2008-10-18 20:27:21 -07:00
|
|
|
/*
|
|
|
|
* cgroup_freezer.c - control group freezer subsystem
|
|
|
|
*
|
|
|
|
* Copyright IBM Corporation, 2007
|
|
|
|
*
|
|
|
|
* Author : Cedric Le Goater <clg@fr.ibm.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of version 2.1 of the GNU Lesser General Public License
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it would be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
*/
|
|
|
|
|
2011-05-23 14:51:41 -04:00
|
|
|
#include <linux/export.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
|
|
|
#include <linux/slab.h>
|
2008-10-18 20:27:21 -07:00
|
|
|
#include <linux/cgroup.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/freezer.h>
|
|
|
|
#include <linux/seq_file.h>
|
|
|
|
|
|
|
|
enum freezer_state {
|
2008-10-18 20:27:23 -07:00
|
|
|
CGROUP_THAWED = 0,
|
|
|
|
CGROUP_FREEZING,
|
|
|
|
CGROUP_FROZEN,
|
2008-10-18 20:27:21 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
struct freezer {
|
|
|
|
struct cgroup_subsys_state css;
|
|
|
|
enum freezer_state state;
|
|
|
|
spinlock_t lock; /* protects _writes_ to state */
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct freezer *cgroup_freezer(
|
|
|
|
struct cgroup *cgroup)
|
|
|
|
{
|
|
|
|
return container_of(
|
|
|
|
cgroup_subsys_state(cgroup, freezer_subsys_id),
|
|
|
|
struct freezer, css);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct freezer *task_freezer(struct task_struct *task)
|
|
|
|
{
|
|
|
|
return container_of(task_subsys_state(task, freezer_subsys_id),
|
|
|
|
struct freezer, css);
|
|
|
|
}
|
|
|
|
|
2011-11-21 12:32:25 -08:00
|
|
|
bool cgroup_freezing(struct task_struct *task)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
2011-11-21 12:32:25 -08:00
|
|
|
enum freezer_state state;
|
|
|
|
bool ret;
|
2008-10-18 20:27:21 -07:00
|
|
|
|
2011-11-21 12:32:25 -08:00
|
|
|
rcu_read_lock();
|
|
|
|
state = task_freezer(task)->state;
|
|
|
|
ret = state == CGROUP_FREEZING || state == CGROUP_FROZEN;
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return ret;
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cgroups_write_string() limits the size of freezer state strings to
|
|
|
|
* CGROUP_LOCAL_BUFFER_SIZE
|
|
|
|
*/
|
|
|
|
static const char *freezer_state_strs[] = {
|
2008-10-18 20:27:23 -07:00
|
|
|
"THAWED",
|
2008-10-18 20:27:21 -07:00
|
|
|
"FREEZING",
|
|
|
|
"FROZEN",
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* State diagram
|
|
|
|
* Transitions are caused by userspace writes to the freezer.state file.
|
|
|
|
* The values in parenthesis are state labels. The rest are edge labels.
|
|
|
|
*
|
2008-10-18 20:27:23 -07:00
|
|
|
* (THAWED) --FROZEN--> (FREEZING) --FROZEN--> (FROZEN)
|
|
|
|
* ^ ^ | |
|
|
|
|
* | \_______THAWED_______/ |
|
|
|
|
* \__________________________THAWED____________/
|
2008-10-18 20:27:21 -07:00
|
|
|
*/
|
|
|
|
|
|
|
|
struct cgroup_subsys freezer_subsys;
|
|
|
|
|
|
|
|
/* Locks taken and their ordering
|
|
|
|
* ------------------------------
|
|
|
|
* cgroup_mutex (AKA cgroup_lock)
|
|
|
|
* freezer->lock
|
2010-05-10 23:18:47 +02:00
|
|
|
* css_set_lock
|
|
|
|
* task->alloc_lock (AKA task_lock)
|
2008-10-18 20:27:21 -07:00
|
|
|
* task->sighand->siglock
|
|
|
|
*
|
|
|
|
* cgroup code forces css_set_lock to be taken before task->alloc_lock
|
|
|
|
*
|
|
|
|
* freezer_create(), freezer_destroy():
|
|
|
|
* cgroup_mutex [ by cgroup core ]
|
|
|
|
*
|
2010-05-10 23:18:47 +02:00
|
|
|
* freezer_can_attach():
|
|
|
|
* cgroup_mutex (held by caller of can_attach)
|
2008-10-18 20:27:21 -07:00
|
|
|
*
|
|
|
|
* freezer_fork() (preserving fork() performance means can't take cgroup_mutex):
|
|
|
|
* freezer->lock
|
|
|
|
* sighand->siglock (if the cgroup is freezing)
|
|
|
|
*
|
|
|
|
* freezer_read():
|
|
|
|
* cgroup_mutex
|
|
|
|
* freezer->lock
|
2010-05-10 23:18:47 +02:00
|
|
|
* write_lock css_set_lock (cgroup iterator start)
|
|
|
|
* task->alloc_lock
|
2008-10-18 20:27:21 -07:00
|
|
|
* read_lock css_set_lock (cgroup iterator start)
|
|
|
|
*
|
|
|
|
* freezer_write() (freeze):
|
|
|
|
* cgroup_mutex
|
|
|
|
* freezer->lock
|
2010-05-10 23:18:47 +02:00
|
|
|
* write_lock css_set_lock (cgroup iterator start)
|
|
|
|
* task->alloc_lock
|
2008-10-18 20:27:21 -07:00
|
|
|
* read_lock css_set_lock (cgroup iterator start)
|
2010-05-10 23:18:47 +02:00
|
|
|
* sighand->siglock (fake signal delivery inside freeze_task())
|
2008-10-18 20:27:21 -07:00
|
|
|
*
|
|
|
|
* freezer_write() (unfreeze):
|
|
|
|
* cgroup_mutex
|
|
|
|
* freezer->lock
|
2010-05-10 23:18:47 +02:00
|
|
|
* write_lock css_set_lock (cgroup iterator start)
|
|
|
|
* task->alloc_lock
|
2008-10-18 20:27:21 -07:00
|
|
|
* read_lock css_set_lock (cgroup iterator start)
|
2011-11-21 12:32:23 -08:00
|
|
|
* task->alloc_lock (inside __thaw_task(), prevents race with refrigerator())
|
2008-10-18 20:27:21 -07:00
|
|
|
* sighand->siglock
|
|
|
|
*/
|
2012-01-31 13:47:36 +08:00
|
|
|
static struct cgroup_subsys_state *freezer_create(struct cgroup *cgroup)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
|
|
|
struct freezer *freezer;
|
|
|
|
|
|
|
|
freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL);
|
|
|
|
if (!freezer)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
spin_lock_init(&freezer->lock);
|
2008-10-18 20:27:23 -07:00
|
|
|
freezer->state = CGROUP_THAWED;
|
2008-10-18 20:27:21 -07:00
|
|
|
return &freezer->css;
|
|
|
|
}
|
|
|
|
|
2012-01-31 13:47:36 +08:00
|
|
|
static void freezer_destroy(struct cgroup *cgroup)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
2011-11-21 12:32:25 -08:00
|
|
|
struct freezer *freezer = cgroup_freezer(cgroup);
|
|
|
|
|
|
|
|
if (freezer->state != CGROUP_THAWED)
|
|
|
|
atomic_dec(&system_freezing_cnt);
|
|
|
|
kfree(freezer);
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
|
|
|
|
2008-10-18 20:27:22 -07:00
|
|
|
/*
|
|
|
|
* The call to cgroup_lock() in the freezer.state write method prevents
|
2012-10-16 15:03:14 -07:00
|
|
|
* a write to that file racing against an attach, and hence we don't need
|
|
|
|
* to worry about racing against migration.
|
2008-10-18 20:27:22 -07:00
|
|
|
*/
|
2012-10-16 15:03:14 -07:00
|
|
|
static void freezer_attach(struct cgroup *new_cgrp, struct cgroup_taskset *tset)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
2012-10-16 15:03:14 -07:00
|
|
|
struct freezer *freezer = cgroup_freezer(new_cgrp);
|
2011-12-12 18:12:21 -08:00
|
|
|
struct task_struct *task;
|
2008-10-18 20:27:22 -07:00
|
|
|
|
2012-10-16 15:03:14 -07:00
|
|
|
spin_lock_irq(&freezer->lock);
|
|
|
|
|
2008-10-29 14:00:52 -07:00
|
|
|
/*
|
2012-10-16 15:03:14 -07:00
|
|
|
* Make the new tasks conform to the current state of @new_cgrp.
|
|
|
|
* For simplicity, when migrating any task to a FROZEN cgroup, we
|
|
|
|
* revert it to FREEZING and let update_if_frozen() determine the
|
|
|
|
* correct state later.
|
|
|
|
*
|
|
|
|
* Tasks in @tset are on @new_cgrp but may not conform to its
|
|
|
|
* current state before executing the following - !frozen tasks may
|
|
|
|
* be visible in a FROZEN cgroup and frozen tasks in a THAWED one.
|
|
|
|
* This means that, to determine whether to freeze, one should test
|
|
|
|
* whether the state equals THAWED.
|
2008-10-29 14:00:52 -07:00
|
|
|
*/
|
2012-10-16 15:03:14 -07:00
|
|
|
cgroup_taskset_for_each(task, new_cgrp, tset) {
|
|
|
|
if (freezer->state == CGROUP_THAWED) {
|
|
|
|
__thaw_task(task);
|
|
|
|
} else {
|
|
|
|
freeze_task(task);
|
|
|
|
freezer->state = CGROUP_FREEZING;
|
|
|
|
}
|
|
|
|
}
|
2008-10-18 20:27:21 -07:00
|
|
|
|
2012-10-16 15:03:14 -07:00
|
|
|
spin_unlock_irq(&freezer->lock);
|
2011-05-26 16:25:19 -07:00
|
|
|
}
|
|
|
|
|
2012-01-31 13:47:36 +08:00
|
|
|
static void freezer_fork(struct task_struct *task)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
|
|
|
struct freezer *freezer;
|
|
|
|
|
2010-04-21 13:02:08 -07:00
|
|
|
rcu_read_lock();
|
2008-10-18 20:27:21 -07:00
|
|
|
freezer = task_freezer(task);
|
|
|
|
|
2008-11-12 13:26:50 -08:00
|
|
|
/*
|
|
|
|
* The root cgroup is non-freezable, so we can skip the
|
|
|
|
* following check.
|
|
|
|
*/
|
|
|
|
if (!freezer->css.cgroup->parent)
|
2012-10-16 15:03:14 -07:00
|
|
|
goto out;
|
2008-11-12 13:26:50 -08:00
|
|
|
|
2008-10-18 20:27:21 -07:00
|
|
|
spin_lock_irq(&freezer->lock);
|
2012-10-16 15:03:14 -07:00
|
|
|
/*
|
|
|
|
* @task might have been just migrated into a FROZEN cgroup. Test
|
|
|
|
* equality with THAWED. Read the comment in freezer_attach().
|
|
|
|
*/
|
|
|
|
if (freezer->state != CGROUP_THAWED)
|
2011-11-21 12:32:26 -08:00
|
|
|
freeze_task(task);
|
2008-10-18 20:27:21 -07:00
|
|
|
spin_unlock_irq(&freezer->lock);
|
2012-10-16 15:03:14 -07:00
|
|
|
out:
|
|
|
|
rcu_read_unlock();
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2012-10-16 15:03:14 -07:00
|
|
|
* We change from FREEZING to FROZEN lazily if the cgroup was only
|
|
|
|
* partially frozen when we exitted write. Caller must hold freezer->lock.
|
|
|
|
*
|
|
|
|
* Task states and freezer state might disagree while tasks are being
|
|
|
|
* migrated into @cgroup, so we can't verify task states against @freezer
|
|
|
|
* state here. See freezer_attach() for details.
|
2008-10-18 20:27:21 -07:00
|
|
|
*/
|
2012-10-16 15:03:14 -07:00
|
|
|
static void update_if_frozen(struct cgroup *cgroup, struct freezer *freezer)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
|
|
|
struct cgroup_iter it;
|
|
|
|
struct task_struct *task;
|
2012-10-16 15:03:14 -07:00
|
|
|
|
|
|
|
if (freezer->state != CGROUP_FREEZING)
|
|
|
|
return;
|
2008-10-18 20:27:21 -07:00
|
|
|
|
|
|
|
cgroup_iter_start(cgroup, &it);
|
2012-10-16 15:03:14 -07:00
|
|
|
|
2008-10-18 20:27:21 -07:00
|
|
|
while ((task = cgroup_iter_next(cgroup, &it))) {
|
2012-10-16 15:03:14 -07:00
|
|
|
if (freezing(task)) {
|
|
|
|
/*
|
|
|
|
* freezer_should_skip() indicates that the task
|
|
|
|
* should be skipped when determining freezing
|
|
|
|
* completion. Consider it frozen in addition to
|
|
|
|
* the usual frozen condition.
|
|
|
|
*/
|
2012-10-16 15:03:14 -07:00
|
|
|
if (!frozen(task) && !task_is_stopped_or_traced(task) &&
|
|
|
|
!freezer_should_skip(task))
|
|
|
|
goto notyet;
|
2012-10-16 15:03:14 -07:00
|
|
|
}
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
|
|
|
|
2012-10-16 15:03:14 -07:00
|
|
|
freezer->state = CGROUP_FROZEN;
|
|
|
|
notyet:
|
2008-10-18 20:27:21 -07:00
|
|
|
cgroup_iter_end(cgroup, &it);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int freezer_read(struct cgroup *cgroup, struct cftype *cft,
|
|
|
|
struct seq_file *m)
|
|
|
|
{
|
|
|
|
struct freezer *freezer;
|
|
|
|
enum freezer_state state;
|
|
|
|
|
|
|
|
if (!cgroup_lock_live_group(cgroup))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
freezer = cgroup_freezer(cgroup);
|
|
|
|
spin_lock_irq(&freezer->lock);
|
2012-10-16 15:03:14 -07:00
|
|
|
update_if_frozen(cgroup, freezer);
|
2008-10-18 20:27:21 -07:00
|
|
|
state = freezer->state;
|
|
|
|
spin_unlock_irq(&freezer->lock);
|
|
|
|
cgroup_unlock();
|
|
|
|
|
|
|
|
seq_puts(m, freezer_state_strs[state]);
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-10-16 15:03:14 -07:00
|
|
|
static void freeze_cgroup(struct cgroup *cgroup, struct freezer *freezer)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
|
|
|
struct cgroup_iter it;
|
|
|
|
struct task_struct *task;
|
|
|
|
|
|
|
|
cgroup_iter_start(cgroup, &it);
|
2012-10-16 15:03:14 -07:00
|
|
|
while ((task = cgroup_iter_next(cgroup, &it)))
|
|
|
|
freeze_task(task);
|
2008-10-18 20:27:21 -07:00
|
|
|
cgroup_iter_end(cgroup, &it);
|
|
|
|
}
|
|
|
|
|
2008-10-29 14:00:53 -07:00
|
|
|
static void unfreeze_cgroup(struct cgroup *cgroup, struct freezer *freezer)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
|
|
|
struct cgroup_iter it;
|
|
|
|
struct task_struct *task;
|
|
|
|
|
|
|
|
cgroup_iter_start(cgroup, &it);
|
2011-11-21 12:32:23 -08:00
|
|
|
while ((task = cgroup_iter_next(cgroup, &it)))
|
|
|
|
__thaw_task(task);
|
2008-10-18 20:27:21 -07:00
|
|
|
cgroup_iter_end(cgroup, &it);
|
|
|
|
}
|
|
|
|
|
2012-10-16 15:03:14 -07:00
|
|
|
static void freezer_change_state(struct cgroup *cgroup,
|
|
|
|
enum freezer_state goal_state)
|
2008-10-18 20:27:21 -07:00
|
|
|
{
|
2012-10-16 15:03:14 -07:00
|
|
|
struct freezer *freezer = cgroup_freezer(cgroup);
|
2008-10-29 14:00:54 -07:00
|
|
|
|
2008-10-18 20:27:21 -07:00
|
|
|
spin_lock_irq(&freezer->lock);
|
2008-10-29 14:00:54 -07:00
|
|
|
|
|
|
|
switch (goal_state) {
|
2008-10-18 20:27:23 -07:00
|
|
|
case CGROUP_THAWED:
|
2011-11-21 12:32:25 -08:00
|
|
|
if (freezer->state != CGROUP_THAWED)
|
|
|
|
atomic_dec(&system_freezing_cnt);
|
2011-11-21 12:32:25 -08:00
|
|
|
freezer->state = CGROUP_THAWED;
|
2008-10-29 14:00:54 -07:00
|
|
|
unfreeze_cgroup(cgroup, freezer);
|
2008-10-18 20:27:21 -07:00
|
|
|
break;
|
2008-10-18 20:27:23 -07:00
|
|
|
case CGROUP_FROZEN:
|
2011-11-21 12:32:25 -08:00
|
|
|
if (freezer->state == CGROUP_THAWED)
|
|
|
|
atomic_inc(&system_freezing_cnt);
|
2011-11-21 12:32:25 -08:00
|
|
|
freezer->state = CGROUP_FREEZING;
|
2012-10-16 15:03:14 -07:00
|
|
|
freeze_cgroup(cgroup, freezer);
|
2008-10-18 20:27:21 -07:00
|
|
|
break;
|
|
|
|
default:
|
2008-10-29 14:00:54 -07:00
|
|
|
BUG();
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
2011-11-21 12:32:25 -08:00
|
|
|
|
2008-10-18 20:27:21 -07:00
|
|
|
spin_unlock_irq(&freezer->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int freezer_write(struct cgroup *cgroup,
|
|
|
|
struct cftype *cft,
|
|
|
|
const char *buffer)
|
|
|
|
{
|
|
|
|
enum freezer_state goal_state;
|
|
|
|
|
2008-10-18 20:27:23 -07:00
|
|
|
if (strcmp(buffer, freezer_state_strs[CGROUP_THAWED]) == 0)
|
|
|
|
goal_state = CGROUP_THAWED;
|
|
|
|
else if (strcmp(buffer, freezer_state_strs[CGROUP_FROZEN]) == 0)
|
|
|
|
goal_state = CGROUP_FROZEN;
|
2008-10-18 20:27:21 -07:00
|
|
|
else
|
2008-11-12 13:26:50 -08:00
|
|
|
return -EINVAL;
|
2008-10-18 20:27:21 -07:00
|
|
|
|
|
|
|
if (!cgroup_lock_live_group(cgroup))
|
|
|
|
return -ENODEV;
|
2012-10-16 15:03:14 -07:00
|
|
|
freezer_change_state(cgroup, goal_state);
|
2008-10-18 20:27:21 -07:00
|
|
|
cgroup_unlock();
|
2012-10-16 15:03:14 -07:00
|
|
|
return 0;
|
2008-10-18 20:27:21 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct cftype files[] = {
|
|
|
|
{
|
|
|
|
.name = "state",
|
2012-04-01 12:09:55 -07:00
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
2008-10-18 20:27:21 -07:00
|
|
|
.read_seq_string = freezer_read,
|
|
|
|
.write_string = freezer_write,
|
|
|
|
},
|
2012-04-01 12:09:55 -07:00
|
|
|
{ } /* terminate */
|
2008-10-18 20:27:21 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
struct cgroup_subsys freezer_subsys = {
|
|
|
|
.name = "freezer",
|
|
|
|
.create = freezer_create,
|
|
|
|
.destroy = freezer_destroy,
|
|
|
|
.subsys_id = freezer_subsys_id,
|
2012-10-16 15:03:14 -07:00
|
|
|
.attach = freezer_attach,
|
2008-10-18 20:27:21 -07:00
|
|
|
.fork = freezer_fork,
|
2012-04-01 12:09:55 -07:00
|
|
|
.base_cftypes = files,
|
2012-09-13 12:20:58 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* freezer subsys doesn't handle hierarchy at all. Frozen state
|
|
|
|
* should be inherited through the hierarchy - if a parent is
|
|
|
|
* frozen, all its children should be frozen. Fix it and remove
|
|
|
|
* the following.
|
|
|
|
*/
|
|
|
|
.broken_hierarchy = true,
|
2008-10-18 20:27:21 -07:00
|
|
|
};
|