122 lines
4.1 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 08:55:06 +02:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright 2013 Red Hat Inc.
*
* Authors: Jérôme Glisse <jglisse@redhat.com>
*
* See Documentation/vm/hmm.rst for reasons and overview of what HMM is.
*/
#ifndef LINUX_HMM_H
#define LINUX_HMM_H
#include <linux/kconfig.h>
mm: introduce include/linux/pgtable.h The include/linux/pgtable.h is going to be the home of generic page table manipulation functions. Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and make the latter include asm/pgtable.h. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:32:38 -07:00
#include <linux/pgtable.h>
#include <linux/device.h>
mm/hmm/devmem: device memory hotplug using ZONE_DEVICE This introduce a simple struct and associated helpers for device driver to use when hotpluging un-addressable device memory as ZONE_DEVICE. It will find a unuse physical address range and trigger memory hotplug for it which allocates and initialize struct page for the device memory. Device driver should use this helper during device initialization to hotplug the device memory. It should only need to remove the memory once the device is going offline (shutdown or hotremove). There should not be any userspace API to hotplug memory expect maybe for host device driver to allow to add more memory to a guest device driver. Device's memory is manage by the device driver and HMM only provides helpers to that effect. Link: http://lkml.kernel.org/r/20170817000548.32038-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Signed-off-by: Balbir Singh <bsingharora@gmail.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 16:11:58 -07:00
#include <linux/migrate.h>
#include <linux/memremap.h>
#include <linux/completion.h>
#include <linux/mmu_notifier.h>
mm/hmm/devmem: device memory hotplug using ZONE_DEVICE This introduce a simple struct and associated helpers for device driver to use when hotpluging un-addressable device memory as ZONE_DEVICE. It will find a unuse physical address range and trigger memory hotplug for it which allocates and initialize struct page for the device memory. Device driver should use this helper during device initialization to hotplug the device memory. It should only need to remove the memory once the device is going offline (shutdown or hotremove). There should not be any userspace API to hotplug memory expect maybe for host device driver to allow to add more memory to a guest device driver. Device's memory is manage by the device driver and HMM only provides helpers to that effect. Link: http://lkml.kernel.org/r/20170817000548.32038-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Signed-off-by: Balbir Singh <bsingharora@gmail.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 16:11:58 -07:00
/*
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
* On output:
* 0 - The page is faultable and a future call with
* HMM_PFN_REQ_FAULT could succeed.
* HMM_PFN_VALID - the pfn field points to a valid PFN. This PFN is at
* least readable. If dev_private_owner is !NULL then this could
* point at a DEVICE_PRIVATE page.
* HMM_PFN_WRITE - if the page memory can be written to (requires HMM_PFN_VALID)
* HMM_PFN_ERROR - accessing the pfn is impossible and the device should
* fail. ie poisoned memory, special pages, no vma, etc
*
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
* On input:
* 0 - Return the current state of the page, do not fault it.
* HMM_PFN_REQ_FAULT - The output must have HMM_PFN_VALID or hmm_range_fault()
* will fail
* HMM_PFN_REQ_WRITE - The output must have HMM_PFN_WRITE or hmm_range_fault()
* will fail. Must be combined with HMM_PFN_REQ_FAULT.
*/
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
enum hmm_pfn_flags {
/* Output fields and flags */
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
HMM_PFN_VALID = 1UL << (BITS_PER_LONG - 1),
HMM_PFN_WRITE = 1UL << (BITS_PER_LONG - 2),
HMM_PFN_ERROR = 1UL << (BITS_PER_LONG - 3),
HMM_PFN_ORDER_SHIFT = (BITS_PER_LONG - 8),
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
/* Input flags */
HMM_PFN_REQ_FAULT = HMM_PFN_VALID,
HMM_PFN_REQ_WRITE = HMM_PFN_WRITE,
HMM_PFN_FLAGS = 0xFFUL << HMM_PFN_ORDER_SHIFT,
};
/*
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
* hmm_pfn_to_page() - return struct page pointed to by a device entry
*
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
* This must be called under the caller 'user_lock' after a successful
* mmu_interval_read_begin(). The caller must have tested for HMM_PFN_VALID
* already.
*/
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
static inline struct page *hmm_pfn_to_page(unsigned long hmm_pfn)
{
return pfn_to_page(hmm_pfn & ~HMM_PFN_FLAGS);
}
/*
* hmm_pfn_to_map_order() - return the CPU mapping size order
*
* This is optionally useful to optimize processing of the pfn result
* array. It indicates that the page starts at the order aligned VA and is
* 1<<order bytes long. Every pfn within an high order page will have the
* same pfn flags, both access protections and the map_order. The caller must
* be careful with edge cases as the start and end VA of the given page may
* extend past the range used with hmm_range_fault().
*
* This must be called under the caller 'user_lock' after a successful
* mmu_interval_read_begin(). The caller must have tested for HMM_PFN_VALID
* already.
*/
static inline unsigned int hmm_pfn_to_map_order(unsigned long hmm_pfn)
{
return (hmm_pfn >> HMM_PFN_ORDER_SHIFT) & 0x1F;
}
/*
* struct hmm_range - track invalidation lock on virtual address range
*
* @notifier: a mmu_interval_notifier that includes the start/end
* @notifier_seq: result of mmu_interval_read_begin()
* @start: range virtual start address (inclusive)
* @end: range virtual end address (exclusive)
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
* @hmm_pfns: array of pfns (big enough for the range)
* @default_flags: default flags for the range (write, read, ... see hmm doc)
* @pfn_flags_mask: allows to mask pfn flags so that only default_flags matter
* @dev_private_owner: owner of device private pages
*/
struct hmm_range {
struct mmu_interval_notifier *notifier;
unsigned long notifier_seq;
unsigned long start;
unsigned long end;
mm/hmm: remove the customizable pfn format from hmm_range_fault Presumably the intent here was that hmm_range_fault() could put the data into some HW specific format and thus avoid some work. However, nothing actually does that, and it isn't clear how anything actually could do that as hmm_range_fault() provides CPU addresses which must be DMA mapped. Perhaps there is some special HW that does not need DMA mapping, but we don't have any examples of this, and the theoretical performance win of avoiding an extra scan over the pfns array doesn't seem worth the complexity. Plus pfns needs to be scanned anyhow to sort out any DEVICE_PRIVATE pages. This version replaces the uint64_t with an usigned long containing a pfn and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values, on successful output it is filled with HMM_PFN_* values, describing the state of the pages. amdgpu is simple to convert, it doesn't use snapshot and doesn't use per-page flags. nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache lines), and it sweeps over its pfns array a couple of times anyhow. It also has a nasty call chain before it reaches the dma map and hardware suggesting performance isn't important: nouveau_svm_fault(): args.i.m.method = NVIF_VMM_V0_PFNMAP nouveau_range_fault() nvif_object_ioctl() client->driver->ioctl() struct nvif_driver nvif_driver_nvkm: .ioctl = nvkm_client_ioctl nvkm_ioctl() nvkm_ioctl_path() nvkm_ioctl_v0[type].func(..) nvkm_ioctl_mthd() nvkm_object_mthd() struct nvkm_object_func nvkm_uvmm: .mthd = nvkm_uvmm_mthd nvkm_uvmm_mthd() nvkm_uvmm_mthd_pfnmap() nvkm_vmm_pfn_map() nvkm_vmm_ptes_get_map() func == gp100_vmm_pgt_pfn struct nvkm_vmm_desc_func gp100_vmm_desc_spt: .pfn = gp100_vmm_pgt_pfn nvkm_vmm_iter() REF_PTES == func == gp100_vmm_pgt_pfn() dma_map_page() Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-01 15:20:48 -03:00
unsigned long *hmm_pfns;
unsigned long default_flags;
unsigned long pfn_flags_mask;
void *dev_private_owner;
};
/*
* Please see Documentation/vm/hmm.rst for how to use the range API.
*/
int hmm_range_fault(struct hmm_range *range);
/*
* HMM_RANGE_DEFAULT_TIMEOUT - default timeout (ms) when waiting for a range
*
* When waiting for mmu notifiers we need some kind of time out otherwise we
* could potentialy wait for ever, 1000ms ie 1s sounds like a long time to
* wait already.
*/
#define HMM_RANGE_DEFAULT_TIMEOUT 1000
#endif /* LINUX_HMM_H */