_cmd;
struct {
struct its_vpe *vpe;
} its_vinvall_cmd;
struct {
struct its_vpe *vpe;
struct its_collection *col;
bool valid;
} its_vmapp_cmd;
struct {
struct its_vpe *vpe;
struct its_device *dev;
u32 virt_id;
u32 event_id;
bool db_enabled;
} its_vmapti_cmd;
struct {
struct its_vpe *vpe;
struct its_device *dev;
u32 event_id;
bool db_enabled;
} its_vmovi_cmd;
struct {
struct its_vpe *vpe;
struct its_collection *col;
u16 seq_num;
u16 its_list;
} its_vmovp_cmd;
struct {
struct its_vpe *vpe;
} its_invdb_cmd;
struct {
struct its_vpe *vpe;
u8 sgi;
u8 priority;
bool enable;
bool group;
bool clear;
} its_vsgi_cmd;
};
};
/*
* The ITS command block, which is what the ITS actually parses.
*/
struct its_cmd_block {
union {
u64 raw_cmd[4];
__le64 raw_cmd_le[4];
};
};
#define ITS_CMD_QUEUE_SZ SZ_64K
#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
struct its_cmd_block *,
struct its_cmd_desc *);
typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
struct its_cmd_block *,
struct its_cmd_desc *);
static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
{
u64 mask = GENMASK_ULL(h, l);
*raw_cmd &= ~mask;
*raw_cmd |= (val << l) & mask;
}
static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
{
its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
}
static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
{
its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
}
static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
{
its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
}
static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
{
its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
}
static void its_encode_size(struct its_cmd_block *cmd, u8 size)
{
its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
}
static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
{
its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
}
static void its_encode_valid(struct its_cmd_block *cmd, int valid)
{
its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
}
static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
{
its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
}
static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
{
its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
}
static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
{
its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
}
static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
{
its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
}
static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
{
its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
}
static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
{
its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
}
static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
{
its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
}
static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
{
its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
}
static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
{
its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
}
static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
{
its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
}
static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
{
its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
}
static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
{
its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
}
static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
{
its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
}
static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
u32 vpe_db_lpi)
{
its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
}
static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
u32 vpe_db_lpi)
{
its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
}
static void its_encode_db(struct its_cmd_block *cmd, bool db)
{
its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
}
static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
{
its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
}
static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
{
its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
}
static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
{
its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
}
static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
{
its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
}
static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
{
its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
}
static inline void its_fixup_cmd(struct its_cmd_block *cmd)
{
/* Let's fixup BE commands */
cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
}
static struct its_collection *its_build_mapd_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
unsigned long itt_addr;
u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
its_encode_cmd(cmd, GITS_CMD_MAPD);
its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
its_encode_size(cmd, size - 1);
its_encode_itt(cmd, itt_addr);
its_encode_valid(cmd, desc->its_mapd_cmd.valid);
its_fixup_cmd(cmd);
return NULL;
}
static struct its_collection *its_build_mapc_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
its_encode_cmd(cmd, GITS_CMD_MAPC);
its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
its_encode_valid(cmd, desc->its_mapc_cmd.valid);
its_fixup_cmd(cmd);
return desc->its_mapc_cmd.col;
}
static struct its_collection *its_build_mapti_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_mapti_cmd.dev,
desc->its_mapti_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_MAPTI);
its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
its_encode_collection(cmd, col->col_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_movi_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_movi_cmd.dev,
desc->its_movi_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_MOVI);
its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_discard_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_discard_cmd.dev,
desc->its_discard_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_DISCARD);
its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_inv_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_inv_cmd.dev,
desc->its_inv_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_INV);
its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_int_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_int_cmd.dev,
desc->its_int_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_INT);
its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_int_cmd.event_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_clear_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_clear_cmd.dev,
desc->its_clear_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_CLEAR);
its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
its_fixup_cmd(cmd);
2018-06-22 09:52:52 +00:00
return valid_col(col);
}
static struct its_collection *its_build_invall_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
its_encode_cmd(cmd, GITS_CMD_INVALL);
its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
its_fixup_cmd(cmd);
return desc->its_invall_cmd.col;
}
static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
its_encode_cmd(cmd, GITS_CMD_VINVALL);
its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_vinvall_cmd.vpe);
}
static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
unsigned long vpt_addr, vconf_addr;
u64 target;
bool alloc;
its_encode_cmd(cmd, GITS_CMD_VMAPP);
its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
if (!desc->its_vmapp_cmd.valid) {
alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
if (is_v4_1(its)) {
its_encode_alloc(cmd, alloc);
/*
* Unmapping a VPE is self-synchronizing on GICv4.1,
* no need to issue a VSYNC.
*/
vpe = NULL;
}
goto out;
}
vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
its_encode_target(cmd, target);
its_encode_vpt_addr(cmd, vpt_addr);
its_encode_vpt_size(cmd, LPI_NRBITS - 1);
alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
if (!is_v4_1(its))
goto out;
vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
its_encode_alloc(cmd, alloc);
/*
* GICv4.1 provides a way to get the VLPI state, which needs the vPE
* to be unmapped first, and in this case, we may remap the vPE
* back while the VPT is not empty. So we can't assume that the
* VPT is empty on map. This is why we never advertise PTZ.
*/
its_encode_ptz(cmd, false);
its_encode_vconf_addr(cmd, vconf_addr);
its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
out:
its_fixup_cmd(cmd);
return vpe;
}
static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
u32 db;
if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
else
db = 1023;
its_encode_cmd(cmd, GITS_CMD_VMAPTI);
its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
its_encode_db_phys_id(cmd, db);
its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_vmapti_cmd.vpe);
}
static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
u32 db;
if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
else
db = 1023;
its_encode_cmd(cmd, GITS_CMD_VMOVI);
its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
its_encode_db_phys_id(cmd, db);
its_encode_db_valid(cmd, true);
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_vmovi_cmd.vpe);
}
static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
u64 target;
target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
its_encode_cmd(cmd, GITS_CMD_VMOVP);
its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
its_encode_target(cmd, target);
if (is_v4_1(its)) {
its_encode_db(cmd, true);
its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
}
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_vmovp_cmd.vpe);
}
static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_vlpi_map *map;
map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
desc->its_inv_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_INV);
its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
its_fixup_cmd(cmd);
return valid_vpe(its, map->vpe);
}
static struct its_vpe *its_build_vint_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_vlpi_map *map;
map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
desc->its_int_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_INT);
its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_int_cmd.event_id);
its_fixup_cmd(cmd);
return valid_vpe(its, map->vpe);
}
static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_vlpi_map *map;
map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
desc->its_clear_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_CLEAR);
its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
its_fixup_cmd(cmd);
return valid_vpe(its, map->vpe);
}
static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
if (WARN_ON(!is_v4_1(its)))
return NULL;
its_encode_cmd(cmd, GITS_CMD_INVDB);
its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_invdb_cmd.vpe);
}
static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
if (WARN_ON(!is_v4_1(its)))
return NULL;
its_encode_cmd(cmd, GITS_CMD_VSGI);
its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
its_fixup_cmd(cmd);
return valid_vpe(its, desc->its_vsgi_cmd.vpe);
}
static u64 its_cmd_ptr_to_offset(struct its_node *its,
struct its_cmd_block *ptr)
{
return (ptr - its->cmd_base) * sizeof(*ptr);
}
static int its_queue_full(struct its_node *its)
{
int widx;
int ridx;
widx = its->cmd_write - its->cmd_base;
ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
/* This is incredibly unlikely to happen, unless the ITS locks up. */
if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
return 1;
return 0;
}
static struct its_cmd_block *its_allocate_entry(struct its_node *its)
{
struct its_cmd_block *cmd;
u32 count = 1000000; /* 1s! */
while (its_queue_full(its)) {
count--;
if (!count) {
pr_err_ratelimited("ITS queue not draining\n");
return NULL;
}
cpu_relax();
udelay(1);
}
cmd = its->cmd_write++;
/* Handle queue wrapping */
if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
its->cmd_write = its->cmd_base;
/* Clear command */
cmd->raw_cmd[0] = 0;
cmd->raw_cmd[1] = 0;
cmd->raw_cmd[2] = 0;
cmd->raw_cmd[3] = 0;
return cmd;
}
static struct its_cmd_block *its_post_commands(struct its_node *its)
{
u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
writel_relaxed(wr, its->base + GITS_CWRITER);
return its->cmd_write;
}
static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
{
/*
* Make sure the commands written to memory are observable by
* the ITS.
*/
if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
else
dsb(ishst);
}
static int its_wait_for_range_completion(struct its_node *its,
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
u64 prev_idx,
struct its_cmd_block *to)
{
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
u64 rd_idx, to_idx, linear_idx;
u32 count = 1000000; /* 1s! */
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
/* Linearize to_idx if the command set has wrapped around */
to_idx = its_cmd_ptr_to_offset(its, to);
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
if (to_idx < prev_idx)
to_idx += ITS_CMD_QUEUE_SZ;
linear_idx = prev_idx;
while (1) {
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
s64 delta;
rd_idx = readl_relaxed(its->base + GITS_CREADR);
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
/*
* Compute the read pointer progress, taking the
* potential wrap-around into account.
*/
delta = rd_idx - prev_idx;
if (rd_idx < prev_idx)
delta += ITS_CMD_QUEUE_SZ;
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
linear_idx += delta;
if (linear_idx >= to_idx)
break;
count--;
if (!count) {
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
to_idx, linear_idx);
return -1;
}
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
prev_idx = rd_idx;
cpu_relax();
udelay(1);
}
return 0;
}
/* Warning, macro hell follows */
#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
void name(struct its_node *its, \
buildtype builder, \
struct its_cmd_desc *desc) \
{ \
struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
synctype *sync_obj; \
unsigned long flags; \
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
u64 rd_idx; \
\
raw_spin_lock_irqsave(&its->lock, flags); \
\
cmd = its_allocate_entry(its); \
if (!cmd) { /* We're soooooo screewed... */ \
raw_spin_unlock_irqrestore(&its->lock, flags); \
return; \
} \
sync_obj = builder(its, cmd, desc); \
its_flush_cmd(its, cmd); \
\
if (sync_obj) { \
sync_cmd = its_allocate_entry(its); \
if (!sync_cmd) \
goto post; \
\
buildfn(its, sync_cmd, sync_obj); \
its_flush_cmd(its, sync_cmd); \
} \
\
post: \
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
rd_idx = readl_relaxed(its->base + GITS_CREADR); \
next_cmd = its_post_commands(its); \
raw_spin_unlock_irqrestore(&its->lock, flags); \
\
irqchip/gic-v3-its: Fix command queue pointer comparison bug When we run several VMs with PCI passthrough and GICv4 enabled, not pinning vCPUs, we will occasionally see below warnings in dmesg: ITS queue timeout (65440 65504 480) ITS cmd its_build_vmovp_cmd failed The reason for the above issue is that in BUILD_SINGLE_CMD_FUNC: 1. Post the write command. 2. Release the lock. 3. Start to read GITS_CREADR to get the reader pointer. 4. Compare the reader pointer to the target pointer. 5. If reader pointer does not reach the target, sleep 1us and continue to try. If we have several processors running the above concurrently, other CPUs will post write commands while the 1st CPU is waiting the completion. So we may have below issue: phase 1: ---rd_idx-----from_idx-----to_idx--0--------- wait 1us: phase 2: --------------from_idx-----to_idx--0-rd_idx-- That is the rd_idx may fly ahead of to_idx, and if in case to_idx is near the wrap point, rd_idx will wrap around. So the below condition will not be met even after 1s: if (from_idx < to_idx && rd_idx >= to_idx) There is another theoretical issue. For a slow and busy ITS, the initial rd_idx may fall behind from_idx a lot, just as below: ---rd_idx---0--from_idx-----to_idx----------- This will cause the wait function exit too early. Actually, it does not make much sense to use from_idx to judge if to_idx is wrapped, but we need a initial rd_idx when lock is still acquired, and it can be used to judge whether to_idx is wrapped and the current rd_idx is wrapped. We switch to a method of calculating the delta of two adjacent reads and accumulating it to get the sum, so that we can get the real rd_idx from the wrapped value even when the queue is almost full. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Heyi Guo <guoheyi@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-13 11:42:06 +00:00
if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
}
static void its_build_sync_cmd(struct its_node *its,
struct its_cmd_block *sync_cmd,
struct its_collection *sync_col)
{
its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
its_encode_target(sync_cmd, sync_col->target_address);
its_fixup_cmd(sync_cmd);
}
static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
struct its_collection, its_build_sync_cmd)
static void its_build_vsync_cmd(struct its_node *its,
struct its_cmd_block *sync_cmd,
struct its_vpe *sync_vpe)
{
its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
its_fixup_cmd(sync_cmd);
}
static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
struct its_vpe, its_build_vsync_cmd)
static void its_send_int(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
desc.its_int_cmd.dev = dev;
desc.its_int_cmd.event_id = event_id;
its_send_single_command(dev->its, its_build_int_cmd, &desc);
}
static void its_send_clear(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
desc.its_clear_cmd.dev = dev;
desc.its_clear_cmd.event_id = event_id;
its_send_single_command(dev->its, its_build_clear_cmd, &desc);
}
static void its_send_inv(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
desc.its_inv_cmd.dev = dev;
desc.its_inv_cmd.event_id = event_id;
its_send_single_command(dev->its, its_build_inv_cmd, &desc);
}
static void its_send_mapd(struct its_device *dev, int valid)
{
struct its_cmd_desc desc;
desc.its_mapd_cmd.dev = dev;
desc.its_mapd_cmd.valid = !!valid;
its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
}
static void its_send_mapc(struct its_node *its, struct its_collection *col,
int valid)
{
struct its_cmd_desc desc;
desc.its_mapc_cmd.col = col;
desc.its_mapc_cmd.valid = !!valid;
its_send_single_command(its, its_build_mapc_cmd, &desc);
}
static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
{
struct its_cmd_desc desc;
desc.its_mapti_cmd.dev = dev;
desc.its_mapti_cmd.phys_id = irq_id;
desc.its_mapti_cmd.event_id = id;
its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
}
static void its_send_movi(struct its_device *dev,
struct its_collection *col, u32 id)
{
struct its_cmd_desc desc;
desc.its_movi_cmd.dev = dev;
desc.its_movi_cmd.col = col;
desc.its_movi_cmd.event_id = id;
its_send_single_command(dev->its, its_build_movi_cmd, &desc);
}
static void its_send_discard(struct its_device *dev, u32 id)
{
struct its_cmd_desc desc;
desc.its_discard_cmd.dev = dev;
desc.its_discard_cmd.event_id = id;
its_send_single_command(dev->its, its_build_discard_cmd, &desc);
}
static void its_send_invall(struct its_node *its, struct its_collection *col)
{
struct its_cmd_desc desc;
desc.its_invall_cmd.col = col;
its_send_single_command(its, its_build_invall_cmd, &desc);
}
static void its_send_vmapti(struct its_device *dev, u32 id)
{
struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
struct its_cmd_desc desc;
desc.its_vmapti_cmd.vpe = map->vpe;
desc.its_vmapti_cmd.dev = dev;
desc.its_vmapti_cmd.virt_id = map->vintid;
desc.its_vmapti_cmd.event_id = id;
desc.its_vmapti_cmd.db_enabled = map->db_enabled;
its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
}
static void its_send_vmovi(struct its_device *dev, u32 id)
{
struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
struct its_cmd_desc desc;
desc.its_vmovi_cmd.vpe = map->vpe;
desc.its_vmovi_cmd.dev = dev;
desc.its_vmovi_cmd.event_id = id;
desc.its_vmovi_cmd.db_enabled = map->db_enabled;
its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
}
static void its_send_vmapp(struct its_node *its,
struct its_vpe *vpe, bool valid)
{
struct its_cmd_desc desc;
desc.its_vmapp_cmd.vpe = vpe;
desc.its_vmapp_cmd.valid = valid;
desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
}
static void its_send_vmovp(struct its_vpe *vpe)
{
struct its_cmd_desc desc = {};
struct its_node *its;
int col_id = vpe->col_idx;
desc.its_vmovp_cmd.vpe = vpe;
if (!its_list_map) {
its = list_first_entry(&its_nodes, struct its_node, entry);
desc.its_vmovp_cmd.col = &its->collections[col_id];
its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
return;
}
/*
* Yet another marvel of the architecture. If using the
* its_list "feature", we need to make sure that all ITSs
* receive all VMOVP commands in the same order. The only way
* to guarantee this is to make vmovp a serialization point.
*
* Wall <-- Head.
*/
guard(raw_spinlock)(&vmovp_lock);
desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
/* Emit VMOVPs */
list_for_each_entry(its, &its_nodes, entry) {
if (!is_v4(its))
continue;
if (!require_its_list_vmovp(vpe->its_vm, its))
continue;
desc.its_vmovp_cmd.col = &its->collections[col_id];
its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
}
}
static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
{
struct its_cmd_desc desc;
desc.its_vinvall_cmd.vpe = vpe;
its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
}
static void its_send_vinv(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
/*
* There is no real VINV command. This is just a normal INV,
* with a VSYNC instead of a SYNC.
*/
desc.its_inv_cmd.dev = dev;
desc.its_inv_cmd.event_id = event_id;
its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
}
static void its_send_vint(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
/*
* There is no real VINT command. This is just a normal INT,
* with a VSYNC instead of a SYNC.
*/
desc.its_int_cmd.dev = dev;
desc.its_int_cmd.event_id = event_id;
its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
}
static void its_send_vclear(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
/*
* There is no real VCLEAR command. This is just a normal CLEAR,
* with a VSYNC instead of a SYNC.
*/
desc.its_clear_cmd.dev = dev;
desc.its_clear_cmd.event_id = event_id;
its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
}
static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
{
struct its_cmd_desc desc;
desc.its_invdb_cmd.vpe = vpe;
its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
}
/*
* irqchip functions - assumes MSI, mostly.
*/
static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
{
struct its_vlpi_map *map = get_vlpi_map(d);
irq_hw_number_t hwirq;
void *va;
u8 *cfg;
if (map) {
va = page_address(map->vm->vprop_page);
hwirq = map->vintid;
/* Remember the updated property */
map->properties &= ~clr;
map->properties |= set | LPI_PROP_GROUP1;
} else {
va = gic_rdists->prop_table_va;
hwirq = d->hwirq;
}
cfg = va + hwirq - 8192;
*cfg &= ~clr;
*cfg |= set | LPI_PROP_GROUP1;
/*
* Make the above write visible to the redistributors.
* And yes, we're flushing exactly: One. Single. Byte.
* Humpf...
*/
if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
else
dsb(ishst);
}
static void wait_for_syncr(void __iomem *rdbase)
{
while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
cpu_relax();
}
static void __direct_lpi_inv(struct irq_data *d, u64 val)
{
void __iomem *rdbase;
unsigned long flags;
int cpu;
/* Target the redistributor this LPI is currently routed to */
cpu = irq_to_cpuid_lock(d, &flags);
raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
gic_write_lpir(val, rdbase + GICR_INVLPIR);
wait_for_syncr(rdbase);
raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
irq_to_cpuid_unlock(d, flags);
}
static void direct_lpi_inv(struct irq_data *d)
{
struct its_vlpi_map *map = get_vlpi_map(d);
u64 val;
if (map) {
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
WARN_ON(!is_v4_1(its_dev->its));
val = GICR_INVLPIR_V;
val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
} else {
val = d->hwirq;
}
__direct_lpi_inv(d, val);
}
static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
lpi_write_config(d, clr, set);
if (gic_rdists->has_direct_lpi &&
(is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
direct_lpi_inv(d);
else if (!irqd_is_forwarded_to_vcpu(d))
its_send_inv(its_dev, its_get_event_id(d));
else
its_send_vinv(its_dev, its_get_event_id(d));
}
static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
struct its_vlpi_map *map;
/*
* GICv4.1 does away with the per-LPI nonsense, nothing to do
* here.
*/
if (is_v4_1(its_dev->its))
return;
map = dev_event_to_vlpi_map(its_dev, event);
if (map->db_enabled == enable)
return;
map->db_enabled = enable;
/*
* More fun with the architecture:
*
* Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
* value or to 1023, depending on the enable bit. But that
* would be issuing a mapping for an /existing/ DevID+EventID
* pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
* to the /same/ vPE, using this opportunity to adjust the
* doorbell. Mouahahahaha. We loves it, Precious.
*/
its_send_vmovi(its_dev, event);
}
static void its_mask_irq(struct irq_data *d)
{
if (irqd_is_forwarded_to_vcpu(d))
its_vlpi_set_doorbell(d, false);
lpi_update_config(d, LPI_PROP_ENABLED, 0);
}
static void its_unmask_irq(struct irq_data *d)
{
if (irqd_is_forwarded_to_vcpu(d))
its_vlpi_set_doorbell(d, true);
lpi_update_config(d, 0, LPI_PROP_ENABLED);
}
static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
{
if (irqd_affinity_is_managed(d))
return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
}
static void its_inc_lpi_count(struct irq_data *d, int cpu)
{
if (irqd_affinity_is_managed(d))
atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
else
atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
}
static void its_dec_lpi_count(struct irq_data *d, int cpu)
{
if (irqd_affinity_is_managed(d))
atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
else
atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
}
static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
const struct cpumask *cpu_mask)
{
unsigned int cpu = nr_cpu_ids, tmp;
int count = S32_MAX;
for_each_cpu(tmp, cpu_mask) {
int this_count = its_read_lpi_count(d, tmp);
if (this_count < count) {
cpu = tmp;
count = this_count;
}
}
return cpu;
}
/*
* As suggested by Thomas Gleixner in:
* https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
*/
static int its_select_cpu(struct irq_data *d,
const struct cpumask *aff_mask)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
irqchip/gic-v3-its: Remove cpumask_var_t allocation Running a PREEMPT_RT kernel based on v5.19-rc3-rt4 on an Ampere Altra triggers: [ 22.616229] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 [ 22.616239] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1884, name: kworker/80:1 [ 22.616243] preempt_count: 3, expected: 0 [ 22.616244] RCU nest depth: 0, expected: 0 [...] [ 22.616250] hardirqs last enabled at (33): _raw_spin_unlock_irq (/home/piegon01/linux/./arch/arm64/include/asm/irqflags.h:35) [ 22.616273] hardirqs last disabled at (34): __schedule (/home/piegon01/linux/kernel/sched/core.c:6432 (discriminator 1)) [ 22.616283] softirqs last enabled at (0): copy_process (/home/piegon01/linux/./include/linux/lockdep.h:191) [ 22.616297] softirqs last disabled at (0): 0x0 [ 22.616305] Preemption disabled at: [ 22.616307] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1612) [ 22.616322] CPU: 80 PID: 1884 Comm: kworker/80:1 Tainted: G W [...] [ 22.616328] Hardware name: WIWYNN Mt.Jade Server System B81.03001.0005/Mt.Jade Motherboard, BIOS 1.08.20220218 (SCP: 1.08.20220218) 2022/02/18 [ 22.616333] Workqueue: events work_for_cpu_fn [ 22.616344] Call trace: [...] [ 22.616403] alloc_cpumask_var_node (/home/piegon01/linux/lib/cpumask.c:115) [ 22.616414] alloc_cpumask_var (/home/piegon01/linux/lib/cpumask.c:147) [ 22.616417] its_select_cpu (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1580) [ 22.616428] its_set_affinity (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1659) [ 22.616431] msi_domain_set_affinity (/home/piegon01/linux/kernel/irq/msi.c:501) [ 22.616440] irq_do_set_affinity (/home/piegon01/linux/kernel/irq/manage.c:276) [ 22.616443] irq_setup_affinity (/home/piegon01/linux/kernel/irq/manage.c:633) [ 22.616447] irq_startup (/home/piegon01/linux/kernel/irq/chip.c:280) [ 22.616453] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1777) Follow the pattern established in commit cba4235e6031e ("genirq: Remove mask argument from setup_affinity()") and co to overcome this issue by defining a static struct cpumask and protecting it by a raw spinlock. Since its_select_cpu() can be executed with IRQs enabled or disabled, enforce that the cpumask computation is done with interrupts disabled. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220912141857.1391343-1-pierre.gondois@arm.com
2022-09-12 14:18:57 +00:00
static DEFINE_RAW_SPINLOCK(tmpmask_lock);
static struct cpumask __tmpmask;
struct cpumask *tmpmask;
unsigned long flags;
int cpu, node;
node = its_dev->its->numa_node;
irqchip/gic-v3-its: Remove cpumask_var_t allocation Running a PREEMPT_RT kernel based on v5.19-rc3-rt4 on an Ampere Altra triggers: [ 22.616229] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 [ 22.616239] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1884, name: kworker/80:1 [ 22.616243] preempt_count: 3, expected: 0 [ 22.616244] RCU nest depth: 0, expected: 0 [...] [ 22.616250] hardirqs last enabled at (33): _raw_spin_unlock_irq (/home/piegon01/linux/./arch/arm64/include/asm/irqflags.h:35) [ 22.616273] hardirqs last disabled at (34): __schedule (/home/piegon01/linux/kernel/sched/core.c:6432 (discriminator 1)) [ 22.616283] softirqs last enabled at (0): copy_process (/home/piegon01/linux/./include/linux/lockdep.h:191) [ 22.616297] softirqs last disabled at (0): 0x0 [ 22.616305] Preemption disabled at: [ 22.616307] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1612) [ 22.616322] CPU: 80 PID: 1884 Comm: kworker/80:1 Tainted: G W [...] [ 22.616328] Hardware name: WIWYNN Mt.Jade Server System B81.03001.0005/Mt.Jade Motherboard, BIOS 1.08.20220218 (SCP: 1.08.20220218) 2022/02/18 [ 22.616333] Workqueue: events work_for_cpu_fn [ 22.616344] Call trace: [...] [ 22.616403] alloc_cpumask_var_node (/home/piegon01/linux/lib/cpumask.c:115) [ 22.616414] alloc_cpumask_var (/home/piegon01/linux/lib/cpumask.c:147) [ 22.616417] its_select_cpu (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1580) [ 22.616428] its_set_affinity (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1659) [ 22.616431] msi_domain_set_affinity (/home/piegon01/linux/kernel/irq/msi.c:501) [ 22.616440] irq_do_set_affinity (/home/piegon01/linux/kernel/irq/manage.c:276) [ 22.616443] irq_setup_affinity (/home/piegon01/linux/kernel/irq/manage.c:633) [ 22.616447] irq_startup (/home/piegon01/linux/kernel/irq/chip.c:280) [ 22.616453] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1777) Follow the pattern established in commit cba4235e6031e ("genirq: Remove mask argument from setup_affinity()") and co to overcome this issue by defining a static struct cpumask and protecting it by a raw spinlock. Since its_select_cpu() can be executed with IRQs enabled or disabled, enforce that the cpumask computation is done with interrupts disabled. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220912141857.1391343-1-pierre.gondois@arm.com
2022-09-12 14:18:57 +00:00
tmpmask = &__tmpmask;
raw_spin_lock_irqsave(&tmpmask_lock, flags);
if (!irqd_affinity_is_managed(d)) {
/* First try the NUMA node */
if (node != NUMA_NO_NODE) {
/*
* Try the intersection of the affinity mask and the
* node mask (and the online mask, just to be safe).
*/
cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
cpumask_and(tmpmask, tmpmask, cpu_online_mask);
/*
* Ideally, we would check if the mask is empty, and
* try again on the full node here.
*
* But it turns out that the way ACPI describes the
* affinity for ITSs only deals about memory, and
* not target CPUs, so it cannot describe a single
* ITS placed next to two NUMA nodes.
*
* Instead, just fallback on the online mask. This
* diverges from Thomas' suggestion above.
*/
cpu = cpumask_pick_least_loaded(d, tmpmask);
if (cpu < nr_cpu_ids)
goto out;
/* If we can't cross sockets, give up */
if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
goto out;
/* If the above failed, expand the search */
}
/* Try the intersection of the affinity and online masks */
cpumask_and(tmpmask, aff_mask, cpu_online_mask);
/* If that doesn't fly, the online mask is the last resort */
if (cpumask_empty(tmpmask))
cpumask_copy(tmpmask, cpu_online_mask);
cpu = cpumask_pick_least_loaded(d, tmpmask);
} else {
cpumask_copy(tmpmask, aff_mask);
/* If we cannot cross sockets, limit the search to that node */
if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
node != NUMA_NO_NODE)
cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
cpu = cpumask_pick_least_loaded(d, tmpmask);
}
out:
irqchip/gic-v3-its: Remove cpumask_var_t allocation Running a PREEMPT_RT kernel based on v5.19-rc3-rt4 on an Ampere Altra triggers: [ 22.616229] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 [ 22.616239] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1884, name: kworker/80:1 [ 22.616243] preempt_count: 3, expected: 0 [ 22.616244] RCU nest depth: 0, expected: 0 [...] [ 22.616250] hardirqs last enabled at (33): _raw_spin_unlock_irq (/home/piegon01/linux/./arch/arm64/include/asm/irqflags.h:35) [ 22.616273] hardirqs last disabled at (34): __schedule (/home/piegon01/linux/kernel/sched/core.c:6432 (discriminator 1)) [ 22.616283] softirqs last enabled at (0): copy_process (/home/piegon01/linux/./include/linux/lockdep.h:191) [ 22.616297] softirqs last disabled at (0): 0x0 [ 22.616305] Preemption disabled at: [ 22.616307] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1612) [ 22.616322] CPU: 80 PID: 1884 Comm: kworker/80:1 Tainted: G W [...] [ 22.616328] Hardware name: WIWYNN Mt.Jade Server System B81.03001.0005/Mt.Jade Motherboard, BIOS 1.08.20220218 (SCP: 1.08.20220218) 2022/02/18 [ 22.616333] Workqueue: events work_for_cpu_fn [ 22.616344] Call trace: [...] [ 22.616403] alloc_cpumask_var_node (/home/piegon01/linux/lib/cpumask.c:115) [ 22.616414] alloc_cpumask_var (/home/piegon01/linux/lib/cpumask.c:147) [ 22.616417] its_select_cpu (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1580) [ 22.616428] its_set_affinity (/home/piegon01/linux/drivers/irqchip/irq-gic-v3-its.c:1659) [ 22.616431] msi_domain_set_affinity (/home/piegon01/linux/kernel/irq/msi.c:501) [ 22.616440] irq_do_set_affinity (/home/piegon01/linux/kernel/irq/manage.c:276) [ 22.616443] irq_setup_affinity (/home/piegon01/linux/kernel/irq/manage.c:633) [ 22.616447] irq_startup (/home/piegon01/linux/kernel/irq/chip.c:280) [ 22.616453] __setup_irq (/home/piegon01/linux/kernel/irq/manage.c:1777) Follow the pattern established in commit cba4235e6031e ("genirq: Remove mask argument from setup_affinity()") and co to overcome this issue by defining a static struct cpumask and protecting it by a raw spinlock. Since its_select_cpu() can be executed with IRQs enabled or disabled, enforce that the cpumask computation is done with interrupts disabled. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220912141857.1391343-1-pierre.gondois@arm.com
2022-09-12 14:18:57 +00:00
raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
return cpu;
}
static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_collection *target_col;
u32 id = its_get_event_id(d);
int cpu, prev_cpu;
/* A forwarded interrupt should use irq_set_vcpu_affinity */
if (irqd_is_forwarded_to_vcpu(d))
return -EINVAL;
prev_cpu = its_dev->event_map.col_map[id];
its_dec_lpi_count(d, prev_cpu);
if (!force)
cpu = its_select_cpu(d, mask_val);
else
cpu = cpumask_pick_least_loaded(d, mask_val);
if (cpu < 0 || cpu >= nr_cpu_ids)
goto err;
/* don't set the affinity when the target cpu is same as current one */
if (cpu != prev_cpu) {
target_col = &its_dev->its->collections[cpu];
its_send_movi(its_dev, target_col, id);
its_dev->event_map.col_map[id] = cpu;
irq_data_update_effective_affinity(d, cpumask_of(cpu));
}
its_inc_lpi_count(d, cpu);
return IRQ_SET_MASK_OK_DONE;
err:
its_inc_lpi_count(d, prev_cpu);
return -EINVAL;
}
static u64 its_irq_get_msi_base(struct its_device *its_dev)
{
struct its_node *its = its_dev->its;
return its->phys_base + GITS_TRANSLATER;
}
static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_node *its;
u64 addr;
its = its_dev->its;
addr = its->get_msi_base(its_dev);
msg->address_lo = lower_32_bits(addr);
msg->address_hi = upper_32_bits(addr);
msg->data = its_get_event_id(d);
iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
}
static int its_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool state)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
if (which != IRQCHIP_STATE_PENDING)
return -EINVAL;
if (irqd_is_forwarded_to_vcpu(d)) {
if (state)
its_send_vint(its_dev, event);
else
its_send_vclear(its_dev, event);
} else {
if (state)
its_send_int(its_dev, event);
else
its_send_clear(its_dev, event);
}
return 0;
}
static int its_irq_retrigger(struct irq_data *d)
{
return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
}
/*
* Two favourable cases:
*
* (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
* for vSGI delivery
*
* (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
* and we're better off mapping all VPEs always
*
* If neither (a) nor (b) is true, then we map vPEs on demand.
*
*/
static bool gic_requires_eager_mapping(void)
{
if (!its_list_map || gic_rdists->has_rvpeid)
return true;
return false;
}
static void its_map_vm(struct its_node *its, struct its_vm *vm)
{
if (gic_requires_eager_mapping())
return;
guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
/*
* If the VM wasn't mapped yet, iterate over the vpes and get
* them mapped now.
*/
vm->vlpi_count[its->list_nr]++;
if (vm->vlpi_count[its->list_nr] == 1) {
int i;
for (i = 0; i < vm->nr_vpes; i++) {
struct its_vpe *vpe = vm->vpes[i];
scoped_guard(raw_spinlock, &vpe->vpe_lock)
its_send_vmapp(its, vpe, true);
its_send_vinvall(its, vpe);
}
}
}
static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
{
/* Not using the ITS list? Everything is always mapped. */
if (gic_requires_eager_mapping())
return;
guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
if (!--vm->vlpi_count[its->list_nr]) {
int i;
for (i = 0; i < vm->nr_vpes; i++) {
guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
its_send_vmapp(its, vm->vpes[i], false);
}
}
}
static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
if (!info->map)
return -EINVAL;
if (!its_dev->event_map.vm) {
struct its_vlpi_map *maps;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
GFP_ATOMIC);
if (!maps)
return -ENOMEM;
its_dev->event_map.vm = info->map->vm;
its_dev->event_map.vlpi_maps = maps;
} else if (its_dev->event_map.vm != info->map->vm) {
return -EINVAL;
}
/* Get our private copy of the mapping information */
its_dev->event_map.vlpi_maps[event] = *info->map;
if (irqd_is_forwarded_to_vcpu(d)) {
/* Already mapped, move it around */
its_send_vmovi(its_dev, event);
} else {
/* Ensure all the VPEs are mapped on this ITS */
its_map_vm(its_dev->its, info->map->vm);
/*
* Flag the interrupt as forwarded so that we can
* start poking the virtual property table.
*/
irqd_set_forwarded_to_vcpu(d);
/* Write out the property to the prop table */
lpi_write_config(d, 0xff, info->map->properties);
/* Drop the physical mapping */
its_send_discard(its_dev, event);
/* and install the virtual one */
its_send_vmapti(its_dev, event);
/* Increment the number of VLPIs */
its_dev->event_map.nr_vlpis++;
}
return 0;
}
static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_vlpi_map *map;
map = get_vlpi_map(d);
if (!its_dev->event_map.vm || !map)
return -EINVAL;
/* Copy our mapping information to the incoming request */
*info->map = *map;
return 0;
}
static int its_vlpi_unmap(struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
return -EINVAL;
/* Drop the virtual mapping */
its_send_discard(its_dev, event);
/* and restore the physical one */
irqd_clr_forwarded_to_vcpu(d);
its_send_mapti(its_dev, d->hwirq, event);
lpi_update_config(d, 0xff, (lpi_prop_prio |
LPI_PROP_ENABLED |
LPI_PROP_GROUP1));
/* Potentially unmap the VM from this ITS */
its_unmap_vm(its_dev->its, its_dev->event_map.vm);
/*
* Drop the refcount and make the device available again if
* this was the last VLPI.
*/
if (!--its_dev->event_map.nr_vlpis) {
its_dev->event_map.vm = NULL;
kfree(its_dev->event_map.vlpi_maps);
}
return 0;
}
static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
return -EINVAL;
if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
lpi_update_config(d, 0xff, info->config);
else
lpi_write_config(d, 0xff, info->config);
its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
return 0;
}
static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_cmd_info *info = vcpu_info;
/* Need a v4 ITS */
if (!is_v4(its_dev->its))
return -EINVAL;
guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
/* Unmap request? */
if (!info)
return its_vlpi_unmap(d);
switch (info->cmd_type) {
case MAP_VLPI:
return its_vlpi_map(d, info);
case GET_VLPI:
return its_vlpi_get(d, info);
case PROP_UPDATE_VLPI:
case PROP_UPDATE_AND_INV_VLPI:
return its_vlpi_prop_update(d, info);
default:
return -EINVAL;
}
}
static struct irq_chip its_irq_chip = {
.name = "ITS",
.irq_mask = its_mask_irq,
.irq_unmask = its_unmask_irq,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = its_set_affinity,
.irq_compose_msi_msg = its_irq_compose_msi_msg,
.irq_set_irqchip_state = its_irq_set_irqchip_state,
.irq_retrigger = its_irq_retrigger,
.irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
};
/*
* How we allocate LPIs:
*
* lpi_range_list contains ranges of LPIs that are to available to
* allocate from. To allocate LPIs, just pick the first range that
* fits the required allocation, and reduce it by the required
* amount. Once empty, remove the range from the list.
*
* To free a range of LPIs, add a free range to the list, sort it and
* merge the result if the new range happens to be adjacent to an
* already free block.
*
* The consequence of the above is that allocation is cost is low, but
* freeing is expensive. We assumes that freeing rarely occurs.
*/
#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
static DEFINE_MUTEX(lpi_range_lock);
static LIST_HEAD(lpi_range_list);
struct lpi_range {
struct list_head entry;
u32 base_id;
u32 span;
};
static struct lpi_range *mk_lpi_range(u32 base, u32 span)
{
struct lpi_range *range;
range = kmalloc(sizeof(*range), GFP_KERNEL);
if (range) {
range->base_id = base;
range->span = span;
}
return range;
}
static int alloc_lpi_range(u32 nr_lpis, u32 *base)
{
struct lpi_range *range, *tmp;
int err = -ENOSPC;
mutex_lock(&lpi_range_lock);
list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
if (range->span >= nr_lpis) {
*base = range->base_id;
range->base_id += nr_lpis;
range->span -= nr_lpis;
if (range->span == 0) {
list_del(&range->entry);
kfree(range);
}
err = 0;
break;
}
}
mutex_unlock(&lpi_range_lock);
pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
return err;
}
static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
{
if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
return;
if (a->base_id + a->span != b->base_id)
return;
b->base_id = a->base_id;
b->span += a->span;
list_del(&a->entry);
kfree(a);
}
static int free_lpi_range(u32 base, u32 nr_lpis)
{
struct lpi_range *new, *old;
new = mk_lpi_range(base, nr_lpis);
if (!new)
return -ENOMEM;
mutex_lock(&lpi_range_lock);
list_for_each_entry_reverse(old, &lpi_range_list, entry) {
if (old->base_id < base)
break;
}
/*
* old is the last element with ->base_id smaller than base,
* so new goes right after it. If there are no elements with
* ->base_id smaller than base, &old->entry ends up pointing
* at the head of the list, and inserting new it the start of
* the list is the right thing to do in that case as well.
*/
list_add(&new->entry, &old->entry);
/*
* Now check if we can merge with the preceding and/or
* following ranges.
*/
merge_lpi_ranges(old, new);
merge_lpi_ranges(new, list_next_entry(new, entry));
mutex_unlock(&lpi_range_lock);
return 0;
}
static int __init its_lpi_init(u32 id_bits)
{
u32 lpis = (1UL << id_bits) - 8192;
u32 numlpis;
int err;
numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
lpis = numlpis;
pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
lpis);
}
/*
* Initializing the allocator is just the same as freeing the
* full range of LPIs.
*/
err = free_lpi_range(8192, lpis);
pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
return err;
}
static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
{
unsigned long *bitmap = NULL;
int err = 0;
do {
err = alloc_lpi_range(nr_irqs, base);
if (!err)
break;
nr_irqs /= 2;
} while (nr_irqs > 0);
if (!nr_irqs)
err = -ENOSPC;
if (err)
goto out;
bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
if (!bitmap)
goto out;
*nr_ids = nr_irqs;
out:
if (!bitmap)
*base = *nr_ids = 0;
return bitmap;
}
static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
{
WARN_ON(free_lpi_range(base, nr_ids));
bitmap_free(bitmap);
}
static void gic_reset_prop_table(void *va)
{
/* Regular IRQ priority, Group-1, disabled */
memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
/* Make sure the GIC will observe the written configuration */
gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
}
static struct page *its_allocate_prop_table(gfp_t gfp_flags)
{
struct page *prop_page;
prop_page = its_alloc_pages(gfp_flags,
get_order(LPI_PROPBASE_SZ));
if (!prop_page)
return NULL;
gic_reset_prop_table(page_address(prop_page));
return prop_page;
}
static void its_free_prop_table(struct page *prop_page)
{
its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
}
static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
{
phys_addr_t start, end, addr_end;
u64 i;
/*
* We don't bother checking for a kdump kernel as by
* construction, the LPI tables are out of this kernel's
* memory map.
*/
if (is_kdump_kernel())
return true;
addr_end = addr + size - 1;
memblock: implement for_each_reserved_mem_region() using __next_mem_region() Iteration over memblock.reserved with for_each_reserved_mem_region() used __next_reserved_mem_region() that implemented a subset of __next_mem_region(). Use __for_each_mem_range() and, essentially, __next_mem_region() with appropriate parameters to reduce code duplication. While on it, rename for_each_reserved_mem_region() to for_each_reserved_mem_range() for consistency. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> [.clang-format] Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Axtens <dja@axtens.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Emil Renner Berthing <kernel@esmil.dk> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20200818151634.14343-17-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:58:25 +00:00
for_each_reserved_mem_range(i, &start, &end) {
if (addr >= start && addr_end <= end)
return true;
}
/* Not found, not a good sign... */
pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
&addr, &addr_end);
add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
return false;
}
static int gic_reserve_range(phys_addr_t addr, unsigned long size)
{
if (efi_enabled(EFI_CONFIG_TABLES))
return efi_mem_reserve_persistent(addr, size);
return 0;
}
static int __init its_setup_lpi_prop_table(void)
{
if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
u64 val;
val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
LPI_PROPBASE_SZ,
MEMREMAP_WB);
gic_reset_prop_table(gic_rdists->prop_table_va);
} else {
struct page *page;
lpi_id_bits = min_t(u32,
GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
ITS_MAX_LPI_NRBITS);
page = its_allocate_prop_table(GFP_NOWAIT);
if (!page) {
pr_err("Failed to allocate PROPBASE\n");
return -ENOMEM;
}
gic_rdists->prop_table_pa = page_to_phys(page);
gic_rdists->prop_table_va = page_address(page);
WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
LPI_PROPBASE_SZ));
}
pr_info("GICv3: using LPI property table @%pa\n",
&gic_rdists->prop_table_pa);
return its_lpi_init(lpi_id_bits);
}
static const char *its_base_type_string[] = {
[GITS_BASER_TYPE_DEVICE] = "Devices",
[GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
[GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
[GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
[GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
[GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
[GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
};
static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
{
u32 idx = baser - its->tables;
return gits_read_baser(its->base + GITS_BASER + (idx << 3));
}
static void its_write_baser(struct its_node *its, struct its_baser *baser,
u64 val)
{
u32 idx = baser - its->tables;
gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
baser->val = its_read_baser(its, baser);
}
static int its_setup_baser(struct its_node *its, struct its_baser *baser,
u64 cache, u64 shr, u32 order, bool indirect)
{
u64 val = its_read_baser(its, baser);
u64 esz = GITS_BASER_ENTRY_SIZE(val);
u64 type = GITS_BASER_TYPE(val);
u64 baser_phys, tmp;
u32 alloc_pages, psz;
struct page *page;
void *base;
psz = baser->psz;
alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
if (alloc_pages > GITS_BASER_PAGES_MAX) {
pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
&its->phys_base, its_base_type_string[type],
alloc_pages, GITS_BASER_PAGES_MAX);
alloc_pages = GITS_BASER_PAGES_MAX;
order = get_order(GITS_BASER_PAGES_MAX * psz);
}
page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
if (!page)
return -ENOMEM;
base = (void *)page_address(page);
baser_phys = virt_to_phys(base);
/* Check if the physical address of the memory is above 48bits */
if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
/* 52bit PA is supported only when PageSize=64K */
if (psz != SZ_64K) {
pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
its_free_pages(base, order);
return -ENXIO;
}
/* Convert 52bit PA to 48bit field */
baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
}
retry_baser:
val = (baser_phys |
(type << GITS_BASER_TYPE_SHIFT) |
((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
cache |
shr |
GITS_BASER_VALID);
val |= indirect ? GITS_BASER_INDIRECT : 0x0;
switch (psz) {
case SZ_4K:
val |= GITS_BASER_PAGE_SIZE_4K;
break;
case SZ_16K:
val |= GITS_BASER_PAGE_SIZE_16K;
break;
case SZ_64K:
val |= GITS_BASER_PAGE_SIZE_64K;
break;
}
if (!shr)
gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
its_write_baser(its, baser, val);
tmp = baser->val;
if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
/*
* Shareability didn't stick. Just use
* whatever the read reported, which is likely
* to be the only thing this redistributor
* supports. If that's zero, make it
* non-cacheable as well.
*/
shr = tmp & GITS_BASER_SHAREABILITY_MASK;
if (!shr)
cache = GITS_BASER_nC;
goto retry_baser;
}
if (val != tmp) {
pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
&its->phys_base, its_base_type_string[type],
val, tmp);
its_free_pages(base, order);
return -ENXIO;
}
baser->order = order;
baser->base = base;
baser->psz = psz;
tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
its_base_type_string[type],
(unsigned long)virt_to_phys(base),
indirect ? "indirect" : "flat", (int)esz,
psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
return 0;
}
static bool its_parse_indirect_baser(struct its_node *its,
struct its_baser *baser,
u32 *order, u32 ids)
{
u64 tmp = its_read_baser(its, baser);
u64 type = GITS_BASER_TYPE(tmp);
u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
u32 new_order = *order;
u32 psz = baser->psz;
bool indirect = false;
/* No need to enable Indirection if memory requirement < (psz*2)bytes */
if ((esz << ids) > (psz * 2)) {
/*
* Find out whether hw supports a single or two-level table by
* table by reading bit at offset '62' after writing '1' to it.
*/
its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
indirect = !!(baser->val & GITS_BASER_INDIRECT);
if (indirect) {
/*
* The size of the lvl2 table is equal to ITS page size
* which is 'psz'. For computing lvl1 table size,
* subtract ID bits that sparse lvl2 table from 'ids'
* which is reported by ITS hardware times lvl1 table
* entry size.
*/
ids -= ilog2(psz / (int)esz);
esz = GITS_LVL1_ENTRY_SIZE;
}
}
/*
* Allocate as many entries as required to fit the
* range of device IDs that the ITS can grok... The ID
* space being incredibly sparse, this results in a
* massive waste of memory if two-level device table
* feature is not supported by hardware.
*/
new_order = max_t(u32, get_order(esz << ids), new_order);
if (new_order > MAX_PAGE_ORDER) {
new_order = MAX_PAGE_ORDER;
ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
&its->phys_base, its_base_type_string[type],
device_ids(its), ids);
}
*order = new_order;
return indirect;
}
static u32 compute_common_aff(u64 val)
{
u32 aff, clpiaff;
aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
}
static u32 compute_its_aff(struct its_node *its)
{
u64 val;
u32 svpet;
/*
* Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
* the resulting affinity. We then use that to see if this match
* our own affinity.
*/
svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
return compute_common_aff(val);
}
static struct its_node *find_sibling_its(struct its_node *cur_its)
{
struct its_node *its;
u32 aff;
if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
return NULL;
aff = compute_its_aff(cur_its);
list_for_each_entry(its, &its_nodes, entry) {
u64 baser;
if (!is_v4_1(its) || its == cur_its)
continue;
if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
continue;
if (aff != compute_its_aff(its))
continue;
/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
baser = its->tables[2].val;
if (!(baser & GITS_BASER_VALID))
continue;
return its;
}
return NULL;
}
static void its_free_tables(struct its_node *its)
{
int i;
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
if (its->tables[i].base) {
its_free_pages(its->tables[i].base, its->tables[i].order);
its->tables[i].base = NULL;
}
}
}
static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
{
u64 psz = SZ_64K;
while (psz) {
u64 val, gpsz;
val = its_read_baser(its, baser);
val &= ~GITS_BASER_PAGE_SIZE_MASK;
switch (psz) {
case SZ_64K:
gpsz = GITS_BASER_PAGE_SIZE_64K;
break;
case SZ_16K:
gpsz = GITS_BASER_PAGE_SIZE_16K;
break;
case SZ_4K:
default:
gpsz = GITS_BASER_PAGE_SIZE_4K;
break;
}
gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
its_write_baser(its, baser, val);
if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
break;
switch (psz) {
case SZ_64K:
psz = SZ_16K;
break;
case SZ_16K:
psz = SZ_4K;
break;
case SZ_4K:
default:
return -1;
}
}
baser->psz = psz;
return 0;
}
static int its_alloc_tables(struct its_node *its)
{
u64 shr = GITS_BASER_InnerShareable;
u64 cache = GITS_BASER_RaWaWb;
int err, i;
if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
/* erratum 24313: ignore memory access type */
cache = GITS_BASER_nCnB;
if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
cache = GITS_BASER_nC;
shr = 0;
}
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
struct its_baser *baser = its->tables + i;
u64 val = its_read_baser(its, baser);
u64 type = GITS_BASER_TYPE(val);
bool indirect = false;
u32 order;
if (type == GITS_BASER_TYPE_NONE)
continue;
if (its_probe_baser_psz(its, baser)) {
its_free_tables(its);
return -ENXIO;
}
order = get_order(baser->psz);
switch (type) {
case GITS_BASER_TYPE_DEVICE:
indirect = its_parse_indirect_baser(its, baser, &order,
device_ids(its));
break;
case GITS_BASER_TYPE_VCPU:
if (is_v4_1(its)) {
struct its_node *sibling;
WARN_ON(i != 2);
if ((sibling = find_sibling_its(its))) {
*baser = sibling->tables[2];
its_write_baser(its, baser, baser->val);
continue;
}
}
indirect = its_parse_indirect_baser(its, baser, &order,
ITS_MAX_VPEID_BITS);
break;
}
err = its_setup_baser(its, baser, cache, shr, order, indirect);
if (err < 0) {
its_free_tables(its);
return err;
}
/* Update settings which will be used for next BASERn */
cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
}
return 0;
}
static u64 inherit_vpe_l1_table_from_its(void)
{
struct its_node *its;
u64 val;
u32 aff;
val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
aff = compute_common_aff(val);
list_for_each_entry(its, &its_nodes, entry) {
u64 baser, addr;
if (!is_v4_1(its))
continue;
if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
continue;
if (aff != compute_its_aff(its))
continue;
/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
baser = its->tables[2].val;
if (!(baser & GITS_BASER_VALID))
continue;
/* We have a winner! */
gic_data_rdist()->vpe_l1_base = its->tables[2].base;
val = GICR_VPROPBASER_4_1_VALID;
if (baser & GITS_BASER_INDIRECT)
val |= GICR_VPROPBASER_4_1_INDIRECT;
val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
case GIC_PAGE_SIZE_64K:
addr = GITS_BASER_ADDR_48_to_52(baser);
break;
default:
addr = baser & GENMASK_ULL(47, 12);
break;
}
val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
if (rdists_support_shareable()) {
val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
}
val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
return val;
}
return 0;
}
static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
{
u32 aff;
u64 val;
int cpu;
val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
aff = compute_common_aff(val);
for_each_possible_cpu(cpu) {
void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
if (!base || cpu == smp_processor_id())
continue;
val = gic_read_typer(base + GICR_TYPER);
if (aff != compute_common_aff(val))
continue;
/*
* At this point, we have a victim. This particular CPU
* has already booted, and has an affinity that matches
* ours wrt CommonLPIAff. Let's use its own VPROPBASER.
* Make sure we don't write the Z bit in that case.
*/
val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
val &= ~GICR_VPROPBASER_4_1_Z;
gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
return val;
}
return 0;
}
static bool allocate_vpe_l2_table(int cpu, u32 id)
{
void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
unsigned int psz, esz, idx, npg, gpsz;
u64 val;
struct page *page;
__le64 *table;
if (!gic_rdists->has_rvpeid)
return true;
/* Skip non-present CPUs */
if (!base)
return true;
val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
switch (gpsz) {
default:
WARN_ON(1);
fallthrough;
case GIC_PAGE_SIZE_4K:
psz = SZ_4K;
break;
case GIC_PAGE_SIZE_16K:
psz = SZ_16K;
break;
case GIC_PAGE_SIZE_64K:
psz = SZ_64K;
break;
}
/* Don't allow vpe_id that exceeds single, flat table limit */
if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
return (id < (npg * psz / (esz * SZ_8)));
/* Compute 1st level table index & check if that exceeds table limit */
idx = id >> ilog2(psz / (esz * SZ_8));
if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
return false;
table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
/* Allocate memory for 2nd level table */
if (!table[idx]) {
page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
if (!page)
return false;
/* Flush Lvl2 table to PoC if hw doesn't support coherency */
if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
gic_flush_dcache_to_poc(page_address(page), psz);
table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
/* Ensure updated table contents are visible to RD hardware */
dsb(sy);
}
return true;
}
static int allocate_vpe_l1_table(void)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val, gpsz, npg, pa;
unsigned int psz = SZ_64K;
unsigned int np, epp, esz;
struct page *page;
if (!gic_rdists->has_rvpeid)
return 0;
/*
* if VPENDBASER.Valid is set, disable any previously programmed
* VPE by setting PendingLast while clearing Valid. This has the
* effect of making sure no doorbell will be generated and we can
* then safely clear VPROPBASER.Valid.
*/
if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
vlpi_base + GICR_VPENDBASER);
/*
* If we can inherit the configuration from another RD, let's do
* so. Otherwise, we have to go through the allocation process. We
* assume that all RDs have the exact same requirements, as
* nothing will work otherwise.
*/
val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
if (val & GICR_VPROPBASER_4_1_VALID)
goto out;
irqchip/gic-v4.1: Use GFP_ATOMIC flag in allocate_vpe_l1_table() Booting the latest kernel with DEBUG_ATOMIC_SLEEP=y on a GICv4.1 enabled box, I get the following kernel splat: [ 0.053766] BUG: sleeping function called from invalid context at mm/slab.h:567 [ 0.053767] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 0, name: swapper/1 [ 0.053769] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.8.0-rc3+ #23 [ 0.053770] Call trace: [ 0.053774] dump_backtrace+0x0/0x218 [ 0.053775] show_stack+0x2c/0x38 [ 0.053777] dump_stack+0xc4/0x10c [ 0.053779] ___might_sleep+0xfc/0x140 [ 0.053780] __might_sleep+0x58/0x90 [ 0.053782] slab_pre_alloc_hook+0x7c/0x90 [ 0.053783] kmem_cache_alloc_trace+0x60/0x2f0 [ 0.053785] its_cpu_init+0x6f4/0xe40 [ 0.053786] gic_starting_cpu+0x24/0x38 [ 0.053788] cpuhp_invoke_callback+0xa0/0x710 [ 0.053789] notify_cpu_starting+0xcc/0xd8 [ 0.053790] secondary_start_kernel+0x148/0x200 # ./scripts/faddr2line vmlinux its_cpu_init+0x6f4/0xe40 its_cpu_init+0x6f4/0xe40: allocate_vpe_l1_table at drivers/irqchip/irq-gic-v3-its.c:2818 (inlined by) its_cpu_init_lpis at drivers/irqchip/irq-gic-v3-its.c:3138 (inlined by) its_cpu_init at drivers/irqchip/irq-gic-v3-its.c:5166 It turned out that we're allocating memory using GFP_KERNEL (may sleep) within the CPU hotplug notifier, which is indeed an atomic context. Bad thing may happen if we're playing on a system with more than a single CommonLPIAff group. Avoid it by turning this into an atomic allocation. Fixes: 5e5168461c22 ("irqchip/gic-v4.1: VPE table (aka GICR_VPROPBASER) allocation") Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200630133746.816-1-yuzenghui@huawei.com
2020-06-30 13:37:46 +00:00
gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
if (!gic_data_rdist()->vpe_table_mask)
return -ENOMEM;
val = inherit_vpe_l1_table_from_its();
if (val & GICR_VPROPBASER_4_1_VALID)
goto out;
/* First probe the page size */
val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
switch (gpsz) {
default:
gpsz = GIC_PAGE_SIZE_4K;
fallthrough;
case GIC_PAGE_SIZE_4K:
psz = SZ_4K;
break;
case GIC_PAGE_SIZE_16K:
psz = SZ_16K;
break;
case GIC_PAGE_SIZE_64K:
psz = SZ_64K;
break;
}
/*
* Start populating the register from scratch, including RO fields
* (which we want to print in debug cases...)
*/
val = 0;
val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
/* How many entries per GIC page? */
esz++;
epp = psz / (esz * SZ_8);
/*
* If we need more than just a single L1 page, flag the table
* as indirect and compute the number of required L1 pages.
*/
if (epp < ITS_MAX_VPEID) {
int nl2;
val |= GICR_VPROPBASER_4_1_INDIRECT;
/* Number of L2 pages required to cover the VPEID space */
nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
/* Number of L1 pages to point to the L2 pages */
npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
} else {
npg = 1;
}
val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
/* Right, that's the number of CPU pages we need for L1 */
np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
np, npg, psz, epp, esz);
page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
if (!page)
return -ENOMEM;
gic_data_rdist()->vpe_l1_base = page_address(page);
pa = virt_to_phys(page_address(page));
WARN_ON(!IS_ALIGNED(pa, psz));
val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
if (rdists_support_shareable()) {
val |= GICR_VPROPBASER_RaWb;
val |= GICR_VPROPBASER_InnerShareable;
}
val |= GICR_VPROPBASER_4_1_Z;
val |= GICR_VPROPBASER_4_1_VALID;
out:
gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
smp_processor_id(), val,
cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
return 0;
}
static int its_alloc_collections(struct its_node *its)
{
2018-06-22 09:52:52 +00:00
int i;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
GFP_KERNEL);
if (!its->collections)
return -ENOMEM;
2018-06-22 09:52:52 +00:00
for (i = 0; i < nr_cpu_ids; i++)
its->collections[i].target_address = ~0ULL;
return 0;
}
static struct page *its_allocate_pending_table(gfp_t gfp_flags)
{
struct page *pend_page;
pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
if (!pend_page)
return NULL;
/* Make sure the GIC will observe the zero-ed page */
gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
return pend_page;
}
static void its_free_pending_table(struct page *pt)
{
its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
}
/*
* Booting with kdump and LPIs enabled is generally fine. Any other
* case is wrong in the absence of firmware/EFI support.
*/
static bool enabled_lpis_allowed(void)
{
phys_addr_t addr;
u64 val;
/* Check whether the property table is in a reserved region */
val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
addr = val & GENMASK_ULL(51, 12);
return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
}
static int __init allocate_lpi_tables(void)
{
u64 val;
int err, cpu;
/*
* If LPIs are enabled while we run this from the boot CPU,
* flag the RD tables as pre-allocated if the stars do align.
*/
val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
pr_info("GICv3: Using preallocated redistributor tables\n");
}
err = its_setup_lpi_prop_table();
if (err)
return err;
/*
* We allocate all the pending tables anyway, as we may have a
* mix of RDs that have had LPIs enabled, and some that
* don't. We'll free the unused ones as each CPU comes online.
*/
for_each_possible_cpu(cpu) {
struct page *pend_page;
pend_page = its_allocate_pending_table(GFP_NOWAIT);
if (!pend_page) {
pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
return -ENOMEM;
}
gic_data_rdist_cpu(cpu)->pend_page = pend_page;
}
return 0;
}
static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
{
u32 count = 1000000; /* 1s! */
bool clean;
u64 val;
do {
val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
clean = !(val & GICR_VPENDBASER_Dirty);
if (!clean) {
count--;
cpu_relax();
udelay(1);
}
} while (!clean && count);
if (unlikely(!clean))
pr_err_ratelimited("ITS virtual pending table not cleaning\n");
return val;
}
static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
{
u64 val;
/* Make sure we wait until the RD is done with the initial scan */
val = read_vpend_dirty_clear(vlpi_base);
val &= ~GICR_VPENDBASER_Valid;
val &= ~clr;
val |= set;
gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
val = read_vpend_dirty_clear(vlpi_base);
if (unlikely(val & GICR_VPENDBASER_Dirty))
val |= GICR_VPENDBASER_PendingLast;
return val;
}
static void its_cpu_init_lpis(void)
{
void __iomem *rbase = gic_data_rdist_rd_base();
struct page *pend_page;
phys_addr_t paddr;
u64 val, tmp;
if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
return;
val = readl_relaxed(rbase + GICR_CTLR);
if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
(val & GICR_CTLR_ENABLE_LPIS)) {
/*
* Check that we get the same property table on all
* RDs. If we don't, this is hopeless.
*/
paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
paddr &= GENMASK_ULL(51, 12);
if (WARN_ON(gic_rdists->prop_table_pa != paddr))
add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
paddr &= GENMASK_ULL(51, 16);
WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
goto out;
}
pend_page = gic_data_rdist()->pend_page;
paddr = page_to_phys(pend_page);
/* set PROPBASE */
val = (gic_rdists->prop_table_pa |
GICR_PROPBASER_InnerShareable |
GICR_PROPBASER_RaWaWb |
((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
gicr_write_propbaser(val, rbase + GICR_PROPBASER);
tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
if (!rdists_support_shareable())
tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must
* remove the cacheability attributes as
* well.
*/
val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
GICR_PROPBASER_CACHEABILITY_MASK);
val |= GICR_PROPBASER_nC;
gicr_write_propbaser(val, rbase + GICR_PROPBASER);
}
pr_info_once("GIC: using cache flushing for LPI property table\n");
gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
}
/* set PENDBASE */
val = (page_to_phys(pend_page) |
GICR_PENDBASER_InnerShareable |
GICR_PENDBASER_RaWaWb);
gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
if (!rdists_support_shareable())
tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must remove the
* cacheability attributes as well.
*/
val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
GICR_PENDBASER_CACHEABILITY_MASK);
val |= GICR_PENDBASER_nC;
gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
}
/* Enable LPIs */
val = readl_relaxed(rbase + GICR_CTLR);
val |= GICR_CTLR_ENABLE_LPIS;
writel_relaxed(val, rbase + GICR_CTLR);
out:
if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
/*
* It's possible for CPU to receive VLPIs before it is
* scheduled as a vPE, especially for the first CPU, and the
* VLPI with INTID larger than 2^(IDbits+1) will be considered
* as out of range and dropped by GIC.
* So we initialize IDbits to known value to avoid VLPI drop.
*/
val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
smp_processor_id(), val);
gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
/*
* Also clear Valid bit of GICR_VPENDBASER, in case some
* ancient programming gets left in and has possibility of
* corrupting memory.
*/
val = its_clear_vpend_valid(vlpi_base, 0, 0);
}
if (allocate_vpe_l1_table()) {
/*
* If the allocation has failed, we're in massive trouble.
* Disable direct injection, and pray that no VM was
* already running...
*/
gic_rdists->has_rvpeid = false;
gic_rdists->has_vlpis = false;
}
/* Make sure the GIC has seen the above */
dsb(sy);
gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
smp_processor_id(),
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
"reserved" : "allocated",
&paddr);
}
static void its_cpu_init_collection(struct its_node *its)
{
int cpu = smp_processor_id();
u64 target;
/* avoid cross node collections and its mapping */
if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
struct device_node *cpu_node;
cpu_node = of_get_cpu_node(cpu, NULL);
if (its->numa_node != NUMA_NO_NODE &&
its->numa_node != of_node_to_nid(cpu_node))
return;
}
/*
* We now have to bind each collection to its target
* redistributor.
*/
if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
/*
* This ITS wants the physical address of the
* redistributor.
*/
target = gic_data_rdist()->phys_base;
} else {
/* This ITS wants a linear CPU number. */
target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
target = GICR_TYPER_CPU_NUMBER(target) << 16;
}
/* Perform collection mapping */
its->collections[cpu].target_address = target;
its->collections[cpu].col_id = cpu;
its_send_mapc(its, &its->collections[cpu], 1);
its_send_invall(its, &its->collections[cpu]);
}
static void its_cpu_init_collections(void)
{
struct its_node *its;
raw_spin_lock(&its_lock);
list_for_each_entry(its, &its_nodes, entry)
its_cpu_init_collection(its);
raw_spin_unlock(&its_lock);
}
static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
{
struct its_device *its_dev = NULL, *tmp;
unsigned long flags;
raw_spin_lock_irqsave(&its->lock, flags);
list_for_each_entry(tmp, &its->its_device_list, entry) {
if (tmp->device_id == dev_id) {
its_dev = tmp;
break;
}
}
raw_spin_unlock_irqrestore(&its->lock, flags);
return its_dev;
}
static struct its_baser *its_get_baser(struct its_node *its, u32 type)
{
int i;
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
if (GITS_BASER_TYPE(its->tables[i].val) == type)
return &its->tables[i];
}
return NULL;
}
static bool its_alloc_table_entry(struct its_node *its,
struct its_baser *baser, u32 id)
{
struct page *page;
u32 esz, idx;
__le64 *table;
/* Don't allow device id that exceeds single, flat table limit */
esz = GITS_BASER_ENTRY_SIZE(baser->val);
if (!(baser->val & GITS_BASER_INDIRECT))
return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
/* Compute 1st level table index & check if that exceeds table limit */
idx = id >> ilog2(baser->psz / esz);
if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
return false;
table = baser->base;
/* Allocate memory for 2nd level table */
if (!table[idx]) {
page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
get_order(baser->psz));
if (!page)
return false;
/* Flush Lvl2 table to PoC if hw doesn't support coherency */
if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
gic_flush_dcache_to_poc(page_address(page), baser->psz);
table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
/* Ensure updated table contents are visible to ITS hardware */
dsb(sy);
}
return true;
}
static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
{
struct its_baser *baser;
baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
/* Don't allow device id that exceeds ITS hardware limit */
if (!baser)
return (ilog2(dev_id) < device_ids(its));
return its_alloc_table_entry(its, baser, dev_id);
}
static bool its_alloc_vpe_table(u32 vpe_id)
{
struct its_node *its;
int cpu;
/*
* Make sure the L2 tables are allocated on *all* v4 ITSs. We
* could try and only do it on ITSs corresponding to devices
* that have interrupts targeted at this VPE, but the
* complexity becomes crazy (and you have tons of memory
* anyway, right?).
*/
list_for_each_entry(its, &its_nodes, entry) {
struct its_baser *baser;
if (!is_v4(its))
continue;
baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
if (!baser)
return false;
if (!its_alloc_table_entry(its, baser, vpe_id))
return false;
}
/* Non v4.1? No need to iterate RDs and go back early. */
if (!gic_rdists->has_rvpeid)
return true;
/*
* Make sure the L2 tables are allocated for all copies of
* the L1 table on *all* v4.1 RDs.
*/
for_each_possible_cpu(cpu) {
if (!allocate_vpe_l2_table(cpu, vpe_id))
return false;
}
return true;
}
static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
int nvecs, bool alloc_lpis)
{
struct its_device *dev;
unsigned long *lpi_map = NULL;
unsigned long flags;
u16 *col_map = NULL;
void *itt;
int lpi_base;
int nr_lpis;
int nr_ites;
int sz;
if (!its_alloc_device_table(its, dev_id))
return NULL;
if (WARN_ON(!is_power_of_2(nvecs)))
nvecs = roundup_pow_of_two(nvecs);
/*
* Even if the device wants a single LPI, the ITT must be
* sized as a power of two (and you need at least one bit...).
*/
nr_ites = max(2, nvecs);
sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
sz = max(sz, ITS_ITT_ALIGN);
itt = itt_alloc_pool(its->numa_node, sz);
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (alloc_lpis) {
lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
if (lpi_map)
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
col_map = kcalloc(nr_lpis, sizeof(*col_map),
GFP_KERNEL);
} else {
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
nr_lpis = 0;
lpi_base = 0;
}
if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
kfree(dev);
itt_free_pool(itt, sz);
bitmap_free(lpi_map);
kfree(col_map);
return NULL;
}
gic_flush_dcache_to_poc(itt, sz);
dev->its = its;
dev->itt = itt;
dev->itt_sz = sz;
dev->nr_ites = nr_ites;
dev->event_map.lpi_map = lpi_map;
dev->event_map.col_map = col_map;
dev->event_map.lpi_base = lpi_base;
dev->event_map.nr_lpis = nr_lpis;
raw_spin_lock_init(&dev->event_map.vlpi_lock);
dev->device_id = dev_id;
INIT_LIST_HEAD(&dev->entry);
raw_spin_lock_irqsave(&its->lock, flags);
list_add(&dev->entry, &its->its_device_list);
raw_spin_unlock_irqrestore(&its->lock, flags);
/* Map device to its ITT */
its_send_mapd(dev, 1);
return dev;
}
static void its_free_device(struct its_device *its_dev)
{
unsigned long flags;
raw_spin_lock_irqsave(&its_dev->its->lock, flags);
list_del(&its_dev->entry);
raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
kfree(its_dev->event_map.col_map);
itt_free_pool(its_dev->itt, its_dev->itt_sz);
kfree(its_dev);
}
static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
{
int idx;
/* Find a free LPI region in lpi_map and allocate them. */
idx = bitmap_find_free_region(dev->event_map.lpi_map,
dev->event_map.nr_lpis,
get_count_order(nvecs));
if (idx < 0)
return -ENOSPC;
*hwirq = dev->event_map.lpi_base + idx;
return 0;
}
static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *info)
{
struct its_node *its;
struct its_device *its_dev;
struct msi_domain_info *msi_info;
u32 dev_id;
int err = 0;
/*
* We ignore "dev" entirely, and rely on the dev_id that has
* been passed via the scratchpad. This limits this domain's
* usefulness to upper layers that definitely know that they
* are built on top of the ITS.
*/
dev_id = info->scratchpad[0].ul;
msi_info = msi_get_domain_info(domain);
its = msi_info->data;
if (!gic_rdists->has_direct_lpi &&
vpe_proxy.dev &&
vpe_proxy.dev->its == its &&
dev_id == vpe_proxy.dev->device_id) {
/* Bad luck. Get yourself a better implementation */
WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
dev_id);
return -EINVAL;
}
mutex_lock(&its->dev_alloc_lock);
its_dev = its_find_device(its, dev_id);
if (its_dev) {
/*
* We already have seen this ID, probably through
* another alias (PCI bridge of some sort). No need to
* create the device.
*/
its_dev->shared = true;
pr_debug("Reusing ITT for devID %x\n", dev_id);
goto out;
}
its_dev = its_create_device(its, dev_id, nvec, true);
if (!its_dev) {
err = -ENOMEM;
goto out;
}
if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
its_dev->shared = true;
pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
out:
mutex_unlock(&its->dev_alloc_lock);
info->scratchpad[0].ptr = its_dev;
return err;
}
static struct msi_domain_ops its_msi_domain_ops = {
.msi_prepare = its_msi_prepare,
};
static int its_irq_gic_domain_alloc(struct irq_domain *domain,
unsigned int virq,
irq_hw_number_t hwirq)
{
struct irq_fwspec fwspec;
if (irq_domain_get_of_node(domain->parent)) {
fwspec.fwnode = domain->parent->fwnode;
fwspec.param_count = 3;
fwspec.param[0] = GIC_IRQ_TYPE_LPI;
fwspec.param[1] = hwirq;
fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
fwspec.fwnode = domain->parent->fwnode;
fwspec.param_count = 2;
fwspec.param[0] = hwirq;
fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
} else {
return -EINVAL;
}
return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
}
static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
msi_alloc_info_t *info = args;
struct its_device *its_dev = info->scratchpad[0].ptr;
struct its_node *its = its_dev->its;
genirq/affinity: Make affinity setting if activated opt-in John reported that on a RK3288 system the perf per CPU interrupts are all affine to CPU0 and provided the analysis: "It looks like what happens is that because the interrupts are not per-CPU in the hardware, armpmu_request_irq() calls irq_force_affinity() while the interrupt is deactivated and then request_irq() with IRQF_PERCPU | IRQF_NOBALANCING. Now when irq_startup() runs with IRQ_STARTUP_NORMAL, it calls irq_setup_affinity() which returns early because IRQF_PERCPU and IRQF_NOBALANCING are set, leaving the interrupt on its original CPU." This was broken by the recent commit which blocked interrupt affinity setting in hardware before activation of the interrupt. While this works in general, it does not work for this particular case. As contrary to the initial analysis not all interrupt chip drivers implement an activate callback, the safe cure is to make the deferred interrupt affinity setting at activation time opt-in. Implement the necessary core logic and make the two irqchip implementations for which this is required opt-in. In hindsight this would have been the right thing to do, but ... Fixes: baedb87d1b53 ("genirq/affinity: Handle affinity setting on inactive interrupts correctly") Reported-by: John Keeping <john@metanate.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Acked-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/87blk4tzgm.fsf@nanos.tec.linutronix.de
2020-07-24 20:44:41 +00:00
struct irq_data *irqd;
irq_hw_number_t hwirq;
int err;
int i;
err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
if (err)
return err;
err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
if (err)
return err;
for (i = 0; i < nr_irqs; i++) {
err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
if (err)
return err;
irq_domain_set_hwirq_and_chip(domain, virq + i,
hwirq + i, &its_irq_chip, its_dev);
genirq/affinity: Make affinity setting if activated opt-in John reported that on a RK3288 system the perf per CPU interrupts are all affine to CPU0 and provided the analysis: "It looks like what happens is that because the interrupts are not per-CPU in the hardware, armpmu_request_irq() calls irq_force_affinity() while the interrupt is deactivated and then request_irq() with IRQF_PERCPU | IRQF_NOBALANCING. Now when irq_startup() runs with IRQ_STARTUP_NORMAL, it calls irq_setup_affinity() which returns early because IRQF_PERCPU and IRQF_NOBALANCING are set, leaving the interrupt on its original CPU." This was broken by the recent commit which blocked interrupt affinity setting in hardware before activation of the interrupt. While this works in general, it does not work for this particular case. As contrary to the initial analysis not all interrupt chip drivers implement an activate callback, the safe cure is to make the deferred interrupt affinity setting at activation time opt-in. Implement the necessary core logic and make the two irqchip implementations for which this is required opt-in. In hindsight this would have been the right thing to do, but ... Fixes: baedb87d1b53 ("genirq/affinity: Handle affinity setting on inactive interrupts correctly") Reported-by: John Keeping <john@metanate.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Acked-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/87blk4tzgm.fsf@nanos.tec.linutronix.de
2020-07-24 20:44:41 +00:00
irqd = irq_get_irq_data(virq + i);
irqd_set_single_target(irqd);
irqd_set_affinity_on_activate(irqd);
irqd_set_resend_when_in_progress(irqd);
pr_debug("ID:%d pID:%d vID:%d\n",
(int)(hwirq + i - its_dev->event_map.lpi_base),
(int)(hwirq + i), virq + i);
}
return 0;
}
static int its_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d, bool reserve)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
int cpu;
cpu = its_select_cpu(d, cpu_online_mask);
if (cpu < 0 || cpu >= nr_cpu_ids)
return -EINVAL;
its_inc_lpi_count(d, cpu);
its_dev->event_map.col_map[event] = cpu;
irq_data_update_effective_affinity(d, cpumask_of(cpu));
/* Map the GIC IRQ and event to the device */
its_send_mapti(its_dev, d->hwirq, event);
return 0;
}
static void its_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
/* Stop the delivery of interrupts */
its_send_discard(its_dev, event);
}
static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_node *its = its_dev->its;
int i;
bitmap_release_region(its_dev->event_map.lpi_map,
its_get_event_id(irq_domain_get_irq_data(domain, virq)),
get_count_order(nr_irqs));
for (i = 0; i < nr_irqs; i++) {
struct irq_data *data = irq_domain_get_irq_data(domain,
virq + i);
/* Nuke the entry in the domain */
irq_domain_reset_irq_data(data);
}
mutex_lock(&its->dev_alloc_lock);
/*
* If all interrupts have been freed, start mopping the
* floor. This is conditioned on the device not being shared.
*/
if (!its_dev->shared &&
bitmap_empty(its_dev->event_map.lpi_map,
its_dev->event_map.nr_lpis)) {
its_lpi_free(its_dev->event_map.lpi_map,
its_dev->event_map.lpi_base,
its_dev->event_map.nr_lpis);
/* Unmap device/itt */
its_send_mapd(its_dev, 0);
its_free_device(its_dev);
}
mutex_unlock(&its->dev_alloc_lock);
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops its_domain_ops = {
.select = msi_lib_irq_domain_select,
.alloc = its_irq_domain_alloc,
.free = its_irq_domain_free,
.activate = its_irq_domain_activate,
.deactivate = its_irq_domain_deactivate,
};
/*
* This is insane.
*
* If a GICv4.0 doesn't implement Direct LPIs (which is extremely
* likely), the only way to perform an invalidate is to use a fake
* device to issue an INV command, implying that the LPI has first
* been mapped to some event on that device. Since this is not exactly
* cheap, we try to keep that mapping around as long as possible, and
* only issue an UNMAP if we're short on available slots.
*
* Broken by design(tm).
*
* GICv4.1, on the other hand, mandates that we're able to invalidate
* by writing to a MMIO register. It doesn't implement the whole of
* DirectLPI, but that's good enough. And most of the time, we don't
* even have to invalidate anything, as the redistributor can be told
* whether to generate a doorbell or not (we thus leave it enabled,
* always).
*/
static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
{
/* GICv4.1 doesn't use a proxy, so nothing to do here */
if (gic_rdists->has_rvpeid)
return;
/* Already unmapped? */
if (vpe->vpe_proxy_event == -1)
return;
its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
/*
* We don't track empty slots at all, so let's move the
* next_victim pointer if we can quickly reuse that slot
* instead of nuking an existing entry. Not clear that this is
* always a win though, and this might just generate a ripple
* effect... Let's just hope VPEs don't migrate too often.
*/
if (vpe_proxy.vpes[vpe_proxy.next_victim])
vpe_proxy.next_victim = vpe->vpe_proxy_event;
vpe->vpe_proxy_event = -1;
}
static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
{
/* GICv4.1 doesn't use a proxy, so nothing to do here */
if (gic_rdists->has_rvpeid)
return;
if (!gic_rdists->has_direct_lpi) {
unsigned long flags;
raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
its_vpe_db_proxy_unmap_locked(vpe);
raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
}
}
static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
{
/* GICv4.1 doesn't use a proxy, so nothing to do here */
if (gic_rdists->has_rvpeid)
return;
/* Already mapped? */
if (vpe->vpe_proxy_event != -1)
return;
/* This slot was already allocated. Kick the other VPE out. */
if (vpe_proxy.vpes[vpe_proxy.next_victim])
its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
/* Map the new VPE instead */
vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
vpe->vpe_proxy_event = vpe_proxy.next_victim;
vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
}
static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
{
unsigned long flags;
struct its_collection *target_col;
/* GICv4.1 doesn't use a proxy, so nothing to do here */
if (gic_rdists->has_rvpeid)
return;
if (gic_rdists->has_direct_lpi) {
void __iomem *rdbase;
rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
wait_for_syncr(rdbase);
return;
}
raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
its_vpe_db_proxy_map_locked(vpe);
target_col = &vpe_proxy.dev->its->collections[to];
its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
}
static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
{
void __iomem *rdbase;
u64 val;
val = GICR_INVALLR_V;
val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
gic_write_lpir(val, rdbase + GICR_INVALLR);
wait_for_syncr(rdbase);
}
static int its_vpe_set_affinity(struct irq_data *d,
const struct cpumask *mask_val,
bool force)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
unsigned int from, cpu = nr_cpu_ids;
struct cpumask *table_mask;
struct its_node *its;
unsigned long flags;
/*
* Check if we're racing against a VPE being destroyed, for
* which we don't want to allow a VMOVP.
*/
if (!atomic_read(&vpe->vmapp_count)) {
if (gic_requires_eager_mapping())
return -EINVAL;
/*
* If we lazily map the VPEs, this isn't an error and
* we can exit cleanly.
*/
cpu = cpumask_first(mask_val);
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK_DONE;
}
/*
* Changing affinity is mega expensive, so let's be as lazy as
* we can and only do it if we really have to. Also, if mapped
* into the proxy device, we need to move the doorbell
* interrupt to its new location.
*
* Another thing is that changing the affinity of a vPE affects
* *other interrupts* such as all the vLPIs that are routed to
* this vPE. This means that the irq_desc lock is not enough to
* protect us, and that we must ensure nobody samples vpe->col_idx
* during the update, hence the lock below which must also be
* taken on any vLPI handling path that evaluates vpe->col_idx.
*
* Finally, we must protect ourselves against concurrent updates of
* the mapping state on this VM should the ITS list be in use (see
* the shortcut in its_send_vmovp() otherewise).
*/
if (its_list_map)
raw_spin_lock(&vpe->its_vm->vmapp_lock);
from = vpe_to_cpuid_lock(vpe, &flags);
table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
/*
* If we are offered another CPU in the same GICv4.1 ITS
* affinity, pick this one. Otherwise, any CPU will do.
*/
if (table_mask)
cpu = cpumask_any_and(mask_val, table_mask);
if (cpu < nr_cpu_ids) {
if (cpumask_test_cpu(from, mask_val) &&
cpumask_test_cpu(from, table_mask))
cpu = from;
} else {
cpu = cpumask_first(mask_val);
}
if (from == cpu)
goto out;
vpe->col_idx = cpu;
its_send_vmovp(vpe);
its = find_4_1_its();
if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
its_vpe_4_1_invall_locked(cpu, vpe);
its_vpe_db_proxy_move(vpe, from, cpu);
out:
irq_data_update_effective_affinity(d, cpumask_of(cpu));
vpe_to_cpuid_unlock(vpe, flags);
if (its_list_map)
raw_spin_unlock(&vpe->its_vm->vmapp_lock);
return IRQ_SET_MASK_OK_DONE;
}
static void its_wait_vpt_parse_complete(void)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val;
if (!gic_rdists->has_vpend_valid_dirty)
return;
WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
val,
!(val & GICR_VPENDBASER_Dirty),
1, 500));
}
static void its_vpe_schedule(struct its_vpe *vpe)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val;
/* Schedule the VPE */
val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
GENMASK_ULL(51, 12);
val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
if (rdists_support_shareable()) {
val |= GICR_VPROPBASER_RaWb;
val |= GICR_VPROPBASER_InnerShareable;
}
gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
val = virt_to_phys(page_address(vpe->vpt_page)) &
GENMASK_ULL(51, 16);
if (rdists_support_shareable()) {
val |= GICR_VPENDBASER_RaWaWb;
val |= GICR_VPENDBASER_InnerShareable;
}
/*
* There is no good way of finding out if the pending table is
* empty as we can race against the doorbell interrupt very
* easily. So in the end, vpe->pending_last is only an
* indication that the vcpu has something pending, not one
* that the pending table is empty. A good implementation
* would be able to read its coarse map pretty quickly anyway,
* making this a tolerable issue.
*/
val |= GICR_VPENDBASER_PendingLast;
val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
val |= GICR_VPENDBASER_Valid;
gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
}
static void its_vpe_deschedule(struct its_vpe *vpe)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val;
val = its_clear_vpend_valid(vlpi_base, 0, 0);
vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
}
static void its_vpe_invall(struct its_vpe *vpe)
{
struct its_node *its;
guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
list_for_each_entry(its, &its_nodes, entry) {
if (!is_v4(its))
continue;
if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
continue;
/*
* Sending a VINVALL to a single ITS is enough, as all
* we need is to reach the redistributors.
*/
its_send_vinvall(its, vpe);
return;
}
}
static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_cmd_info *info = vcpu_info;
switch (info->cmd_type) {
case SCHEDULE_VPE:
its_vpe_schedule(vpe);
return 0;
case DESCHEDULE_VPE:
its_vpe_deschedule(vpe);
return 0;
case COMMIT_VPE:
its_wait_vpt_parse_complete();
return 0;
case INVALL_VPE:
its_vpe_invall(vpe);
return 0;
default:
return -EINVAL;
}
}
static void its_vpe_send_cmd(struct its_vpe *vpe,
void (*cmd)(struct its_device *, u32))
{
unsigned long flags;
raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
its_vpe_db_proxy_map_locked(vpe);
cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
}
static void its_vpe_send_inv(struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
if (gic_rdists->has_direct_lpi)
__direct_lpi_inv(d, d->parent_data->hwirq);
else
its_vpe_send_cmd(vpe, its_send_inv);
}
static void its_vpe_mask_irq(struct irq_data *d)
{
/*
* We need to unmask the LPI, which is described by the parent
* irq_data. Instead of calling into the parent (which won't
* exactly do the right thing, let's simply use the
* parent_data pointer. Yes, I'm naughty.
*/
lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
its_vpe_send_inv(d);
}
static void its_vpe_unmask_irq(struct irq_data *d)
{
/* Same hack as above... */
lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
its_vpe_send_inv(d);
}
static int its_vpe_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool state)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
if (which != IRQCHIP_STATE_PENDING)
return -EINVAL;
if (gic_rdists->has_direct_lpi) {
void __iomem *rdbase;
rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
if (state) {
gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
} else {
gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
wait_for_syncr(rdbase);
}
} else {
if (state)
its_vpe_send_cmd(vpe, its_send_int);
else
its_vpe_send_cmd(vpe, its_send_clear);
}
return 0;
}
irqchip/gic-v4: Provide irq_retrigger to avoid circular locking dependency On a very heavily loaded D05 with GICv4, I managed to trigger the following lockdep splat: [ 6022.598864] ====================================================== [ 6022.605031] WARNING: possible circular locking dependency detected [ 6022.611200] 5.6.0-rc4-00026-geee7c7b0f498 #680 Tainted: G E [ 6022.618061] ------------------------------------------------------ [ 6022.624227] qemu-system-aar/7569 is trying to acquire lock: [ 6022.629789] ffff042f97606808 (&p->pi_lock){-.-.}, at: try_to_wake_up+0x54/0x7a0 [ 6022.637102] [ 6022.637102] but task is already holding lock: [ 6022.642921] ffff002fae424cf0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x5c/0x98 [ 6022.651350] [ 6022.651350] which lock already depends on the new lock. [ 6022.651350] [ 6022.659512] [ 6022.659512] the existing dependency chain (in reverse order) is: [ 6022.666980] [ 6022.666980] -> #2 (&irq_desc_lock_class){-.-.}: [ 6022.672983] _raw_spin_lock_irqsave+0x50/0x78 [ 6022.677848] __irq_get_desc_lock+0x5c/0x98 [ 6022.682453] irq_set_vcpu_affinity+0x40/0xc0 [ 6022.687236] its_make_vpe_non_resident+0x6c/0xb8 [ 6022.692364] vgic_v4_put+0x54/0x70 [ 6022.696273] vgic_v3_put+0x20/0xd8 [ 6022.700183] kvm_vgic_put+0x30/0x48 [ 6022.704182] kvm_arch_vcpu_put+0x34/0x50 [ 6022.708614] kvm_sched_out+0x34/0x50 [ 6022.712700] __schedule+0x4bc/0x7f8 [ 6022.716697] schedule+0x50/0xd8 [ 6022.720347] kvm_arch_vcpu_ioctl_run+0x5f0/0x978 [ 6022.725473] kvm_vcpu_ioctl+0x3d4/0x8f8 [ 6022.729820] ksys_ioctl+0x90/0xd0 [ 6022.733642] __arm64_sys_ioctl+0x24/0x30 [ 6022.738074] el0_svc_common.constprop.3+0xa8/0x1e8 [ 6022.743373] do_el0_svc+0x28/0x88 [ 6022.747198] el0_svc+0x14/0x40 [ 6022.750761] el0_sync_handler+0x124/0x2b8 [ 6022.755278] el0_sync+0x140/0x180 [ 6022.759100] [ 6022.759100] -> #1 (&rq->lock){-.-.}: [ 6022.764143] _raw_spin_lock+0x38/0x50 [ 6022.768314] task_fork_fair+0x40/0x128 [ 6022.772572] sched_fork+0xe0/0x210 [ 6022.776484] copy_process+0x8c4/0x18d8 [ 6022.780742] _do_fork+0x88/0x6d8 [ 6022.784478] kernel_thread+0x64/0x88 [ 6022.788563] rest_init+0x30/0x270 [ 6022.792390] arch_call_rest_init+0x14/0x1c [ 6022.796995] start_kernel+0x498/0x4c4 [ 6022.801164] [ 6022.801164] -> #0 (&p->pi_lock){-.-.}: [ 6022.806382] __lock_acquire+0xdd8/0x15c8 [ 6022.810813] lock_acquire+0xd0/0x218 [ 6022.814896] _raw_spin_lock_irqsave+0x50/0x78 [ 6022.819761] try_to_wake_up+0x54/0x7a0 [ 6022.824018] wake_up_process+0x1c/0x28 [ 6022.828276] wakeup_softirqd+0x38/0x40 [ 6022.832533] __tasklet_schedule_common+0xc4/0xf0 [ 6022.837658] __tasklet_schedule+0x24/0x30 [ 6022.842176] check_irq_resend+0xc8/0x158 [ 6022.846609] irq_startup+0x74/0x128 [ 6022.850606] __enable_irq+0x6c/0x78 [ 6022.854602] enable_irq+0x54/0xa0 [ 6022.858431] its_make_vpe_non_resident+0xa4/0xb8 [ 6022.863557] vgic_v4_put+0x54/0x70 [ 6022.867469] kvm_arch_vcpu_blocking+0x28/0x38 [ 6022.872336] kvm_vcpu_block+0x48/0x490 [ 6022.876594] kvm_handle_wfx+0x18c/0x310 [ 6022.880938] handle_exit+0x138/0x198 [ 6022.885022] kvm_arch_vcpu_ioctl_run+0x4d4/0x978 [ 6022.890148] kvm_vcpu_ioctl+0x3d4/0x8f8 [ 6022.894494] ksys_ioctl+0x90/0xd0 [ 6022.898317] __arm64_sys_ioctl+0x24/0x30 [ 6022.902748] el0_svc_common.constprop.3+0xa8/0x1e8 [ 6022.908046] do_el0_svc+0x28/0x88 [ 6022.911871] el0_svc+0x14/0x40 [ 6022.915434] el0_sync_handler+0x124/0x2b8 [ 6022.919951] el0_sync+0x140/0x180 [ 6022.923773] [ 6022.923773] other info that might help us debug this: [ 6022.923773] [ 6022.931762] Chain exists of: [ 6022.931762] &p->pi_lock --> &rq->lock --> &irq_desc_lock_class [ 6022.931762] [ 6022.942101] Possible unsafe locking scenario: [ 6022.942101] [ 6022.948007] CPU0 CPU1 [ 6022.952523] ---- ---- [ 6022.957039] lock(&irq_desc_lock_class); [ 6022.961036] lock(&rq->lock); [ 6022.966595] lock(&irq_desc_lock_class); [ 6022.973109] lock(&p->pi_lock); [ 6022.976324] [ 6022.976324] *** DEADLOCK *** This is happening because we have a pending doorbell that requires retrigger. As SW retriggering is done in a tasklet, we trigger the circular dependency above. The easy cop-out is to provide a retrigger callback that doesn't require acquiring any extra lock. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200310184921.23552-5-maz@kernel.org
2020-03-10 18:49:21 +00:00
static int its_vpe_retrigger(struct irq_data *d)
{
return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
}
static struct irq_chip its_vpe_irq_chip = {
.name = "GICv4-vpe",
.irq_mask = its_vpe_mask_irq,
.irq_unmask = its_vpe_unmask_irq,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = its_vpe_set_affinity,
irqchip/gic-v4: Provide irq_retrigger to avoid circular locking dependency On a very heavily loaded D05 with GICv4, I managed to trigger the following lockdep splat: [ 6022.598864] ====================================================== [ 6022.605031] WARNING: possible circular locking dependency detected [ 6022.611200] 5.6.0-rc4-00026-geee7c7b0f498 #680 Tainted: G E [ 6022.618061] ------------------------------------------------------ [ 6022.624227] qemu-system-aar/7569 is trying to acquire lock: [ 6022.629789] ffff042f97606808 (&p->pi_lock){-.-.}, at: try_to_wake_up+0x54/0x7a0 [ 6022.637102] [ 6022.637102] but task is already holding lock: [ 6022.642921] ffff002fae424cf0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x5c/0x98 [ 6022.651350] [ 6022.651350] which lock already depends on the new lock. [ 6022.651350] [ 6022.659512] [ 6022.659512] the existing dependency chain (in reverse order) is: [ 6022.666980] [ 6022.666980] -> #2 (&irq_desc_lock_class){-.-.}: [ 6022.672983] _raw_spin_lock_irqsave+0x50/0x78 [ 6022.677848] __irq_get_desc_lock+0x5c/0x98 [ 6022.682453] irq_set_vcpu_affinity+0x40/0xc0 [ 6022.687236] its_make_vpe_non_resident+0x6c/0xb8 [ 6022.692364] vgic_v4_put+0x54/0x70 [ 6022.696273] vgic_v3_put+0x20/0xd8 [ 6022.700183] kvm_vgic_put+0x30/0x48 [ 6022.704182] kvm_arch_vcpu_put+0x34/0x50 [ 6022.708614] kvm_sched_out+0x34/0x50 [ 6022.712700] __schedule+0x4bc/0x7f8 [ 6022.716697] schedule+0x50/0xd8 [ 6022.720347] kvm_arch_vcpu_ioctl_run+0x5f0/0x978 [ 6022.725473] kvm_vcpu_ioctl+0x3d4/0x8f8 [ 6022.729820] ksys_ioctl+0x90/0xd0 [ 6022.733642] __arm64_sys_ioctl+0x24/0x30 [ 6022.738074] el0_svc_common.constprop.3+0xa8/0x1e8 [ 6022.743373] do_el0_svc+0x28/0x88 [ 6022.747198] el0_svc+0x14/0x40 [ 6022.750761] el0_sync_handler+0x124/0x2b8 [ 6022.755278] el0_sync+0x140/0x180 [ 6022.759100] [ 6022.759100] -> #1 (&rq->lock){-.-.}: [ 6022.764143] _raw_spin_lock+0x38/0x50 [ 6022.768314] task_fork_fair+0x40/0x128 [ 6022.772572] sched_fork+0xe0/0x210 [ 6022.776484] copy_process+0x8c4/0x18d8 [ 6022.780742] _do_fork+0x88/0x6d8 [ 6022.784478] kernel_thread+0x64/0x88 [ 6022.788563] rest_init+0x30/0x270 [ 6022.792390] arch_call_rest_init+0x14/0x1c [ 6022.796995] start_kernel+0x498/0x4c4 [ 6022.801164] [ 6022.801164] -> #0 (&p->pi_lock){-.-.}: [ 6022.806382] __lock_acquire+0xdd8/0x15c8 [ 6022.810813] lock_acquire+0xd0/0x218 [ 6022.814896] _raw_spin_lock_irqsave+0x50/0x78 [ 6022.819761] try_to_wake_up+0x54/0x7a0 [ 6022.824018] wake_up_process+0x1c/0x28 [ 6022.828276] wakeup_softirqd+0x38/0x40 [ 6022.832533] __tasklet_schedule_common+0xc4/0xf0 [ 6022.837658] __tasklet_schedule+0x24/0x30 [ 6022.842176] check_irq_resend+0xc8/0x158 [ 6022.846609] irq_startup+0x74/0x128 [ 6022.850606] __enable_irq+0x6c/0x78 [ 6022.854602] enable_irq+0x54/0xa0 [ 6022.858431] its_make_vpe_non_resident+0xa4/0xb8 [ 6022.863557] vgic_v4_put+0x54/0x70 [ 6022.867469] kvm_arch_vcpu_blocking+0x28/0x38 [ 6022.872336] kvm_vcpu_block+0x48/0x490 [ 6022.876594] kvm_handle_wfx+0x18c/0x310 [ 6022.880938] handle_exit+0x138/0x198 [ 6022.885022] kvm_arch_vcpu_ioctl_run+0x4d4/0x978 [ 6022.890148] kvm_vcpu_ioctl+0x3d4/0x8f8 [ 6022.894494] ksys_ioctl+0x90/0xd0 [ 6022.898317] __arm64_sys_ioctl+0x24/0x30 [ 6022.902748] el0_svc_common.constprop.3+0xa8/0x1e8 [ 6022.908046] do_el0_svc+0x28/0x88 [ 6022.911871] el0_svc+0x14/0x40 [ 6022.915434] el0_sync_handler+0x124/0x2b8 [ 6022.919951] el0_sync+0x140/0x180 [ 6022.923773] [ 6022.923773] other info that might help us debug this: [ 6022.923773] [ 6022.931762] Chain exists of: [ 6022.931762] &p->pi_lock --> &rq->lock --> &irq_desc_lock_class [ 6022.931762] [ 6022.942101] Possible unsafe locking scenario: [ 6022.942101] [ 6022.948007] CPU0 CPU1 [ 6022.952523] ---- ---- [ 6022.957039] lock(&irq_desc_lock_class); [ 6022.961036] lock(&rq->lock); [ 6022.966595] lock(&irq_desc_lock_class); [ 6022.973109] lock(&p->pi_lock); [ 6022.976324] [ 6022.976324] *** DEADLOCK *** This is happening because we have a pending doorbell that requires retrigger. As SW retriggering is done in a tasklet, we trigger the circular dependency above. The easy cop-out is to provide a retrigger callback that doesn't require acquiring any extra lock. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200310184921.23552-5-maz@kernel.org
2020-03-10 18:49:21 +00:00
.irq_retrigger = its_vpe_retrigger,
.irq_set_irqchip_state = its_vpe_set_irqchip_state,
.irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
};
static struct its_node *find_4_1_its(void)
{
static struct its_node *its = NULL;
if (!its) {
list_for_each_entry(its, &its_nodes, entry) {
if (is_v4_1(its))
return its;
}
/* Oops? */
its = NULL;
}
return its;
}
static void its_vpe_4_1_send_inv(struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_node *its;
/*
* GICv4.1 wants doorbells to be invalidated using the
* INVDB command in order to be broadcast to all RDs. Send
* it to the first valid ITS, and let the HW do its magic.
*/
its = find_4_1_its();
if (its)
its_send_invdb(its, vpe);
}
static void its_vpe_4_1_mask_irq(struct irq_data *d)
{
lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
its_vpe_4_1_send_inv(d);
}
static void its_vpe_4_1_unmask_irq(struct irq_data *d)
{
lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
its_vpe_4_1_send_inv(d);
}
static void its_vpe_4_1_schedule(struct its_vpe *vpe,
struct its_cmd_info *info)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val = 0;
/* Schedule the VPE */
val |= GICR_VPENDBASER_Valid;
val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
}
static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
struct its_cmd_info *info)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u64 val;
if (info->req_db) {
unsigned long flags;
/*
* vPE is going to block: make the vPE non-resident with
* PendingLast clear and DB set. The GIC guarantees that if
* we read-back PendingLast clear, then a doorbell will be
* delivered when an interrupt comes.
*
* Note the locking to deal with the concurrent update of
* pending_last from the doorbell interrupt handler that can
* run concurrently.
*/
raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
val = its_clear_vpend_valid(vlpi_base,
GICR_VPENDBASER_PendingLast,
GICR_VPENDBASER_4_1_DB);
vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
} else {
/*
* We're not blocking, so just make the vPE non-resident
* with PendingLast set, indicating that we'll be back.
*/
val = its_clear_vpend_valid(vlpi_base,
0,
GICR_VPENDBASER_PendingLast);
vpe->pending_last = true;
}
}
static void its_vpe_4_1_invall(struct its_vpe *vpe)
{
unsigned long flags;
int cpu;
/* Target the redistributor this vPE is currently known on */
cpu = vpe_to_cpuid_lock(vpe, &flags);
its_vpe_4_1_invall_locked(cpu, vpe);
vpe_to_cpuid_unlock(vpe, flags);
}
static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_cmd_info *info = vcpu_info;
switch (info->cmd_type) {
case SCHEDULE_VPE:
its_vpe_4_1_schedule(vpe, info);
return 0;
case DESCHEDULE_VPE:
its_vpe_4_1_deschedule(vpe, info);
return 0;
case COMMIT_VPE:
its_wait_vpt_parse_complete();
return 0;
case INVALL_VPE:
its_vpe_4_1_invall(vpe);
return 0;
default:
return -EINVAL;
}
}
static struct irq_chip its_vpe_4_1_irq_chip = {
.name = "GICv4.1-vpe",
.irq_mask = its_vpe_4_1_mask_irq,
.irq_unmask = its_vpe_4_1_unmask_irq,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = its_vpe_set_affinity,
.irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
};
static void its_configure_sgi(struct irq_data *d, bool clear)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_cmd_desc desc;
desc.its_vsgi_cmd.vpe = vpe;
desc.its_vsgi_cmd.sgi = d->hwirq;
desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
desc.its_vsgi_cmd.clear = clear;
/*
* GICv4.1 allows us to send VSGI commands to any ITS as long as the
* destination VPE is mapped there. Since we map them eagerly at
* activation time, we're pretty sure the first GICv4.1 ITS will do.
*/
its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
}
static void its_sgi_mask_irq(struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
vpe->sgi_config[d->hwirq].enabled = false;
its_configure_sgi(d, false);
}
static void its_sgi_unmask_irq(struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
vpe->sgi_config[d->hwirq].enabled = true;
its_configure_sgi(d, false);
}
static int its_sgi_set_affinity(struct irq_data *d,
const struct cpumask *mask_val,
bool force)
{
/*
* There is no notion of affinity for virtual SGIs, at least
* not on the host (since they can only be targeting a vPE).
* Tell the kernel we've done whatever it asked for.
*/
irq_data_update_effective_affinity(d, mask_val);
return IRQ_SET_MASK_OK;
}
static int its_sgi_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool state)
{
if (which != IRQCHIP_STATE_PENDING)
return -EINVAL;
if (state) {
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_node *its = find_4_1_its();
u64 val;
val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
} else {
its_configure_sgi(d, true);
}
return 0;
}
static int its_sgi_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool *val)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
void __iomem *base;
unsigned long flags;
u32 count = 1000000; /* 1s! */
u32 status;
int cpu;
if (which != IRQCHIP_STATE_PENDING)
return -EINVAL;
/*
* Locking galore! We can race against two different events:
*
* - Concurrent vPE affinity change: we must make sure it cannot
* happen, or we'll talk to the wrong redistributor. This is
* identical to what happens with vLPIs.
*
* - Concurrent VSGIPENDR access: As it involves accessing two
* MMIO registers, this must be made atomic one way or another.
*/
cpu = vpe_to_cpuid_lock(vpe, &flags);
raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
do {
status = readl_relaxed(base + GICR_VSGIPENDR);
if (!(status & GICR_VSGIPENDR_BUSY))
goto out;
count--;
if (!count) {
pr_err_ratelimited("Unable to get SGI status\n");
goto out;
}
cpu_relax();
udelay(1);
} while (count);
out:
raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
vpe_to_cpuid_unlock(vpe, flags);
if (!count)
return -ENXIO;
*val = !!(status & (1 << d->hwirq));
return 0;
}
static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_cmd_info *info = vcpu_info;
switch (info->cmd_type) {
case PROP_UPDATE_VSGI:
vpe->sgi_config[d->hwirq].priority = info->priority;
vpe->sgi_config[d->hwirq].group = info->group;
its_configure_sgi(d, false);
return 0;
default:
return -EINVAL;
}
}
static struct irq_chip its_sgi_irq_chip = {
.name = "GICv4.1-sgi",
.irq_mask = its_sgi_mask_irq,
.irq_unmask = its_sgi_unmask_irq,
.irq_set_affinity = its_sgi_set_affinity,
.irq_set_irqchip_state = its_sgi_set_irqchip_state,
.irq_get_irqchip_state = its_sgi_get_irqchip_state,
.irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
};
static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *args)
{
struct its_vpe *vpe = args;
int i;
/* Yes, we do want 16 SGIs */
WARN_ON(nr_irqs != 16);
for (i = 0; i < 16; i++) {
vpe->sgi_config[i].priority = 0;
vpe->sgi_config[i].enabled = false;
vpe->sgi_config[i].group = false;
irq_domain_set_hwirq_and_chip(domain, virq + i, i,
&its_sgi_irq_chip, vpe);
irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
}
return 0;
}
static void its_sgi_irq_domain_free(struct irq_domain *domain,
unsigned int virq,
unsigned int nr_irqs)
{
/* Nothing to do */
}
static int its_sgi_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d, bool reserve)
{
/* Write out the initial SGI configuration */
its_configure_sgi(d, false);
return 0;
}
static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
/*
* The VSGI command is awkward:
*
* - To change the configuration, CLEAR must be set to false,
* leaving the pending bit unchanged.
* - To clear the pending bit, CLEAR must be set to true, leaving
* the configuration unchanged.
*
* You just can't do both at once, hence the two commands below.
*/
vpe->sgi_config[d->hwirq].enabled = false;
its_configure_sgi(d, false);
its_configure_sgi(d, true);
}
static const struct irq_domain_ops its_sgi_domain_ops = {
.alloc = its_sgi_irq_domain_alloc,
.free = its_sgi_irq_domain_free,
.activate = its_sgi_irq_domain_activate,
.deactivate = its_sgi_irq_domain_deactivate,
};
static int its_vpe_id_alloc(void)
{
return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
}
static void its_vpe_id_free(u16 id)
{
ida_free(&its_vpeid_ida, id);
}
static int its_vpe_init(struct its_vpe *vpe)
{
struct page *vpt_page;
int vpe_id;
/* Allocate vpe_id */
vpe_id = its_vpe_id_alloc();
if (vpe_id < 0)
return vpe_id;
/* Allocate VPT */
vpt_page = its_allocate_pending_table(GFP_KERNEL);
if (!vpt_page) {
its_vpe_id_free(vpe_id);
return -ENOMEM;
}
if (!its_alloc_vpe_table(vpe_id)) {
its_vpe_id_free(vpe_id);
its_free_pending_table(vpt_page);
return -ENOMEM;
}
raw_spin_lock_init(&vpe->vpe_lock);
vpe->vpe_id = vpe_id;
vpe->vpt_page = vpt_page;
atomic_set(&vpe->vmapp_count, 0);
if (!gic_rdists->has_rvpeid)
vpe->vpe_proxy_event = -1;
return 0;
}
static void its_vpe_teardown(struct its_vpe *vpe)
{
its_vpe_db_proxy_unmap(vpe);
its_vpe_id_free(vpe->vpe_id);
its_free_pending_table(vpe->vpt_page);
}
static void its_vpe_irq_domain_free(struct irq_domain *domain,
unsigned int virq,
unsigned int nr_irqs)
{
struct its_vm *vm = domain->host_data;
int i;
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
for (i = 0; i < nr_irqs; i++) {
struct irq_data *data = irq_domain_get_irq_data(domain,
virq + i);
struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
BUG_ON(vm != vpe->its_vm);
clear_bit(data->hwirq, vm->db_bitmap);
its_vpe_teardown(vpe);
irq_domain_reset_irq_data(data);
}
if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
its_free_prop_table(vm->vprop_page);
}
}
static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct irq_chip *irqchip = &its_vpe_irq_chip;
struct its_vm *vm = args;
unsigned long *bitmap;
struct page *vprop_page;
int base, nr_ids, i, err = 0;
bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
if (!bitmap)
return -ENOMEM;
if (nr_ids < nr_irqs) {
its_lpi_free(bitmap, base, nr_ids);
return -ENOMEM;
}
vprop_page = its_allocate_prop_table(GFP_KERNEL);
if (!vprop_page) {
its_lpi_free(bitmap, base, nr_ids);
return -ENOMEM;
}
vm->db_bitmap = bitmap;
vm->db_lpi_base = base;
vm->nr_db_lpis = nr_ids;
vm->vprop_page = vprop_page;
raw_spin_lock_init(&vm->vmapp_lock);
if (gic_rdists->has_rvpeid)
irqchip = &its_vpe_4_1_irq_chip;
for (i = 0; i < nr_irqs; i++) {
vm->vpes[i]->vpe_db_lpi = base + i;
err = its_vpe_init(vm->vpes[i]);
if (err)
break;
err = its_irq_gic_domain_alloc(domain, virq + i,
vm->vpes[i]->vpe_db_lpi);
if (err)
break;
irq_domain_set_hwirq_and_chip(domain, virq + i, i,
irqchip, vm->vpes[i]);
set_bit(i, bitmap);
irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
}
if (err)
its_vpe_irq_domain_free(domain, virq, i);
return err;
}
static int its_vpe_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d, bool reserve)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_node *its;
/* Map the VPE to the first possible CPU */
vpe->col_idx = cpumask_first(cpu_online_mask);
irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
/*
* If we use the list map, we issue VMAPP on demand... Unless
* we're on a GICv4.1 and we eagerly map the VPE on all ITSs
* so that VSGIs can work.
*/
if (!gic_requires_eager_mapping())
return 0;
list_for_each_entry(its, &its_nodes, entry) {
if (!is_v4(its))
continue;
its_send_vmapp(its, vpe, true);
its_send_vinvall(its, vpe);
}
return 0;
}
static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *d)
{
struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
struct its_node *its;
/*
* If we use the list map on GICv4.0, we unmap the VPE once no
* VLPIs are associated with the VM.
*/
if (!gic_requires_eager_mapping())
return;
list_for_each_entry(its, &its_nodes, entry) {
if (!is_v4(its))
continue;
its_send_vmapp(its, vpe, false);
}
/*
* There may be a direct read to the VPT after unmapping the
* vPE, to guarantee the validity of this, we make the VPT
* memory coherent with the CPU caches here.
*/
if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
LPI_PENDBASE_SZ);
}
static const struct irq_domain_ops its_vpe_domain_ops = {
.alloc = its_vpe_irq_domain_alloc,
.free = its_vpe_irq_domain_free,
.activate = its_vpe_irq_domain_activate,
.deactivate = its_vpe_irq_domain_deactivate,
};
static int its_force_quiescent(void __iomem *base)
{
u32 count = 1000000; /* 1s */
u32 val;
val = readl_relaxed(base + GITS_CTLR);
/*
* GIC architecture specification requires the ITS to be both
* disabled and quiescent for writes to GITS_BASER<n> or
* GITS_CBASER to not have UNPREDICTABLE results.
*/
if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
return 0;
/* Disable the generation of all interrupts to this ITS */
val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
writel_relaxed(val, base + GITS_CTLR);
/* Poll GITS_CTLR and wait until ITS becomes quiescent */
while (1) {
val = readl_relaxed(base + GITS_CTLR);
if (val & GITS_CTLR_QUIESCENT)
return 0;
count--;
if (!count)
return -EBUSY;
cpu_relax();
udelay(1);
}
}
static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
{
struct its_node *its = data;
/* erratum 22375: only alloc 8MB table size (20 bits) */
its->typer &= ~GITS_TYPER_DEVBITS;
its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
return true;
}
static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
{
struct its_node *its = data;
its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
return true;
}
static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
{
struct its_node *its = data;
/* On QDF2400, the size of the ITE is 16Bytes */
its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
return true;
}
static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
{
struct its_node *its = its_dev->its;
/*
* The Socionext Synquacer SoC has a so-called 'pre-ITS',
* which maps 32-bit writes targeted at a separate window of
* size '4 << device_id_bits' onto writes to GITS_TRANSLATER
* with device ID taken from bits [device_id_bits + 1:2] of
* the window offset.
*/
return its->pre_its_base + (its_dev->device_id << 2);
}
static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
{
struct its_node *its = data;
u32 pre_its_window[2];
u32 ids;
if (!fwnode_property_read_u32_array(its->fwnode_handle,
"socionext,synquacer-pre-its",
pre_its_window,
ARRAY_SIZE(pre_its_window))) {
its->pre_its_base = pre_its_window[0];
its->get_msi_base = its_irq_get_msi_base_pre_its;
ids = ilog2(pre_its_window[1]) - 2;
if (device_ids(its) > ids) {
its->typer &= ~GITS_TYPER_DEVBITS;
its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
}
/* the pre-ITS breaks isolation, so disable MSI remapping */
its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
return true;
}
return false;
}
static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
{
struct its_node *its = data;
/*
* Hip07 insists on using the wrong address for the VLPI
* page. Trick it into doing the right thing...
*/
its->vlpi_redist_offset = SZ_128K;
return true;
}
static bool __maybe_unused its_enable_rk3588001(void *data)
{
struct its_node *its = data;
if (!of_machine_is_compatible("rockchip,rk3588") &&
!of_machine_is_compatible("rockchip,rk3588s"))
return false;
its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
return true;
}
irqchip/gic-v3: Enable non-coherent redistributors/ITSes DT probing The GIC architecture specification defines a set of registers for redistributors and ITSes that control the sharebility and cacheability attributes of redistributors/ITSes initiator ports on the interconnect (GICR_[V]PROPBASER, GICR_[V]PENDBASER, GITS_BASER<n>). Architecturally the GIC provides a means to drive shareability and cacheability attributes signals and related IWB/OWB/ISH barriers but it is not mandatory for designs to wire up the corresponding interconnect signals that control the cacheability/shareability of transactions. Redistributors and ITSes interconnect ports can be connected to non-coherent interconnects that are not able to manage the shareability/cacheability attributes; this implicitly makes the redistributors and ITSes non-coherent observers. So far, the GIC driver on probe executes a write to "probe" for the redistributors and ITSes registers shareability bitfields by writing a value (ie InnerShareable - the shareability domain the CPUs are in) and check it back to detect whether the value sticks or not; this hinges on a GIC programming model behaviour that predates the current specifications, that just define shareability bits as writeable but do not guarantee that writing certain shareability values enable the expected behaviour for the redistributors/ITSes memory interconnect ports. To enable non-coherent GIC designs, introduce the "dma-noncoherent" device tree property to allow firmware to describe redistributors and ITSes as non-coherent observers on the memory interconnect and use the property to force the shareability attributes to be programmed into the redistributors and ITSes registers through the GIC quirks mechanism. Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231006125929.48591-3-lpieralisi@kernel.org
2023-10-06 12:59:26 +00:00
static bool its_set_non_coherent(void *data)
{
struct its_node *its = data;
its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
return true;
}
static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
{
struct its_node *its = data;
its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
return true;
}
static const struct gic_quirk its_quirks[] = {
#ifdef CONFIG_CAVIUM_ERRATUM_22375
{
.desc = "ITS: Cavium errata 22375, 24313",
.iidr = 0xa100034c, /* ThunderX pass 1.x */
.mask = 0xffff0fff,
.init = its_enable_quirk_cavium_22375,
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_23144
{
.desc = "ITS: Cavium erratum 23144",
.iidr = 0xa100034c, /* ThunderX pass 1.x */
.mask = 0xffff0fff,
.init = its_enable_quirk_cavium_23144,
},
#endif
#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
{
.desc = "ITS: QDF2400 erratum 0065",
.iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
.mask = 0xffffffff,
.init = its_enable_quirk_qdf2400_e0065,
},
#endif
#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
{
/*
* The Socionext Synquacer SoC incorporates ARM's own GIC-500
* implementation, but with a 'pre-ITS' added that requires
* special handling in software.
*/
.desc = "ITS: Socionext Synquacer pre-ITS",
.iidr = 0x0001143b,
.mask = 0xffffffff,
.init = its_enable_quirk_socionext_synquacer,
},
#endif
#ifdef CONFIG_HISILICON_ERRATUM_161600802
{
.desc = "ITS: Hip07 erratum 161600802",
.iidr = 0x00000004,
.mask = 0xffffffff,
.init = its_enable_quirk_hip07_161600802,
},
#endif
#ifdef CONFIG_HISILICON_ERRATUM_162100801
{
.desc = "ITS: Hip09 erratum 162100801",
.iidr = 0x00051736,
.mask = 0xffffffff,
.init = its_enable_quirk_hip09_162100801,
},
#endif
#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
{
.desc = "ITS: Rockchip erratum RK3588001",
.iidr = 0x0201743b,
.mask = 0xffffffff,
.init = its_enable_rk3588001,
},
#endif
irqchip/gic-v3: Enable non-coherent redistributors/ITSes DT probing The GIC architecture specification defines a set of registers for redistributors and ITSes that control the sharebility and cacheability attributes of redistributors/ITSes initiator ports on the interconnect (GICR_[V]PROPBASER, GICR_[V]PENDBASER, GITS_BASER<n>). Architecturally the GIC provides a means to drive shareability and cacheability attributes signals and related IWB/OWB/ISH barriers but it is not mandatory for designs to wire up the corresponding interconnect signals that control the cacheability/shareability of transactions. Redistributors and ITSes interconnect ports can be connected to non-coherent interconnects that are not able to manage the shareability/cacheability attributes; this implicitly makes the redistributors and ITSes non-coherent observers. So far, the GIC driver on probe executes a write to "probe" for the redistributors and ITSes registers shareability bitfields by writing a value (ie InnerShareable - the shareability domain the CPUs are in) and check it back to detect whether the value sticks or not; this hinges on a GIC programming model behaviour that predates the current specifications, that just define shareability bits as writeable but do not guarantee that writing certain shareability values enable the expected behaviour for the redistributors/ITSes memory interconnect ports. To enable non-coherent GIC designs, introduce the "dma-noncoherent" device tree property to allow firmware to describe redistributors and ITSes as non-coherent observers on the memory interconnect and use the property to force the shareability attributes to be programmed into the redistributors and ITSes registers through the GIC quirks mechanism. Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231006125929.48591-3-lpieralisi@kernel.org
2023-10-06 12:59:26 +00:00
{
.desc = "ITS: non-coherent attribute",
.property = "dma-noncoherent",
.init = its_set_non_coherent,
},
{
}
};
static void its_enable_quirks(struct its_node *its)
{
u32 iidr = readl_relaxed(its->base + GITS_IIDR);
gic_enable_quirks(iidr, its_quirks, its);
irqchip/gic-v3: Enable non-coherent redistributors/ITSes DT probing The GIC architecture specification defines a set of registers for redistributors and ITSes that control the sharebility and cacheability attributes of redistributors/ITSes initiator ports on the interconnect (GICR_[V]PROPBASER, GICR_[V]PENDBASER, GITS_BASER<n>). Architecturally the GIC provides a means to drive shareability and cacheability attributes signals and related IWB/OWB/ISH barriers but it is not mandatory for designs to wire up the corresponding interconnect signals that control the cacheability/shareability of transactions. Redistributors and ITSes interconnect ports can be connected to non-coherent interconnects that are not able to manage the shareability/cacheability attributes; this implicitly makes the redistributors and ITSes non-coherent observers. So far, the GIC driver on probe executes a write to "probe" for the redistributors and ITSes registers shareability bitfields by writing a value (ie InnerShareable - the shareability domain the CPUs are in) and check it back to detect whether the value sticks or not; this hinges on a GIC programming model behaviour that predates the current specifications, that just define shareability bits as writeable but do not guarantee that writing certain shareability values enable the expected behaviour for the redistributors/ITSes memory interconnect ports. To enable non-coherent GIC designs, introduce the "dma-noncoherent" device tree property to allow firmware to describe redistributors and ITSes as non-coherent observers on the memory interconnect and use the property to force the shareability attributes to be programmed into the redistributors and ITSes registers through the GIC quirks mechanism. Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231006125929.48591-3-lpieralisi@kernel.org
2023-10-06 12:59:26 +00:00
if (is_of_node(its->fwnode_handle))
gic_enable_of_quirks(to_of_node(its->fwnode_handle),
its_quirks, its);
}
static int its_save_disable(void)
{
struct its_node *its;
int err = 0;
raw_spin_lock(&its_lock);
list_for_each_entry(its, &its_nodes, entry) {
void __iomem *base;
base = its->base;
its->ctlr_save = readl_relaxed(base + GITS_CTLR);
err = its_force_quiescent(base);
if (err) {
pr_err("ITS@%pa: failed to quiesce: %d\n",
&its->phys_base, err);
writel_relaxed(its->ctlr_save, base + GITS_CTLR);
goto err;
}
its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
}
err:
if (err) {
list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
void __iomem *base;
base = its->base;
writel_relaxed(its->ctlr_save, base + GITS_CTLR);
}
}
raw_spin_unlock(&its_lock);
return err;
}
static void its_restore_enable(void)
{
struct its_node *its;
int ret;
raw_spin_lock(&its_lock);
list_for_each_entry(its, &its_nodes, entry) {
void __iomem *base;
int i;
base = its->base;
/*
* Make sure that the ITS is disabled. If it fails to quiesce,
* don't restore it since writing to CBASER or BASER<n>
* registers is undefined according to the GIC v3 ITS
* Specification.
*
* Firmware resuming with the ITS enabled is terminally broken.
*/
WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
ret = its_force_quiescent(base);
if (ret) {
pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
&its->phys_base, ret);
continue;
}
gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
/*
* Writing CBASER resets CREADR to 0, so make CWRITER and
* cmd_write line up with it.
*/
its->cmd_write = its->cmd_base;
gits_write_cwriter(0, base + GITS_CWRITER);
/* Restore GITS_BASER from the value cache. */
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
struct its_baser *baser = &its->tables[i];
if (!(baser->val & GITS_BASER_VALID))
continue;
its_write_baser(its, baser, baser->val);
}
writel_relaxed(its->ctlr_save, base + GITS_CTLR);
/*
* Reinit the collection if it's stored in the ITS. This is
* indicated by the col_id being less than the HCC field.
* CID < HCC as specified in the GIC v3 Documentation.
*/
if (its->collections[smp_processor_id()].col_id <
GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
its_cpu_init_collection(its);
}
raw_spin_unlock(&its_lock);
}
static struct syscore_ops its_syscore_ops = {
.suspend = its_save_disable,
.resume = its_restore_enable,
};
static void __init __iomem *its_map_one(struct resource *res, int *err)
{
void __iomem *its_base;
u32 val;
its_base = ioremap(res->start, SZ_64K);
if (!its_base) {
pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
*err = -ENOMEM;
return NULL;
}
val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (val != 0x30 && val != 0x40) {
pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
*err = -ENODEV;
goto out_unmap;
}
*err = its_force_quiescent(its_base);
if (*err) {
pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
goto out_unmap;
}
return its_base;
out_unmap:
iounmap(its_base);
return NULL;
}
static int its_init_domain(struct its_node *its)
{
struct irq_domain *inner_domain;
struct msi_domain_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->ops = &its_msi_domain_ops;
info->data = its;
inner_domain = irq_domain_create_hierarchy(its_parent,
its->msi_domain_flags, 0,
its->fwnode_handle, &its_domain_ops,
info);
if (!inner_domain) {
kfree(info);
return -ENOMEM;
}
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
return 0;
}
static int its_init_vpe_domain(void)
{
struct its_node *its;
u32 devid;
int entries;
if (gic_rdists->has_direct_lpi) {
pr_info("ITS: Using DirectLPI for VPE invalidation\n");
return 0;
}
/* Any ITS will do, even if not v4 */
its = list_first_entry(&its_nodes, struct its_node, entry);
entries = roundup_pow_of_two(nr_cpu_ids);
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
GFP_KERNEL);
if (!vpe_proxy.vpes)
return -ENOMEM;
/* Use the last possible DevID */
devid = GENMASK(device_ids(its) - 1, 0);
vpe_proxy.dev = its_create_device(its, devid, entries, false);
if (!vpe_proxy.dev) {
kfree(vpe_proxy.vpes);
pr_err("ITS: Can't allocate GICv4 proxy device\n");
return -ENOMEM;
}
BUG_ON(entries > vpe_proxy.dev->nr_ites);
raw_spin_lock_init(&vpe_proxy.lock);
vpe_proxy.next_victim = 0;
pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
devid, vpe_proxy.dev->nr_ites);
return 0;
}
static int __init its_compute_its_list_map(struct its_node *its)
{
int its_number;
u32 ctlr;
/*
* This is assumed to be done early enough that we're
* guaranteed to be single-threaded, hence no
* locking. Should this change, we should address
* this.
*/
its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
if (its_number >= GICv4_ITS_LIST_MAX) {
pr_err("ITS@%pa: No ITSList entry available!\n",
&its->phys_base);
return -EINVAL;
}
ctlr = readl_relaxed(its->base + GITS_CTLR);
ctlr &= ~GITS_CTLR_ITS_NUMBER;
ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
writel_relaxed(ctlr, its->base + GITS_CTLR);
ctlr = readl_relaxed(its->base + GITS_CTLR);
if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
its_number = ctlr & GITS_CTLR_ITS_NUMBER;
its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
}
if (test_and_set_bit(its_number, &its_list_map)) {
pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
&its->phys_base, its_number);
return -EINVAL;
}
return its_number;
}
static int __init its_probe_one(struct its_node *its)
{
u64 baser, tmp;
struct page *page;
u32 ctlr;
int err;
its_enable_quirks(its);
if (is_v4(its)) {
if (!(its->typer & GITS_TYPER_VMOVP)) {
err = its_compute_its_list_map(its);
if (err < 0)
goto out;
its->list_nr = err;
pr_info("ITS@%pa: Using ITS number %d\n",
&its->phys_base, err);
} else {
pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
}
if (is_v4_1(its)) {
u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
if (!its->sgir_base) {
err = -ENOMEM;
goto out;
}
its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
&its->phys_base, its->mpidr, svpet);
}
}
page = its_alloc_pages_node(its->numa_node,
GFP_KERNEL | __GFP_ZERO,
get_order(ITS_CMD_QUEUE_SZ));
if (!page) {
err = -ENOMEM;
goto out_unmap_sgir;
}
its->cmd_base = (void *)page_address(page);
its->cmd_write = its->cmd_base;
err = its_alloc_tables(its);
if (err)
goto out_free_cmd;
err = its_alloc_collections(its);
if (err)
goto out_free_tables;
baser = (virt_to_phys(its->cmd_base) |
GITS_CBASER_RaWaWb |
GITS_CBASER_InnerShareable |
(ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
GITS_CBASER_VALID);
gits_write_cbaser(baser, its->base + GITS_CBASER);
tmp = gits_read_cbaser(its->base + GITS_CBASER);
if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must
* remove the cacheability attributes as
* well.
*/
baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
GITS_CBASER_CACHEABILITY_MASK);
baser |= GITS_CBASER_nC;
gits_write_cbaser(baser, its->base + GITS_CBASER);
}
pr_info("ITS: using cache flushing for cmd queue\n");
its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
}
gits_write_cwriter(0, its->base + GITS_CWRITER);
ctlr = readl_relaxed(its->base + GITS_CTLR);
ctlr |= GITS_CTLR_ENABLE;
if (is_v4(its))
ctlr |= GITS_CTLR_ImDe;
writel_relaxed(ctlr, its->base + GITS_CTLR);
err = its_init_domain(its);
if (err)
goto out_free_tables;
raw_spin_lock(&its_lock);
list_add(&its->entry, &its_nodes);
raw_spin_unlock(&its_lock);
return 0;
out_free_tables:
its_free_tables(its);
out_free_cmd:
its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
out_unmap_sgir:
if (its->sgir_base)
iounmap(its->sgir_base);
out:
pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
return err;
}
static bool gic_rdists_supports_plpis(void)
{
return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
}
static int redist_disable_lpis(void)
{
void __iomem *rbase = gic_data_rdist_rd_base();
u64 timeout = USEC_PER_SEC;
u64 val;
if (!gic_rdists_supports_plpis()) {
pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
return -ENXIO;
}
val = readl_relaxed(rbase + GICR_CTLR);
if (!(val & GICR_CTLR_ENABLE_LPIS))
return 0;
/*
* If coming via a CPU hotplug event, we don't need to disable
* LPIs before trying to re-enable them. They are already
* configured and all is well in the world.
*
* If running with preallocated tables, there is nothing to do.
*/
if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
(gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
return 0;
/*
* From that point on, we only try to do some damage control.
*/
pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
smp_processor_id());
add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
/* Disable LPIs */
val &= ~GICR_CTLR_ENABLE_LPIS;
writel_relaxed(val, rbase + GICR_CTLR);
/* Make sure any change to GICR_CTLR is observable by the GIC */
dsb(sy);
/*
* Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
* from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
* Error out if we time out waiting for RWP to clear.
*/
while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
if (!timeout) {
pr_err("CPU%d: Timeout while disabling LPIs\n",
smp_processor_id());
return -ETIMEDOUT;
}
udelay(1);
timeout--;
}
/*
* After it has been written to 1, it is IMPLEMENTATION
* DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
* cleared to 0. Error out if clearing the bit failed.
*/
if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
return -EBUSY;
}
return 0;
}
int its_cpu_init(void)
{
if (!list_empty(&its_nodes)) {
int ret;
ret = redist_disable_lpis();
if (ret)
return ret;
its_cpu_init_lpis();
its_cpu_init_collections();
}
return 0;
}
static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
{
cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
}
static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
rdist_memreserve_cpuhp_cleanup_workfn);
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
static int its_cpu_memreserve_lpi(unsigned int cpu)
{
struct page *pend_page;
int ret = 0;
/* This gets to run exactly once per CPU */
if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
return 0;
pend_page = gic_data_rdist()->pend_page;
if (WARN_ON(!pend_page)) {
ret = -ENOMEM;
goto out;
}
/*
* If the pending table was pre-programmed, free the memory we
* preemptively allocated. Otherwise, reserve that memory for
* later kexecs.
*/
if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
its_free_pending_table(pend_page);
gic_data_rdist()->pend_page = NULL;
} else {
phys_addr_t paddr = page_to_phys(pend_page);
WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
}
out:
/* Last CPU being brought up gets to issue the cleanup */
if (!IS_ENABLED(CONFIG_SMP) ||
cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
return ret;
}
/* Mark all the BASER registers as invalid before they get reprogrammed */
static int __init its_reset_one(struct resource *res)
{
void __iomem *its_base;
int err, i;
its_base = its_map_one(res, &err);
if (!its_base)
return err;
for (i = 0; i < GITS_BASER_NR_REGS; i++)
gits_write_baser(0, its_base + GITS_BASER + (i << 3));
iounmap(its_base);
return 0;
}
static const struct of_device_id its_device_id[] = {
{ .compatible = "arm,gic-v3-its", },
{},
};
static struct its_node __init *its_node_init(struct resource *res,
struct fwnode_handle *handle, int numa_node)
{
void __iomem *its_base;
struct its_node *its;
int err;
its_base = its_map_one(res, &err);
if (!its_base)
return NULL;
pr_info("ITS %pR\n", res);
its = kzalloc(sizeof(*its), GFP_KERNEL);
if (!its)
goto out_unmap;
raw_spin_lock_init(&its->lock);
mutex_init(&its->dev_alloc_lock);
INIT_LIST_HEAD(&its->entry);
INIT_LIST_HEAD(&its->its_device_list);
its->typer = gic_read_typer(its_base + GITS_TYPER);
its->base = its_base;
its->phys_base = res->start;
its->get_msi_base = its_irq_get_msi_base;
its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
its->numa_node = numa_node;
its->fwnode_handle = handle;
return its;
out_unmap:
iounmap(its_base);
return NULL;
}
static void its_node_destroy(struct its_node *its)
{
iounmap(its->base);
kfree(its);
}
static int __init its_of_probe(struct device_node *node)
{
struct device_node *np;
struct resource res;
int err;
/*
* Make sure *all* the ITS are reset before we probe any, as
* they may be sharing memory. If any of the ITS fails to
* reset, don't even try to go any further, as this could
* result in something even worse.
*/
for (np = of_find_matching_node(node, its_device_id); np;
np = of_find_matching_node(np, its_device_id)) {
if (!of_device_is_available(np) ||
!of_property_read_bool(np, "msi-controller") ||
of_address_to_resource(np, 0, &res))
continue;
err = its_reset_one(&res);
if (err)
return err;
}
for (np = of_find_matching_node(node, its_device_id); np;
np = of_find_matching_node(np, its_device_id)) {
struct its_node *its;
if (!of_device_is_available(np))
continue;
if (!of_property_read_bool(np, "msi-controller")) {
pr_warn("%pOF: no msi-controller property, ITS ignored\n",
np);
continue;
}
if (of_address_to_resource(np, 0, &res)) {
pr_warn("%pOF: no regs?\n", np);
continue;
}
its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
if (!its)
return -ENOMEM;
err = its_probe_one(its);
if (err) {
its_node_destroy(its);
return err;
}
}
return 0;
}
#ifdef CONFIG_ACPI
#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
#ifdef CONFIG_ACPI_NUMA
struct its_srat_map {
/* numa node id */
u32 numa_node;
/* GIC ITS ID */
u32 its_id;
};
static struct its_srat_map *its_srat_maps __initdata;
static int its_in_srat __initdata;
static int __init acpi_get_its_numa_node(u32 its_id)
{
int i;
for (i = 0; i < its_in_srat; i++) {
if (its_id == its_srat_maps[i].its_id)
return its_srat_maps[i].numa_node;
}
return NUMA_NO_NODE;
}
static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
const unsigned long end)
{
return 0;
}
static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
const unsigned long end)
{
int node;
struct acpi_srat_gic_its_affinity *its_affinity;
its_affinity = (struct acpi_srat_gic_its_affinity *)header;
if (!its_affinity)
return -EINVAL;
if (its_affinity->header.length < sizeof(*its_affinity)) {
pr_err("SRAT: Invalid header length %d in ITS affinity\n",
its_affinity->header.length);
return -EINVAL;
}
irq-chip/gic-v3-its: Fix crash if ITS is in a proximity domain without processor or memory Note this crash is present before any of the patches in this series, but as explained below it is highly unlikely anyone is shipping a firmware that causes it. Tests were done using an overriden SRAT. On ARM64, the gic-v3 driver directly parses SRAT to locate GIC Interrupt Translation Service (ITS) Affinity Structures. This is done much later in the boot than the parses of SRAT which identify proximity domains. As a result, an ITS placed in a proximity domain that is not defined by another SRAT structure will result in a NUMA node that is not completely configured and a crash. ITS [mem 0x202100000-0x20211ffff] ITS@0x0000000202100000: Using ITS number 0 Unable to handle kernel paging request at virtual address 0000000000001a08 ... Call trace: __alloc_pages_nodemask+0xe8/0x338 alloc_pages_node.constprop.0+0x34/0x40 its_probe_one+0x2f8/0xb18 gic_acpi_parse_madt_its+0x108/0x150 acpi_table_parse_entries_array+0x17c/0x264 acpi_table_parse_entries+0x48/0x6c acpi_table_parse_madt+0x30/0x3c its_init+0x1c4/0x644 gic_init_bases+0x4b8/0x4ec gic_acpi_init+0x134/0x264 acpi_match_madt+0x4c/0x84 acpi_table_parse_entries_array+0x17c/0x264 acpi_table_parse_entries+0x48/0x6c acpi_table_parse_madt+0x30/0x3c __acpi_probe_device_table+0x8c/0xe8 irqchip_init+0x3c/0x48 init_IRQ+0xcc/0x100 start_kernel+0x33c/0x548 ACPI 6.3 allows any set of Affinity Structures in SRAT to define a proximity domain. However, as we do not see this crash, we can conclude that no firmware is currently placing an ITS in a node that is separate from those containing memory and / or processors. We could modify the SRAT parsing behavior to identify the existence of Proximity Domains unique to the ITS structures, and handle them as a special case of a generic initiator (once support for those merges). This patch avoids the complexity that would be needed to handle this corner case, by not allowing the ITS entry parsing code to instantiate new NUMA Nodes. If one is encountered that does not already exist, then NO_NUMA_NODE is assigned and a warning printed just as if the value had been greater than allowed NUMA Nodes. "SRAT: Invalid NUMA node -1 in ITS affinity" Whilst this does not provide the full flexibility allowed by ACPI, it does fix the problem. We can revisit a more sophisticated solution if needed by future platforms. Change is simply to replace acpi_map_pxm_to_node with pxm_to_node reflecting the fact a new mapping is not created. Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-08-18 14:24:30 +00:00
/*
* Note that in theory a new proximity node could be created by this
* entry as it is an SRAT resource allocation structure.
* We do not currently support doing so.
*/
node = pxm_to_node(its_affinity->proximity_domain);
if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
return 0;
}
its_srat_maps[its_in_srat].numa_node = node;
its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
its_in_srat++;
pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
its_affinity->proximity_domain, its_affinity->its_id, node);
return 0;
}
static void __init acpi_table_parse_srat_its(void)
{
int count;
count = acpi_table_parse_entries(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat),
ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
gic_acpi_match_srat_its, 0);
if (count <= 0)
return;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
GFP_KERNEL);
if (!its_srat_maps)
return;
acpi_table_parse_entries(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat),
ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
gic_acpi_parse_srat_its, 0);
}
/* free the its_srat_maps after ITS probing */
static void __init acpi_its_srat_maps_free(void)
{
kfree(its_srat_maps);
}
#else
static void __init acpi_table_parse_srat_its(void) { }
static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
static void __init acpi_its_srat_maps_free(void) { }
#endif
static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_translator *its_entry;
struct fwnode_handle *dom_handle;
struct its_node *its;
struct resource res;
int err;
its_entry = (struct acpi_madt_generic_translator *)header;
memset(&res, 0, sizeof(res));
res.start = its_entry->base_address;
res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
res.flags = IORESOURCE_MEM;
dom_handle = irq_domain_alloc_fwnode(&res.start);
if (!dom_handle) {
pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
&res.start);
return -ENOMEM;
}
err = iort_register_domain_token(its_entry->translation_id, res.start,
dom_handle);
if (err) {
pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
&res.start, its_entry->translation_id);
goto dom_err;
}
its = its_node_init(&res, dom_handle,
acpi_get_its_numa_node(its_entry->translation_id));
if (!its) {
err = -ENOMEM;
goto node_err;
}
irqchip/gic-v3: Enable non-coherent redistributors/ITSes ACPI probing The GIC architecture specification defines a set of registers for redistributors and ITSes that control the sharebility and cacheability attributes of redistributors/ITSes initiator ports on the interconnect (GICR_[V]PROPBASER, GICR_[V]PENDBASER, GITS_BASER<n>). Architecturally the GIC provides a means to drive shareability and cacheability attributes signals but it is not mandatory for designs to wire up the corresponding interconnect signals that control the cacheability/shareability of transactions. Redistributors and ITSes interconnect ports can be connected to non-coherent interconnects that are not able to manage the shareability/cacheability attributes; this implicitly makes the redistributors and ITSes non-coherent observers. To enable non-coherent GIC designs on ACPI based systems, parse the MADT GICC/GICR/ITS subtables non-coherent flags to determine whether the respective components are non-coherent observers and force the shareability attributes to be programmed into the redistributors and ITSes registers. An ACPI global function (acpi_get_madt_revision()) is added to retrieve the MADT revision, in that it is essential to check the MADT revision before checking for flags that were added with MADT revision 7 so that if the kernel is booted with an ACPI MADT table with revision < 7 it skips parsing the newly added flags (that should be zeroed reserved values for MADT versions < 7 but they could turn out to be buggy and should be ignored). Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Link: https://lore.kernel.org/r/20240606094238.757649-2-lpieralisi@kernel.org
2024-06-06 09:42:38 +00:00
if (acpi_get_madt_revision() >= 7 &&
(its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
err = its_probe_one(its);
if (!err)
return 0;
node_err:
iort_deregister_domain_token(its_entry->translation_id);
dom_err:
irq_domain_free_fwnode(dom_handle);
return err;
}
static int __init its_acpi_reset(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_translator *its_entry;
struct resource res;
its_entry = (struct acpi_madt_generic_translator *)header;
res = (struct resource) {
.start = its_entry->base_address,
.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
.flags = IORESOURCE_MEM,
};
return its_reset_one(&res);
}
static void __init its_acpi_probe(void)
{
acpi_table_parse_srat_its();
/*
* Make sure *all* the ITS are reset before we probe any, as
* they may be sharing memory. If any of the ITS fails to
* reset, don't even try to go any further, as this could
* result in something even worse.
*/
if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
its_acpi_reset, 0) > 0)
acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
gic_acpi_parse_madt_its, 0);
acpi_its_srat_maps_free();
}
#else
static void __init its_acpi_probe(void) { }
#endif
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
int __init its_lpi_memreserve_init(void)
{
int state;
if (!efi_enabled(EFI_CONFIG_TABLES))
return 0;
if (list_empty(&its_nodes))
return 0;
gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"irqchip/arm/gicv3/memreserve:online",
its_cpu_memreserve_lpi,
NULL);
if (state < 0)
return state;
gic_rdists->cpuhp_memreserve_state = state;
irqchip/gic-v3-its: Postpone LPI pending table freeing and memreserve Memory used by the LPI tables have to be made persistent for kexec to have a chance to work, as explained in [1]. If they have been made persistent and we are booting into a kexec'd kernel, we also need to free the pages that were preemptively allocated by the new kernel for those tables. Both of those operations currently happen during its_cpu_init(), which happens in a _STARTING (IOW atomic) cpuhp callback for secondary CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the pages ends up grabbing a sleepable spinlock. Since the memreserve is only required by kexec, it doesn't have to be done so early in the secondary boot process. Issue the reservation in a new CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top of it. A CPU gets to run the body of this new callback exactly once. As kexec issues a machine_shutdown() prior to machine_kexec(), it will be serialized vs a CPU being plugged to life by the hotplug machinery - either the CPU will have been brought up and have had its redistributor's pending table memreserved, or it never went online and will have its table allocated by the new kernel. [1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/ Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
2021-10-27 15:15:05 +00:00
return 0;
}
int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
struct irq_domain *parent_domain, u8 irq_prio)
{
struct device_node *of_node;
struct its_node *its;
bool has_v4 = false;
bool has_v4_1 = false;
int err;
itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
if (!itt_pool)
return -ENOMEM;
gic_rdists = rdists;
lpi_prop_prio = irq_prio;
its_parent = parent_domain;
of_node = to_of_node(handle);
if (of_node)
its_of_probe(of_node);
else
its_acpi_probe();
if (list_empty(&its_nodes)) {
pr_warn("ITS: No ITS available, not enabling LPIs\n");
return -ENXIO;
}
err = allocate_lpi_tables();
if (err)
return err;
list_for_each_entry(its, &its_nodes, entry) {
has_v4 |= is_v4(its);
has_v4_1 |= is_v4_1(its);
}
/* Don't bother with inconsistent systems */
if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
rdists->has_rvpeid = false;
if (has_v4 & rdists->has_vlpis) {
const struct irq_domain_ops *sgi_ops;
if (has_v4_1)
sgi_ops = &its_sgi_domain_ops;
else
sgi_ops = NULL;
if (its_init_vpe_domain() ||
its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
rdists->has_vlpis = false;
pr_err("ITS: Disabling GICv4 support\n");
}
}
register_syscore_ops(&its_syscore_ops);
return 0;
}