2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* xfrm_state.c
|
|
|
|
*
|
|
|
|
* Changes:
|
|
|
|
* Mitsuru KANDA @USAGI
|
|
|
|
* Kazunori MIYAZAWA @USAGI
|
|
|
|
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
|
|
|
|
* IPv6 support
|
|
|
|
* YOSHIFUJI Hideaki @USAGI
|
|
|
|
* Split up af-specific functions
|
|
|
|
* Derek Atkins <derek@ihtfp.com>
|
|
|
|
* Add UDP Encapsulation
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-13 23:12:27 -08:00
|
|
|
*
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <net/xfrm.h>
|
|
|
|
#include <linux/pfkeyv2.h>
|
|
|
|
#include <linux/ipsec.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
|
2006-03-20 19:18:37 -08:00
|
|
|
struct sock *xfrm_nl;
|
|
|
|
EXPORT_SYMBOL(xfrm_nl);
|
|
|
|
|
2006-03-20 19:15:11 -08:00
|
|
|
u32 sysctl_xfrm_aevent_etime = XFRM_AE_ETIME;
|
2006-03-20 19:18:52 -08:00
|
|
|
EXPORT_SYMBOL(sysctl_xfrm_aevent_etime);
|
|
|
|
|
2006-03-20 19:15:11 -08:00
|
|
|
u32 sysctl_xfrm_aevent_rseqth = XFRM_AE_SEQT_SIZE;
|
2006-03-20 19:18:52 -08:00
|
|
|
EXPORT_SYMBOL(sysctl_xfrm_aevent_rseqth);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/* Each xfrm_state may be linked to two tables:
|
|
|
|
|
|
|
|
1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
|
|
|
|
2. Hash table by daddr to find what SAs exist for given
|
|
|
|
destination/tunnel endpoint. (output)
|
|
|
|
*/
|
|
|
|
|
|
|
|
static DEFINE_SPINLOCK(xfrm_state_lock);
|
|
|
|
|
|
|
|
/* Hash table to find appropriate SA towards given target (endpoint
|
|
|
|
* of tunnel or destination of transport mode) allowed by selector.
|
|
|
|
*
|
|
|
|
* Main use is finding SA after policy selected tunnel or transport mode.
|
|
|
|
* Also, it can be used by ah/esp icmp error handler to find offending SA.
|
|
|
|
*/
|
|
|
|
static struct list_head xfrm_state_bydst[XFRM_DST_HSIZE];
|
|
|
|
static struct list_head xfrm_state_byspi[XFRM_DST_HSIZE];
|
|
|
|
|
|
|
|
DECLARE_WAIT_QUEUE_HEAD(km_waitq);
|
|
|
|
EXPORT_SYMBOL(km_waitq);
|
|
|
|
|
|
|
|
static DEFINE_RWLOCK(xfrm_state_afinfo_lock);
|
|
|
|
static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO];
|
|
|
|
|
|
|
|
static struct work_struct xfrm_state_gc_work;
|
|
|
|
static struct list_head xfrm_state_gc_list = LIST_HEAD_INIT(xfrm_state_gc_list);
|
|
|
|
static DEFINE_SPINLOCK(xfrm_state_gc_lock);
|
|
|
|
|
|
|
|
static int xfrm_state_gc_flush_bundles;
|
|
|
|
|
2006-03-20 19:17:03 -08:00
|
|
|
int __xfrm_state_delete(struct xfrm_state *x);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned short family);
|
|
|
|
static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo);
|
|
|
|
|
[IPSEC]: Sync series - acquire insert
This introduces a feature similar to the one described in RFC 2367:
"
... the application needing an SA sends a PF_KEY
SADB_ACQUIRE message down to the Key Engine, which then either
returns an error or sends a similar SADB_ACQUIRE message up to one or
more key management applications capable of creating such SAs.
...
...
The third is where an application-layer consumer of security
associations (e.g. an OSPFv2 or RIPv2 daemon) needs a security
association.
Send an SADB_ACQUIRE message from a user process to the kernel.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The kernel returns an SADB_ACQUIRE message to registered
sockets.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The user-level consumer waits for an SADB_UPDATE or SADB_ADD
message for its particular type, and then can use that
association by using SADB_GET messages.
"
An app such as OSPF could then use ipsec KM to get keys
Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 19:16:40 -08:00
|
|
|
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
|
2006-03-20 19:17:03 -08:00
|
|
|
void km_state_expired(struct xfrm_state *x, int hard, u32 pid);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
static void xfrm_state_gc_destroy(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
if (del_timer(&x->timer))
|
|
|
|
BUG();
|
2006-03-20 19:15:11 -08:00
|
|
|
if (del_timer(&x->rtimer))
|
|
|
|
BUG();
|
2005-11-08 09:41:34 -08:00
|
|
|
kfree(x->aalg);
|
|
|
|
kfree(x->ealg);
|
|
|
|
kfree(x->calg);
|
|
|
|
kfree(x->encap);
|
2006-05-27 23:05:54 -07:00
|
|
|
if (x->mode)
|
|
|
|
xfrm_put_mode(x->mode);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (x->type) {
|
|
|
|
x->type->destructor(x);
|
|
|
|
xfrm_put_type(x->type);
|
|
|
|
}
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-13 23:12:27 -08:00
|
|
|
security_xfrm_state_free(x);
|
2005-04-16 15:20:36 -07:00
|
|
|
kfree(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void xfrm_state_gc_task(void *data)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x;
|
|
|
|
struct list_head *entry, *tmp;
|
|
|
|
struct list_head gc_list = LIST_HEAD_INIT(gc_list);
|
|
|
|
|
|
|
|
if (xfrm_state_gc_flush_bundles) {
|
|
|
|
xfrm_state_gc_flush_bundles = 0;
|
|
|
|
xfrm_flush_bundles();
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_gc_lock);
|
|
|
|
list_splice_init(&xfrm_state_gc_list, &gc_list);
|
|
|
|
spin_unlock_bh(&xfrm_state_gc_lock);
|
|
|
|
|
|
|
|
list_for_each_safe(entry, tmp, &gc_list) {
|
|
|
|
x = list_entry(entry, struct xfrm_state, bydst);
|
|
|
|
xfrm_state_gc_destroy(x);
|
|
|
|
}
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned long make_jiffies(long secs)
|
|
|
|
{
|
|
|
|
if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
|
|
|
|
return MAX_SCHEDULE_TIMEOUT-1;
|
|
|
|
else
|
|
|
|
return secs*HZ;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void xfrm_timer_handler(unsigned long data)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x = (struct xfrm_state*)data;
|
|
|
|
unsigned long now = (unsigned long)xtime.tv_sec;
|
|
|
|
long next = LONG_MAX;
|
|
|
|
int warn = 0;
|
|
|
|
|
|
|
|
spin_lock(&x->lock);
|
|
|
|
if (x->km.state == XFRM_STATE_DEAD)
|
|
|
|
goto out;
|
|
|
|
if (x->km.state == XFRM_STATE_EXPIRED)
|
|
|
|
goto expired;
|
|
|
|
if (x->lft.hard_add_expires_seconds) {
|
|
|
|
long tmo = x->lft.hard_add_expires_seconds +
|
|
|
|
x->curlft.add_time - now;
|
|
|
|
if (tmo <= 0)
|
|
|
|
goto expired;
|
|
|
|
if (tmo < next)
|
|
|
|
next = tmo;
|
|
|
|
}
|
|
|
|
if (x->lft.hard_use_expires_seconds) {
|
|
|
|
long tmo = x->lft.hard_use_expires_seconds +
|
|
|
|
(x->curlft.use_time ? : now) - now;
|
|
|
|
if (tmo <= 0)
|
|
|
|
goto expired;
|
|
|
|
if (tmo < next)
|
|
|
|
next = tmo;
|
|
|
|
}
|
|
|
|
if (x->km.dying)
|
|
|
|
goto resched;
|
|
|
|
if (x->lft.soft_add_expires_seconds) {
|
|
|
|
long tmo = x->lft.soft_add_expires_seconds +
|
|
|
|
x->curlft.add_time - now;
|
|
|
|
if (tmo <= 0)
|
|
|
|
warn = 1;
|
|
|
|
else if (tmo < next)
|
|
|
|
next = tmo;
|
|
|
|
}
|
|
|
|
if (x->lft.soft_use_expires_seconds) {
|
|
|
|
long tmo = x->lft.soft_use_expires_seconds +
|
|
|
|
(x->curlft.use_time ? : now) - now;
|
|
|
|
if (tmo <= 0)
|
|
|
|
warn = 1;
|
|
|
|
else if (tmo < next)
|
|
|
|
next = tmo;
|
|
|
|
}
|
|
|
|
|
2005-06-18 22:43:22 -07:00
|
|
|
x->km.dying = warn;
|
2005-04-16 15:20:36 -07:00
|
|
|
if (warn)
|
2006-03-20 19:17:03 -08:00
|
|
|
km_state_expired(x, 0, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
resched:
|
|
|
|
if (next != LONG_MAX &&
|
|
|
|
!mod_timer(&x->timer, jiffies + make_jiffies(next)))
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
expired:
|
|
|
|
if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) {
|
|
|
|
x->km.state = XFRM_STATE_EXPIRED;
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
next = 2;
|
|
|
|
goto resched;
|
|
|
|
}
|
2005-06-18 22:43:22 -07:00
|
|
|
if (!__xfrm_state_delete(x) && x->id.spi)
|
2006-03-20 19:17:03 -08:00
|
|
|
km_state_expired(x, 1, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(&x->lock);
|
|
|
|
xfrm_state_put(x);
|
|
|
|
}
|
|
|
|
|
2006-03-20 19:18:23 -08:00
|
|
|
static void xfrm_replay_timer_handler(unsigned long data);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
struct xfrm_state *xfrm_state_alloc(void)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x;
|
|
|
|
|
|
|
|
x = kmalloc(sizeof(struct xfrm_state), GFP_ATOMIC);
|
|
|
|
|
|
|
|
if (x) {
|
|
|
|
memset(x, 0, sizeof(struct xfrm_state));
|
|
|
|
atomic_set(&x->refcnt, 1);
|
|
|
|
atomic_set(&x->tunnel_users, 0);
|
|
|
|
INIT_LIST_HEAD(&x->bydst);
|
|
|
|
INIT_LIST_HEAD(&x->byspi);
|
|
|
|
init_timer(&x->timer);
|
|
|
|
x->timer.function = xfrm_timer_handler;
|
|
|
|
x->timer.data = (unsigned long)x;
|
2006-03-20 19:15:11 -08:00
|
|
|
init_timer(&x->rtimer);
|
|
|
|
x->rtimer.function = xfrm_replay_timer_handler;
|
|
|
|
x->rtimer.data = (unsigned long)x;
|
2005-04-16 15:20:36 -07:00
|
|
|
x->curlft.add_time = (unsigned long)xtime.tv_sec;
|
|
|
|
x->lft.soft_byte_limit = XFRM_INF;
|
|
|
|
x->lft.soft_packet_limit = XFRM_INF;
|
|
|
|
x->lft.hard_byte_limit = XFRM_INF;
|
|
|
|
x->lft.hard_packet_limit = XFRM_INF;
|
2006-03-20 19:15:11 -08:00
|
|
|
x->replay_maxage = 0;
|
|
|
|
x->replay_maxdiff = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
spin_lock_init(&x->lock);
|
|
|
|
}
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_alloc);
|
|
|
|
|
|
|
|
void __xfrm_state_destroy(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
BUG_TRAP(x->km.state == XFRM_STATE_DEAD);
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_gc_lock);
|
|
|
|
list_add(&x->bydst, &xfrm_state_gc_list);
|
|
|
|
spin_unlock_bh(&xfrm_state_gc_lock);
|
|
|
|
schedule_work(&xfrm_state_gc_work);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__xfrm_state_destroy);
|
|
|
|
|
2006-03-20 19:17:03 -08:00
|
|
|
int __xfrm_state_delete(struct xfrm_state *x)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2005-06-18 22:42:13 -07:00
|
|
|
int err = -ESRCH;
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
if (x->km.state != XFRM_STATE_DEAD) {
|
|
|
|
x->km.state = XFRM_STATE_DEAD;
|
|
|
|
spin_lock(&xfrm_state_lock);
|
|
|
|
list_del(&x->bydst);
|
2006-02-22 14:47:13 -08:00
|
|
|
__xfrm_state_put(x);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (x->id.spi) {
|
|
|
|
list_del(&x->byspi);
|
2006-02-22 14:47:13 -08:00
|
|
|
__xfrm_state_put(x);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
spin_unlock(&xfrm_state_lock);
|
|
|
|
if (del_timer(&x->timer))
|
2006-02-22 14:47:13 -08:00
|
|
|
__xfrm_state_put(x);
|
2006-03-20 19:15:11 -08:00
|
|
|
if (del_timer(&x->rtimer))
|
|
|
|
__xfrm_state_put(x);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* The number two in this test is the reference
|
|
|
|
* mentioned in the comment below plus the reference
|
|
|
|
* our caller holds. A larger value means that
|
|
|
|
* there are DSTs attached to this xfrm_state.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&x->refcnt) > 2) {
|
|
|
|
xfrm_state_gc_flush_bundles = 1;
|
|
|
|
schedule_work(&xfrm_state_gc_work);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* All xfrm_state objects are created by xfrm_state_alloc.
|
|
|
|
* The xfrm_state_alloc call gives a reference, and that
|
|
|
|
* is what we are dropping here.
|
|
|
|
*/
|
2006-02-22 14:47:13 -08:00
|
|
|
__xfrm_state_put(x);
|
2005-06-18 22:42:13 -07:00
|
|
|
err = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2005-06-18 22:42:13 -07:00
|
|
|
|
|
|
|
return err;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2006-03-20 19:17:03 -08:00
|
|
|
EXPORT_SYMBOL(__xfrm_state_delete);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2005-06-18 22:42:13 -07:00
|
|
|
int xfrm_state_delete(struct xfrm_state *x)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2005-06-18 22:42:13 -07:00
|
|
|
int err;
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
spin_lock_bh(&x->lock);
|
2005-06-18 22:42:13 -07:00
|
|
|
err = __xfrm_state_delete(x);
|
2005-04-16 15:20:36 -07:00
|
|
|
spin_unlock_bh(&x->lock);
|
2005-06-18 22:42:13 -07:00
|
|
|
|
|
|
|
return err;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_delete);
|
|
|
|
|
|
|
|
void xfrm_state_flush(u8 proto)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct xfrm_state *x;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
for (i = 0; i < XFRM_DST_HSIZE; i++) {
|
|
|
|
restart:
|
|
|
|
list_for_each_entry(x, xfrm_state_bydst+i, bydst) {
|
|
|
|
if (!xfrm_state_kern(x) &&
|
|
|
|
(proto == IPSEC_PROTO_ANY || x->id.proto == proto)) {
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
|
|
|
|
xfrm_state_delete(x);
|
|
|
|
xfrm_state_put(x);
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
goto restart;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_flush);
|
|
|
|
|
|
|
|
static int
|
|
|
|
xfrm_init_tempsel(struct xfrm_state *x, struct flowi *fl,
|
|
|
|
struct xfrm_tmpl *tmpl,
|
|
|
|
xfrm_address_t *daddr, xfrm_address_t *saddr,
|
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (!afinfo)
|
|
|
|
return -1;
|
|
|
|
afinfo->init_tempsel(x, fl, tmpl, daddr, saddr);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct xfrm_state *
|
|
|
|
xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr,
|
|
|
|
struct flowi *fl, struct xfrm_tmpl *tmpl,
|
|
|
|
struct xfrm_policy *pol, int *err,
|
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
unsigned h = xfrm_dst_hash(daddr, family);
|
|
|
|
struct xfrm_state *x, *x0;
|
|
|
|
int acquire_in_progress = 0;
|
|
|
|
int error = 0;
|
|
|
|
struct xfrm_state *best = NULL;
|
|
|
|
struct xfrm_state_afinfo *afinfo;
|
|
|
|
|
|
|
|
afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (afinfo == NULL) {
|
|
|
|
*err = -EAFNOSUPPORT;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
list_for_each_entry(x, xfrm_state_bydst+h, bydst) {
|
|
|
|
if (x->props.family == family &&
|
|
|
|
x->props.reqid == tmpl->reqid &&
|
|
|
|
xfrm_state_addr_check(x, daddr, saddr, family) &&
|
|
|
|
tmpl->mode == x->props.mode &&
|
|
|
|
tmpl->id.proto == x->id.proto &&
|
|
|
|
(tmpl->id.spi == x->id.spi || !tmpl->id.spi)) {
|
|
|
|
/* Resolution logic:
|
|
|
|
1. There is a valid state with matching selector.
|
|
|
|
Done.
|
|
|
|
2. Valid state with inappropriate selector. Skip.
|
|
|
|
|
|
|
|
Entering area of "sysdeps".
|
|
|
|
|
|
|
|
3. If state is not valid, selector is temporary,
|
|
|
|
it selects only session which triggered
|
|
|
|
previous resolution. Key manager will do
|
|
|
|
something to install a state with proper
|
|
|
|
selector.
|
|
|
|
*/
|
|
|
|
if (x->km.state == XFRM_STATE_VALID) {
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-13 23:12:27 -08:00
|
|
|
if (!xfrm_selector_match(&x->sel, fl, family) ||
|
|
|
|
!xfrm_sec_ctx_match(pol->security, x->security))
|
2005-04-16 15:20:36 -07:00
|
|
|
continue;
|
|
|
|
if (!best ||
|
|
|
|
best->km.dying > x->km.dying ||
|
|
|
|
(best->km.dying == x->km.dying &&
|
|
|
|
best->curlft.add_time < x->curlft.add_time))
|
|
|
|
best = x;
|
|
|
|
} else if (x->km.state == XFRM_STATE_ACQ) {
|
|
|
|
acquire_in_progress = 1;
|
|
|
|
} else if (x->km.state == XFRM_STATE_ERROR ||
|
|
|
|
x->km.state == XFRM_STATE_EXPIRED) {
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-13 23:12:27 -08:00
|
|
|
if (xfrm_selector_match(&x->sel, fl, family) &&
|
|
|
|
xfrm_sec_ctx_match(pol->security, x->security))
|
2005-04-16 15:20:36 -07:00
|
|
|
error = -ESRCH;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
x = best;
|
|
|
|
if (!x && !error && !acquire_in_progress) {
|
2005-04-21 20:12:32 -07:00
|
|
|
if (tmpl->id.spi &&
|
|
|
|
(x0 = afinfo->state_lookup(daddr, tmpl->id.spi,
|
|
|
|
tmpl->id.proto)) != NULL) {
|
2005-04-16 15:20:36 -07:00
|
|
|
xfrm_state_put(x0);
|
|
|
|
error = -EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
x = xfrm_state_alloc();
|
|
|
|
if (x == NULL) {
|
|
|
|
error = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* Initialize temporary selector matching only
|
|
|
|
* to current session. */
|
|
|
|
xfrm_init_tempsel(x, fl, tmpl, daddr, saddr, family);
|
|
|
|
|
|
|
|
if (km_query(x, tmpl, pol) == 0) {
|
|
|
|
x->km.state = XFRM_STATE_ACQ;
|
|
|
|
list_add_tail(&x->bydst, xfrm_state_bydst+h);
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
if (x->id.spi) {
|
|
|
|
h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, family);
|
|
|
|
list_add(&x->byspi, xfrm_state_byspi+h);
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
}
|
|
|
|
x->lft.hard_add_expires_seconds = XFRM_ACQ_EXPIRES;
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
x->timer.expires = jiffies + XFRM_ACQ_EXPIRES*HZ;
|
|
|
|
add_timer(&x->timer);
|
|
|
|
} else {
|
|
|
|
x->km.state = XFRM_STATE_DEAD;
|
|
|
|
xfrm_state_put(x);
|
|
|
|
x = NULL;
|
|
|
|
error = -ESRCH;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
if (x)
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
else
|
|
|
|
*err = acquire_in_progress ? -EAGAIN : error;
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __xfrm_state_insert(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
unsigned h = xfrm_dst_hash(&x->id.daddr, x->props.family);
|
|
|
|
|
|
|
|
list_add(&x->bydst, xfrm_state_bydst+h);
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
|
|
|
|
h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, x->props.family);
|
|
|
|
|
|
|
|
list_add(&x->byspi, xfrm_state_byspi+h);
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
|
|
|
|
if (!mod_timer(&x->timer, jiffies + HZ))
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
|
2006-03-20 19:15:11 -08:00
|
|
|
if (x->replay_maxage &&
|
|
|
|
!mod_timer(&x->rtimer, jiffies + x->replay_maxage))
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
|
|
|
|
|
|
|
void xfrm_state_insert(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
__xfrm_state_insert(x);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
2005-12-19 14:23:23 -08:00
|
|
|
|
|
|
|
xfrm_flush_all_bundles();
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_insert);
|
|
|
|
|
|
|
|
static struct xfrm_state *__xfrm_find_acq_byseq(u32 seq);
|
|
|
|
|
|
|
|
int xfrm_state_add(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_state_afinfo *afinfo;
|
|
|
|
struct xfrm_state *x1;
|
|
|
|
int family;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
family = x->props.family;
|
|
|
|
afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (unlikely(afinfo == NULL))
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
|
|
|
|
x1 = afinfo->state_lookup(&x->id.daddr, x->id.spi, x->id.proto);
|
|
|
|
if (x1) {
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
x1 = NULL;
|
|
|
|
err = -EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x->km.seq) {
|
|
|
|
x1 = __xfrm_find_acq_byseq(x->km.seq);
|
|
|
|
if (x1 && xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family)) {
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
x1 = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!x1)
|
|
|
|
x1 = afinfo->find_acq(
|
|
|
|
x->props.mode, x->props.reqid, x->id.proto,
|
|
|
|
&x->id.daddr, &x->props.saddr, 0);
|
|
|
|
|
|
|
|
__xfrm_state_insert(x);
|
|
|
|
err = 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
|
2005-12-19 14:23:23 -08:00
|
|
|
if (!err)
|
|
|
|
xfrm_flush_all_bundles();
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
if (x1) {
|
|
|
|
xfrm_state_delete(x1);
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_add);
|
|
|
|
|
|
|
|
int xfrm_state_update(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_state_afinfo *afinfo;
|
|
|
|
struct xfrm_state *x1;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
afinfo = xfrm_state_get_afinfo(x->props.family);
|
|
|
|
if (unlikely(afinfo == NULL))
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
x1 = afinfo->state_lookup(&x->id.daddr, x->id.spi, x->id.proto);
|
|
|
|
|
|
|
|
err = -ESRCH;
|
|
|
|
if (!x1)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (xfrm_state_kern(x1)) {
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
err = -EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x1->km.state == XFRM_STATE_ACQ) {
|
|
|
|
__xfrm_state_insert(x);
|
|
|
|
x = NULL;
|
|
|
|
}
|
|
|
|
err = 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (!x) {
|
|
|
|
xfrm_state_delete(x1);
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = -EINVAL;
|
|
|
|
spin_lock_bh(&x1->lock);
|
|
|
|
if (likely(x1->km.state == XFRM_STATE_VALID)) {
|
|
|
|
if (x->encap && x1->encap)
|
|
|
|
memcpy(x1->encap, x->encap, sizeof(*x1->encap));
|
|
|
|
memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
|
|
|
|
x1->km.dying = 0;
|
|
|
|
|
|
|
|
if (!mod_timer(&x1->timer, jiffies + HZ))
|
|
|
|
xfrm_state_hold(x1);
|
|
|
|
if (x1->curlft.use_time)
|
|
|
|
xfrm_state_check_expire(x1);
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
}
|
|
|
|
spin_unlock_bh(&x1->lock);
|
|
|
|
|
|
|
|
xfrm_state_put(x1);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_update);
|
|
|
|
|
|
|
|
int xfrm_state_check_expire(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
if (!x->curlft.use_time)
|
|
|
|
x->curlft.use_time = (unsigned long)xtime.tv_sec;
|
|
|
|
|
|
|
|
if (x->km.state != XFRM_STATE_VALID)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (x->curlft.bytes >= x->lft.hard_byte_limit ||
|
|
|
|
x->curlft.packets >= x->lft.hard_packet_limit) {
|
2005-06-18 22:43:22 -07:00
|
|
|
x->km.state = XFRM_STATE_EXPIRED;
|
|
|
|
if (!mod_timer(&x->timer, jiffies))
|
2005-04-16 15:20:36 -07:00
|
|
|
xfrm_state_hold(x);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!x->km.dying &&
|
|
|
|
(x->curlft.bytes >= x->lft.soft_byte_limit ||
|
2005-06-18 22:43:22 -07:00
|
|
|
x->curlft.packets >= x->lft.soft_packet_limit)) {
|
|
|
|
x->km.dying = 1;
|
2006-03-20 19:17:03 -08:00
|
|
|
km_state_expired(x, 0, 0);
|
2005-06-18 22:43:22 -07:00
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_check_expire);
|
|
|
|
|
|
|
|
static int xfrm_state_check_space(struct xfrm_state *x, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int nhead = x->props.header_len + LL_RESERVED_SPACE(skb->dst->dev)
|
|
|
|
- skb_headroom(skb);
|
|
|
|
|
|
|
|
if (nhead > 0)
|
|
|
|
return pskb_expand_head(skb, nhead, 0, GFP_ATOMIC);
|
|
|
|
|
|
|
|
/* Check tail too... */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int xfrm_state_check(struct xfrm_state *x, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int err = xfrm_state_check_expire(x);
|
|
|
|
if (err < 0)
|
|
|
|
goto err;
|
|
|
|
err = xfrm_state_check_space(x, skb);
|
|
|
|
err:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_check);
|
|
|
|
|
|
|
|
struct xfrm_state *
|
|
|
|
xfrm_state_lookup(xfrm_address_t *daddr, u32 spi, u8 proto,
|
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x;
|
|
|
|
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (!afinfo)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
x = afinfo->state_lookup(daddr, spi, proto);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_lookup);
|
|
|
|
|
|
|
|
struct xfrm_state *
|
|
|
|
xfrm_find_acq(u8 mode, u32 reqid, u8 proto,
|
|
|
|
xfrm_address_t *daddr, xfrm_address_t *saddr,
|
|
|
|
int create, unsigned short family)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x;
|
|
|
|
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (!afinfo)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
x = afinfo->find_acq(mode, reqid, proto, daddr, saddr, create);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_find_acq);
|
|
|
|
|
|
|
|
/* Silly enough, but I'm lazy to build resolution list */
|
|
|
|
|
|
|
|
static struct xfrm_state *__xfrm_find_acq_byseq(u32 seq)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct xfrm_state *x;
|
|
|
|
|
|
|
|
for (i = 0; i < XFRM_DST_HSIZE; i++) {
|
|
|
|
list_for_each_entry(x, xfrm_state_bydst+i, bydst) {
|
|
|
|
if (x->km.seq == seq && x->km.state == XFRM_STATE_ACQ) {
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct xfrm_state *xfrm_find_acq_byseq(u32 seq)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
x = __xfrm_find_acq_byseq(seq);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_find_acq_byseq);
|
|
|
|
|
|
|
|
u32 xfrm_get_acqseq(void)
|
|
|
|
{
|
|
|
|
u32 res;
|
|
|
|
static u32 acqseq;
|
|
|
|
static DEFINE_SPINLOCK(acqseq_lock);
|
|
|
|
|
|
|
|
spin_lock_bh(&acqseq_lock);
|
|
|
|
res = (++acqseq ? : ++acqseq);
|
|
|
|
spin_unlock_bh(&acqseq_lock);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_get_acqseq);
|
|
|
|
|
|
|
|
void
|
|
|
|
xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi)
|
|
|
|
{
|
|
|
|
u32 h;
|
|
|
|
struct xfrm_state *x0;
|
|
|
|
|
|
|
|
if (x->id.spi)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (minspi == maxspi) {
|
|
|
|
x0 = xfrm_state_lookup(&x->id.daddr, minspi, x->id.proto, x->props.family);
|
|
|
|
if (x0) {
|
|
|
|
xfrm_state_put(x0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
x->id.spi = minspi;
|
|
|
|
} else {
|
|
|
|
u32 spi = 0;
|
|
|
|
minspi = ntohl(minspi);
|
|
|
|
maxspi = ntohl(maxspi);
|
|
|
|
for (h=0; h<maxspi-minspi+1; h++) {
|
|
|
|
spi = minspi + net_random()%(maxspi-minspi+1);
|
|
|
|
x0 = xfrm_state_lookup(&x->id.daddr, htonl(spi), x->id.proto, x->props.family);
|
|
|
|
if (x0 == NULL) {
|
|
|
|
x->id.spi = htonl(spi);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
xfrm_state_put(x0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (x->id.spi) {
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
h = xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, x->props.family);
|
|
|
|
list_add(&x->byspi, xfrm_state_byspi+h);
|
|
|
|
xfrm_state_hold(x);
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_alloc_spi);
|
|
|
|
|
|
|
|
int xfrm_state_walk(u8 proto, int (*func)(struct xfrm_state *, int, void*),
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct xfrm_state *x;
|
|
|
|
int count = 0;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
spin_lock_bh(&xfrm_state_lock);
|
|
|
|
for (i = 0; i < XFRM_DST_HSIZE; i++) {
|
|
|
|
list_for_each_entry(x, xfrm_state_bydst+i, bydst) {
|
|
|
|
if (proto == IPSEC_PROTO_ANY || x->id.proto == proto)
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (count == 0) {
|
|
|
|
err = -ENOENT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < XFRM_DST_HSIZE; i++) {
|
|
|
|
list_for_each_entry(x, xfrm_state_bydst+i, bydst) {
|
|
|
|
if (proto != IPSEC_PROTO_ANY && x->id.proto != proto)
|
|
|
|
continue;
|
|
|
|
err = func(x, --count, data);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
spin_unlock_bh(&xfrm_state_lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_walk);
|
|
|
|
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
void xfrm_replay_notify(struct xfrm_state *x, int event)
|
|
|
|
{
|
|
|
|
struct km_event c;
|
|
|
|
/* we send notify messages in case
|
|
|
|
* 1. we updated on of the sequence numbers, and the seqno difference
|
|
|
|
* is at least x->replay_maxdiff, in this case we also update the
|
|
|
|
* timeout of our timer function
|
|
|
|
* 2. if x->replay_maxage has elapsed since last update,
|
|
|
|
* and there were changes
|
|
|
|
*
|
|
|
|
* The state structure must be locked!
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (event) {
|
|
|
|
case XFRM_REPLAY_UPDATE:
|
|
|
|
if (x->replay_maxdiff &&
|
|
|
|
(x->replay.seq - x->preplay.seq < x->replay_maxdiff) &&
|
2006-04-14 15:03:05 -07:00
|
|
|
(x->replay.oseq - x->preplay.oseq < x->replay_maxdiff)) {
|
|
|
|
if (x->xflags & XFRM_TIME_DEFER)
|
|
|
|
event = XFRM_REPLAY_TIMEOUT;
|
|
|
|
else
|
|
|
|
return;
|
|
|
|
}
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XFRM_REPLAY_TIMEOUT:
|
|
|
|
if ((x->replay.seq == x->preplay.seq) &&
|
|
|
|
(x->replay.bitmap == x->preplay.bitmap) &&
|
2006-04-14 15:03:05 -07:00
|
|
|
(x->replay.oseq == x->preplay.oseq)) {
|
|
|
|
x->xflags |= XFRM_TIME_DEFER;
|
2006-03-20 19:15:11 -08:00
|
|
|
return;
|
2006-04-14 15:03:05 -07:00
|
|
|
}
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(&x->preplay, &x->replay, sizeof(struct xfrm_replay_state));
|
|
|
|
c.event = XFRM_MSG_NEWAE;
|
|
|
|
c.data.aevent = event;
|
|
|
|
km_state_notify(x, &c);
|
|
|
|
|
|
|
|
if (x->replay_maxage &&
|
2006-04-14 15:03:05 -07:00
|
|
|
!mod_timer(&x->rtimer, jiffies + x->replay_maxage)) {
|
2006-03-20 19:15:11 -08:00
|
|
|
xfrm_state_hold(x);
|
2006-04-14 15:03:05 -07:00
|
|
|
x->xflags &= ~XFRM_TIME_DEFER;
|
|
|
|
}
|
2006-03-20 19:15:11 -08:00
|
|
|
}
|
2006-03-20 19:18:52 -08:00
|
|
|
EXPORT_SYMBOL(xfrm_replay_notify);
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
static void xfrm_replay_timer_handler(unsigned long data)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x = (struct xfrm_state*)data;
|
|
|
|
|
|
|
|
spin_lock(&x->lock);
|
|
|
|
|
2006-04-14 15:03:05 -07:00
|
|
|
if (x->km.state == XFRM_STATE_VALID) {
|
|
|
|
if (xfrm_aevent_is_on())
|
|
|
|
xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
|
|
|
|
else
|
|
|
|
x->xflags |= XFRM_TIME_DEFER;
|
|
|
|
}
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
spin_unlock(&x->lock);
|
2006-04-14 15:03:05 -07:00
|
|
|
xfrm_state_put(x);
|
2006-03-20 19:15:11 -08:00
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
int xfrm_replay_check(struct xfrm_state *x, u32 seq)
|
|
|
|
{
|
|
|
|
u32 diff;
|
|
|
|
|
|
|
|
seq = ntohl(seq);
|
|
|
|
|
|
|
|
if (unlikely(seq == 0))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (likely(seq > x->replay.seq))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
diff = x->replay.seq - seq;
|
|
|
|
if (diff >= x->props.replay_window) {
|
|
|
|
x->stats.replay_window++;
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x->replay.bitmap & (1U << diff)) {
|
|
|
|
x->stats.replay++;
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_replay_check);
|
|
|
|
|
|
|
|
void xfrm_replay_advance(struct xfrm_state *x, u32 seq)
|
|
|
|
{
|
|
|
|
u32 diff;
|
|
|
|
|
|
|
|
seq = ntohl(seq);
|
|
|
|
|
|
|
|
if (seq > x->replay.seq) {
|
|
|
|
diff = seq - x->replay.seq;
|
|
|
|
if (diff < x->props.replay_window)
|
|
|
|
x->replay.bitmap = ((x->replay.bitmap) << diff) | 1;
|
|
|
|
else
|
|
|
|
x->replay.bitmap = 1;
|
|
|
|
x->replay.seq = seq;
|
|
|
|
} else {
|
|
|
|
diff = x->replay.seq - seq;
|
|
|
|
x->replay.bitmap |= (1U << diff);
|
|
|
|
}
|
2006-03-20 19:15:11 -08:00
|
|
|
|
|
|
|
if (xfrm_aevent_is_on())
|
|
|
|
xfrm_replay_notify(x, XFRM_REPLAY_UPDATE);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_replay_advance);
|
|
|
|
|
|
|
|
static struct list_head xfrm_km_list = LIST_HEAD_INIT(xfrm_km_list);
|
|
|
|
static DEFINE_RWLOCK(xfrm_km_lock);
|
|
|
|
|
2005-06-18 22:42:13 -07:00
|
|
|
void km_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
struct xfrm_mgr *km;
|
|
|
|
|
2005-06-18 22:42:13 -07:00
|
|
|
read_lock(&xfrm_km_lock);
|
|
|
|
list_for_each_entry(km, &xfrm_km_list, list)
|
|
|
|
if (km->notify_policy)
|
|
|
|
km->notify_policy(xp, dir, c);
|
|
|
|
read_unlock(&xfrm_km_lock);
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2005-06-18 22:42:13 -07:00
|
|
|
void km_state_notify(struct xfrm_state *x, struct km_event *c)
|
|
|
|
{
|
|
|
|
struct xfrm_mgr *km;
|
2005-04-16 15:20:36 -07:00
|
|
|
read_lock(&xfrm_km_lock);
|
|
|
|
list_for_each_entry(km, &xfrm_km_list, list)
|
2005-06-18 22:42:13 -07:00
|
|
|
if (km->notify)
|
|
|
|
km->notify(x, c);
|
2005-04-16 15:20:36 -07:00
|
|
|
read_unlock(&xfrm_km_lock);
|
2005-06-18 22:42:13 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(km_policy_notify);
|
|
|
|
EXPORT_SYMBOL(km_state_notify);
|
|
|
|
|
2006-03-20 19:17:03 -08:00
|
|
|
void km_state_expired(struct xfrm_state *x, int hard, u32 pid)
|
2005-06-18 22:42:13 -07:00
|
|
|
{
|
|
|
|
struct km_event c;
|
|
|
|
|
2005-06-18 22:44:00 -07:00
|
|
|
c.data.hard = hard;
|
2006-03-20 19:17:03 -08:00
|
|
|
c.pid = pid;
|
2005-06-18 22:44:37 -07:00
|
|
|
c.event = XFRM_MSG_EXPIRE;
|
2005-06-18 22:42:13 -07:00
|
|
|
km_state_notify(x, &c);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
if (hard)
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
|
|
|
|
2006-03-20 19:17:03 -08:00
|
|
|
EXPORT_SYMBOL(km_state_expired);
|
2005-06-18 22:42:13 -07:00
|
|
|
/*
|
|
|
|
* We send to all registered managers regardless of failure
|
|
|
|
* We are happy with one success
|
|
|
|
*/
|
[IPSEC]: Sync series - acquire insert
This introduces a feature similar to the one described in RFC 2367:
"
... the application needing an SA sends a PF_KEY
SADB_ACQUIRE message down to the Key Engine, which then either
returns an error or sends a similar SADB_ACQUIRE message up to one or
more key management applications capable of creating such SAs.
...
...
The third is where an application-layer consumer of security
associations (e.g. an OSPFv2 or RIPv2 daemon) needs a security
association.
Send an SADB_ACQUIRE message from a user process to the kernel.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The kernel returns an SADB_ACQUIRE message to registered
sockets.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The user-level consumer waits for an SADB_UPDATE or SADB_ADD
message for its particular type, and then can use that
association by using SADB_GET messages.
"
An app such as OSPF could then use ipsec KM to get keys
Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 19:16:40 -08:00
|
|
|
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2005-06-18 22:42:13 -07:00
|
|
|
int err = -EINVAL, acqret;
|
2005-04-16 15:20:36 -07:00
|
|
|
struct xfrm_mgr *km;
|
|
|
|
|
|
|
|
read_lock(&xfrm_km_lock);
|
|
|
|
list_for_each_entry(km, &xfrm_km_list, list) {
|
2005-06-18 22:42:13 -07:00
|
|
|
acqret = km->acquire(x, t, pol, XFRM_POLICY_OUT);
|
|
|
|
if (!acqret)
|
|
|
|
err = acqret;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
read_unlock(&xfrm_km_lock);
|
|
|
|
return err;
|
|
|
|
}
|
[IPSEC]: Sync series - acquire insert
This introduces a feature similar to the one described in RFC 2367:
"
... the application needing an SA sends a PF_KEY
SADB_ACQUIRE message down to the Key Engine, which then either
returns an error or sends a similar SADB_ACQUIRE message up to one or
more key management applications capable of creating such SAs.
...
...
The third is where an application-layer consumer of security
associations (e.g. an OSPFv2 or RIPv2 daemon) needs a security
association.
Send an SADB_ACQUIRE message from a user process to the kernel.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The kernel returns an SADB_ACQUIRE message to registered
sockets.
<base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
proposal>
The user-level consumer waits for an SADB_UPDATE or SADB_ADD
message for its particular type, and then can use that
association by using SADB_GET messages.
"
An app such as OSPF could then use ipsec KM to get keys
Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 19:16:40 -08:00
|
|
|
EXPORT_SYMBOL(km_query);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
|
|
|
|
{
|
|
|
|
int err = -EINVAL;
|
|
|
|
struct xfrm_mgr *km;
|
|
|
|
|
|
|
|
read_lock(&xfrm_km_lock);
|
|
|
|
list_for_each_entry(km, &xfrm_km_list, list) {
|
|
|
|
if (km->new_mapping)
|
|
|
|
err = km->new_mapping(x, ipaddr, sport);
|
|
|
|
if (!err)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
read_unlock(&xfrm_km_lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(km_new_mapping);
|
|
|
|
|
2006-03-20 19:17:25 -08:00
|
|
|
void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 pid)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2005-06-18 22:42:13 -07:00
|
|
|
struct km_event c;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2005-06-18 22:44:00 -07:00
|
|
|
c.data.hard = hard;
|
2006-03-20 19:17:25 -08:00
|
|
|
c.pid = pid;
|
2005-06-18 22:44:37 -07:00
|
|
|
c.event = XFRM_MSG_POLEXPIRE;
|
2005-06-18 22:42:13 -07:00
|
|
|
km_policy_notify(pol, dir, &c);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
if (hard)
|
|
|
|
wake_up(&km_waitq);
|
|
|
|
}
|
2006-03-20 19:18:52 -08:00
|
|
|
EXPORT_SYMBOL(km_policy_expired);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
u8 *data;
|
|
|
|
struct xfrm_mgr *km;
|
|
|
|
struct xfrm_policy *pol = NULL;
|
|
|
|
|
|
|
|
if (optlen <= 0 || optlen > PAGE_SIZE)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
data = kmalloc(optlen, GFP_KERNEL);
|
|
|
|
if (!data)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
err = -EFAULT;
|
|
|
|
if (copy_from_user(data, optval, optlen))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
err = -EINVAL;
|
|
|
|
read_lock(&xfrm_km_lock);
|
|
|
|
list_for_each_entry(km, &xfrm_km_list, list) {
|
|
|
|
pol = km->compile_policy(sk->sk_family, optname, data,
|
|
|
|
optlen, &err);
|
|
|
|
if (err >= 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
read_unlock(&xfrm_km_lock);
|
|
|
|
|
|
|
|
if (err >= 0) {
|
|
|
|
xfrm_sk_policy_insert(sk, err, pol);
|
|
|
|
xfrm_pol_put(pol);
|
|
|
|
err = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
kfree(data);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_user_policy);
|
|
|
|
|
|
|
|
int xfrm_register_km(struct xfrm_mgr *km)
|
|
|
|
{
|
|
|
|
write_lock_bh(&xfrm_km_lock);
|
|
|
|
list_add_tail(&km->list, &xfrm_km_list);
|
|
|
|
write_unlock_bh(&xfrm_km_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_register_km);
|
|
|
|
|
|
|
|
int xfrm_unregister_km(struct xfrm_mgr *km)
|
|
|
|
{
|
|
|
|
write_lock_bh(&xfrm_km_lock);
|
|
|
|
list_del(&km->list);
|
|
|
|
write_unlock_bh(&xfrm_km_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_unregister_km);
|
|
|
|
|
|
|
|
int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
if (unlikely(afinfo == NULL))
|
|
|
|
return -EINVAL;
|
|
|
|
if (unlikely(afinfo->family >= NPROTO))
|
|
|
|
return -EAFNOSUPPORT;
|
2006-04-28 15:30:03 -07:00
|
|
|
write_lock_bh(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
|
|
|
|
err = -ENOBUFS;
|
|
|
|
else {
|
|
|
|
afinfo->state_bydst = xfrm_state_bydst;
|
|
|
|
afinfo->state_byspi = xfrm_state_byspi;
|
|
|
|
xfrm_state_afinfo[afinfo->family] = afinfo;
|
|
|
|
}
|
2006-04-28 15:30:03 -07:00
|
|
|
write_unlock_bh(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_register_afinfo);
|
|
|
|
|
|
|
|
int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
if (unlikely(afinfo == NULL))
|
|
|
|
return -EINVAL;
|
|
|
|
if (unlikely(afinfo->family >= NPROTO))
|
|
|
|
return -EAFNOSUPPORT;
|
2006-04-28 15:30:03 -07:00
|
|
|
write_lock_bh(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
|
|
|
|
if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo))
|
|
|
|
err = -EINVAL;
|
|
|
|
else {
|
|
|
|
xfrm_state_afinfo[afinfo->family] = NULL;
|
|
|
|
afinfo->state_byspi = NULL;
|
|
|
|
afinfo->state_bydst = NULL;
|
|
|
|
}
|
|
|
|
}
|
2006-04-28 15:30:03 -07:00
|
|
|
write_unlock_bh(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
|
|
|
|
|
|
|
|
static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned short family)
|
|
|
|
{
|
|
|
|
struct xfrm_state_afinfo *afinfo;
|
|
|
|
if (unlikely(family >= NPROTO))
|
|
|
|
return NULL;
|
|
|
|
read_lock(&xfrm_state_afinfo_lock);
|
|
|
|
afinfo = xfrm_state_afinfo[family];
|
2006-05-27 23:03:58 -07:00
|
|
|
if (unlikely(!afinfo))
|
|
|
|
read_unlock(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
return afinfo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo)
|
|
|
|
{
|
2006-05-27 23:03:58 -07:00
|
|
|
read_unlock(&xfrm_state_afinfo_lock);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
|
|
|
|
void xfrm_state_delete_tunnel(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
if (x->tunnel) {
|
|
|
|
struct xfrm_state *t = x->tunnel;
|
|
|
|
|
|
|
|
if (atomic_read(&t->tunnel_users) == 2)
|
|
|
|
xfrm_state_delete(t);
|
|
|
|
atomic_dec(&t->tunnel_users);
|
|
|
|
xfrm_state_put(t);
|
|
|
|
x->tunnel = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm_state_delete_tunnel);
|
|
|
|
|
2005-10-15 10:58:30 +10:00
|
|
|
/*
|
|
|
|
* This function is NOT optimal. For example, with ESP it will give an
|
|
|
|
* MTU that's usually two bytes short of being optimal. However, it will
|
|
|
|
* usually give an answer that's a multiple of 4 provided the input is
|
|
|
|
* also a multiple of 4.
|
|
|
|
*/
|
2005-04-16 15:20:36 -07:00
|
|
|
int xfrm_state_mtu(struct xfrm_state *x, int mtu)
|
|
|
|
{
|
|
|
|
int res = mtu;
|
|
|
|
|
|
|
|
res -= x->props.header_len;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
int m = res;
|
|
|
|
|
|
|
|
if (m < 68)
|
|
|
|
return 68;
|
|
|
|
|
|
|
|
spin_lock_bh(&x->lock);
|
|
|
|
if (x->km.state == XFRM_STATE_VALID &&
|
|
|
|
x->type && x->type->get_max_size)
|
|
|
|
m = x->type->get_max_size(x, m);
|
|
|
|
else
|
|
|
|
m += x->props.header_len;
|
|
|
|
spin_unlock_bh(&x->lock);
|
|
|
|
|
|
|
|
if (m <= mtu)
|
|
|
|
break;
|
|
|
|
res -= (m - mtu);
|
|
|
|
}
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2005-06-20 13:18:08 -07:00
|
|
|
int xfrm_init_state(struct xfrm_state *x)
|
|
|
|
{
|
2005-06-20 13:19:41 -07:00
|
|
|
struct xfrm_state_afinfo *afinfo;
|
|
|
|
int family = x->props.family;
|
2005-06-20 13:18:08 -07:00
|
|
|
int err;
|
|
|
|
|
2005-06-20 13:19:41 -07:00
|
|
|
err = -EAFNOSUPPORT;
|
|
|
|
afinfo = xfrm_state_get_afinfo(family);
|
|
|
|
if (!afinfo)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
if (afinfo->init_flags)
|
|
|
|
err = afinfo->init_flags(x);
|
|
|
|
|
|
|
|
xfrm_state_put_afinfo(afinfo);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
err = -EPROTONOSUPPORT;
|
|
|
|
x->type = xfrm_get_type(x->id.proto, family);
|
2005-06-20 13:18:08 -07:00
|
|
|
if (x->type == NULL)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
err = x->type->init_state(x);
|
|
|
|
if (err)
|
|
|
|
goto error;
|
|
|
|
|
2006-05-27 23:05:54 -07:00
|
|
|
x->mode = xfrm_get_mode(x->props.mode, family);
|
|
|
|
if (x->mode == NULL)
|
|
|
|
goto error;
|
|
|
|
|
2005-06-20 13:18:08 -07:00
|
|
|
x->km.state = XFRM_STATE_VALID;
|
|
|
|
|
|
|
|
error:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(xfrm_init_state);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
void __init xfrm_state_init(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i=0; i<XFRM_DST_HSIZE; i++) {
|
|
|
|
INIT_LIST_HEAD(&xfrm_state_bydst[i]);
|
|
|
|
INIT_LIST_HEAD(&xfrm_state_byspi[i]);
|
|
|
|
}
|
|
|
|
INIT_WORK(&xfrm_state_gc_work, xfrm_state_gc_task, NULL);
|
|
|
|
}
|
|
|
|
|