linux-next/drivers/mtd/nand/fsl_ifc_nand.c

1091 lines
29 KiB
C
Raw Normal View History

/*
* Freescale Integrated Flash Controller NAND driver
*
* Copyright 2011-2012 Freescale Semiconductor, Inc
*
* Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/fsl_ifc.h>
#define ERR_BYTE 0xFF /* Value returned for read
bytes when read failed */
#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait
for IFC NAND Machine */
struct fsl_ifc_ctrl;
/* mtd information per set */
struct fsl_ifc_mtd {
struct mtd_info mtd;
struct nand_chip chip;
struct fsl_ifc_ctrl *ctrl;
struct device *dev;
int bank; /* Chip select bank number */
unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
u8 __iomem *vbase; /* Chip select base virtual address */
};
/* overview of the fsl ifc controller */
struct fsl_ifc_nand_ctrl {
struct nand_hw_control controller;
struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
u8 __iomem *addr; /* Address of assigned IFC buffer */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes;/* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
unsigned int index; /* Pointer to next byte to 'read' */
unsigned int oob; /* Non zero if operating on OOB data */
unsigned int eccread; /* Non zero for a full-page ECC read */
unsigned int counter; /* counter for the initializations */
unsigned int max_bitflips; /* Saved during READ0 cmd */
};
static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
/* 512-byte page with 4-bit ECC, 8-bit */
static struct nand_ecclayout oob_512_8bit_ecc4 = {
.eccbytes = 8,
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {0, 5}, {6, 2} },
};
/* 512-byte page with 4-bit ECC, 16-bit */
static struct nand_ecclayout oob_512_16bit_ecc4 = {
.eccbytes = 8,
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {2, 6}, },
};
/* 2048-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_2048_ecc4 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
},
.oobfree = { {2, 6}, {40, 24} },
};
/* 4096-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_4096_ecc4 = {
.eccbytes = 64,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
},
.oobfree = { {2, 6}, {72, 56} },
};
/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
static struct nand_ecclayout oob_4096_ecc8 = {
.eccbytes = 128,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135,
},
.oobfree = { {2, 6}, {136, 82} },
};
/*
* Generic flash bbt descriptors
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/*
* Set up the IFC hardware block and page address fields, and the ifc nand
* structure addr field to point to the correct IFC buffer in memory
*/
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
int buf_num;
ifc_nand_ctrl->page = page_addr;
/* Program ROW0/COL0 */
out_be32(&ifc->ifc_nand.row0, page_addr);
out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
buf_num = page_addr & priv->bufnum_mask;
ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
ifc_nand_ctrl->index = column;
/* for OOB data point to the second half of the buffer */
if (oob)
ifc_nand_ctrl->index += mtd->writesize;
}
static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
u32 __iomem *mainarea = (u32 *)addr;
u8 __iomem *oob = addr + mtd->writesize;
int i;
for (i = 0; i < mtd->writesize / 4; i++) {
if (__raw_readl(&mainarea[i]) != 0xffffffff)
return 0;
}
for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
int pos = chip->ecc.layout->eccpos[i];
if (__raw_readb(&oob[pos]) != 0xff)
return 0;
}
return 1;
}
/* returns nonzero if entire page is blank */
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
u32 *eccstat, unsigned int bufnum)
{
u32 reg = eccstat[bufnum / 4];
int errors;
errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
return errors;
}
/*
* execute IFC NAND command and wait for it to complete
*/
static void fsl_ifc_run_command(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
u32 eccstat[4];
int i;
/* set the chip select for NAND Transaction */
out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
dev_vdbg(priv->dev,
"%s: fir0=%08x fcr0=%08x\n",
__func__,
in_be32(&ifc->ifc_nand.nand_fir0),
in_be32(&ifc->ifc_nand.nand_fcr0));
ctrl->nand_stat = 0;
/* start read/write seq */
out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
/* wait for command complete flag or timeout */
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
IFC_TIMEOUT_MSECS * HZ/1000);
/* ctrl->nand_stat will be updated from IRQ context */
if (!ctrl->nand_stat)
dev_err(priv->dev, "Controller is not responding\n");
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
dev_err(priv->dev, "NAND Flash Timeout Error\n");
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
dev_err(priv->dev, "NAND Flash Write Protect Error\n");
nctrl->max_bitflips = 0;
if (nctrl->eccread) {
int errors;
int bufnum = nctrl->page & priv->bufnum_mask;
int sector = bufnum * chip->ecc.steps;
int sector_end = sector + chip->ecc.steps - 1;
for (i = sector / 4; i <= sector_end / 4; i++)
eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
for (i = sector; i <= sector_end; i++) {
errors = check_read_ecc(mtd, ctrl, eccstat, i);
if (errors == 15) {
/*
* Uncorrectable error.
* OK only if the whole page is blank.
*
* We disable ECCER reporting due to...
* erratum IFC-A002770 -- so report it now if we
* see an uncorrectable error in ECCSTAT.
*/
if (!is_blank(mtd, bufnum))
ctrl->nand_stat |=
IFC_NAND_EVTER_STAT_ECCER;
break;
}
mtd->ecc_stats.corrected += errors;
nctrl->max_bitflips = max_t(unsigned int,
nctrl->max_bitflips,
errors);
}
nctrl->eccread = 0;
}
}
static void fsl_ifc_do_read(struct nand_chip *chip,
int oob,
struct mtd_info *mtd)
{
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
if (mtd->writesize > 512) {
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
out_be32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
} else {
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
if (oob)
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
else
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
}
}
/* cmdfunc send commands to the IFC NAND Machine */
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page_addr) {
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
/* clear the read buffer */
ifc_nand_ctrl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
ifc_nand_ctrl->index = 0;
switch (command) {
/* READ0 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ0:
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
set_addr(mtd, 0, page_addr, 0);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
ifc_nand_ctrl->index += column;
if (chip->ecc.mode == NAND_ECC_HW)
ifc_nand_ctrl->eccread = 1;
fsl_ifc_do_read(chip, 0, mtd);
fsl_ifc_run_command(mtd);
return;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
set_addr(mtd, column, page_addr, 1);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
fsl_ifc_do_read(chip, 1, mtd);
fsl_ifc_run_command(mtd);
return;
case NAND_CMD_READID:
case NAND_CMD_PARAM: {
int timing = IFC_FIR_OP_RB;
if (command == NAND_CMD_PARAM)
timing = IFC_FIR_OP_RBCD;
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(timing << IFC_NAND_FIR0_OP2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
command << IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.row3, column);
/*
* although currently it's 8 bytes for READID, we always read
* the maximum 256 bytes(for PARAM)
*/
out_be32(&ifc->ifc_nand.nand_fbcr, 256);
ifc_nand_ctrl->read_bytes = 256;
set_addr(mtd, 0, 0, 0);
fsl_ifc_run_command(mtd);
return;
}
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
set_addr(mtd, 0, page_addr, 0);
return;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
ifc_nand_ctrl->read_bytes = 0;
fsl_ifc_run_command(mtd);
return;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN: {
u32 nand_fcr0;
ifc_nand_ctrl->column = column;
ifc_nand_ctrl->oob = 0;
if (mtd->writesize > 512) {
nand_fcr0 =
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
} else {
nand_fcr0 = ((NAND_CMD_PAGEPROG <<
IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_SEQIN <<
IFC_NAND_FCR0_CMD2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1,
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
if (column >= mtd->writesize)
nand_fcr0 |=
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
else
nand_fcr0 |=
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
}
if (column >= mtd->writesize) {
/* OOB area --> READOOB */
column -= mtd->writesize;
ifc_nand_ctrl->oob = 1;
}
out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
return;
}
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG: {
if (ifc_nand_ctrl->oob) {
out_be32(&ifc->ifc_nand.nand_fbcr,
ifc_nand_ctrl->index - ifc_nand_ctrl->column);
} else {
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
}
fsl_ifc_run_command(mtd);
return;
}
case NAND_CMD_STATUS:
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fbcr, 1);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
/*
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
return;
case NAND_CMD_RESET:
out_be32(&ifc->ifc_nand.nand_fir0,
IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
fsl_ifc_run_command(mtd);
return;
default:
dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
__func__, command);
}
}
static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
{
/* The hardware does not seem to support multiple
* chips per bank.
*/
}
/*
* Write buf to the IFC NAND Controller Data Buffer
*/
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
unsigned int bufsize = mtd->writesize + mtd->oobsize;
if (len <= 0) {
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
return;
}
if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
dev_err(priv->dev,
"%s: beyond end of buffer (%d requested, %u available)\n",
__func__, len, bufsize - ifc_nand_ctrl->index);
len = bufsize - ifc_nand_ctrl->index;
}
memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len);
ifc_nand_ctrl->index += len;
}
/*
* Read a byte from either the IFC hardware buffer
* read function for 8-bit buswidth
*/
static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes)
return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]);
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read two bytes from the IFC hardware buffer
* read function for 16-bit buswith
*/
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
uint16_t data;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
data = in_be16((uint16_t *)&ifc_nand_ctrl->
addr[ifc_nand_ctrl->index]);
ifc_nand_ctrl->index += 2;
return (uint8_t) data;
}
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read from the IFC Controller Data Buffer
*/
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
int avail;
if (len < 0) {
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
return;
}
avail = min((unsigned int)len,
ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail);
ifc_nand_ctrl->index += avail;
if (len > avail)
dev_err(priv->dev,
"%s: beyond end of buffer (%d requested, %d available)\n",
__func__, len, avail);
}
/*
* Verify buffer against the IFC Controller Data Buffer
*/
static int fsl_ifc_verify_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
int i;
if (len < 0) {
dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len);
return -EINVAL;
}
if ((unsigned int)len > nctrl->read_bytes - nctrl->index) {
dev_err(priv->dev,
"%s: beyond end of buffer (%d requested, %u available)\n",
__func__, len, nctrl->read_bytes - nctrl->index);
nctrl->index = nctrl->read_bytes;
return -EINVAL;
}
for (i = 0; i < len; i++)
if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i])
break;
nctrl->index += len;
if (i != len)
return -EIO;
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
return -EIO;
return 0;
}
/*
* This function is called after Program and Erase Operations to
* check for success or failure.
*/
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
u32 nand_fsr;
/* Use READ_STATUS command, but wait for the device to be ready */
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fbcr, 1);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
/*
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
return nand_fsr | NAND_STATUS_WP;
}
static int fsl_ifc_read_page(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf, int page)
{
struct fsl_ifc_mtd *priv = chip->priv;
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
fsl_ifc_read_buf(mtd, buf, mtd->writesize);
fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
mtd->ecc_stats.failed++;
return nctrl->max_bitflips;
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static void fsl_ifc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf)
{
fsl_ifc_write_buf(mtd, buf, mtd->writesize);
fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
}
static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
chip->numchips);
dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
chip->chipsize);
dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
chip->pagemask);
dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
chip->chip_delay);
dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
chip->badblockpos);
dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
chip->chip_shift);
dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
chip->page_shift);
dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
chip->phys_erase_shift);
dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__,
chip->ecclayout);
dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
chip->ecc.mode);
dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
chip->ecc.steps);
dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
chip->ecc.bytes);
dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
chip->ecc.total);
dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__,
chip->ecc.layout);
dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
mtd->erasesize);
dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
mtd->writesize);
dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
mtd->oobsize);
return 0;
}
static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
{
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
struct nand_chip *chip = &priv->chip;
struct nand_ecclayout *layout;
u32 csor;
/* Fill in fsl_ifc_mtd structure */
priv->mtd.priv = chip;
priv->mtd.owner = THIS_MODULE;
/* fill in nand_chip structure */
/* set up function call table */
if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
chip->read_byte = fsl_ifc_read_byte16;
else
chip->read_byte = fsl_ifc_read_byte;
chip->write_buf = fsl_ifc_write_buf;
chip->read_buf = fsl_ifc_read_buf;
chip->verify_buf = fsl_ifc_verify_buf;
chip->select_chip = fsl_ifc_select_chip;
chip->cmdfunc = fsl_ifc_cmdfunc;
chip->waitfunc = fsl_ifc_wait;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
out_be32(&ifc->ifc_nand.ncfgr, 0x0);
/* set up nand options */
chip->options = NAND_NO_READRDY;
chip->bbt_options = NAND_BBT_USE_FLASH;
if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
chip->read_byte = fsl_ifc_read_byte16;
chip->options |= NAND_BUSWIDTH_16;
} else {
chip->read_byte = fsl_ifc_read_byte;
}
chip->controller = &ifc_nand_ctrl->controller;
chip->priv = priv;
chip->ecc.read_page = fsl_ifc_read_page;
chip->ecc.write_page = fsl_ifc_write_page;
csor = in_be32(&ifc->csor_cs[priv->bank].csor);
/* Hardware generates ECC per 512 Bytes */
chip->ecc.size = 512;
chip->ecc.bytes = 8;
chip->ecc.strength = 4;
switch (csor & CSOR_NAND_PGS_MASK) {
case CSOR_NAND_PGS_512:
if (chip->options & NAND_BUSWIDTH_16) {
layout = &oob_512_16bit_ecc4;
} else {
layout = &oob_512_8bit_ecc4;
/* Avoid conflict with bad block marker */
bbt_main_descr.offs = 0;
bbt_mirror_descr.offs = 0;
}
priv->bufnum_mask = 15;
break;
case CSOR_NAND_PGS_2K:
layout = &oob_2048_ecc4;
priv->bufnum_mask = 3;
break;
case CSOR_NAND_PGS_4K:
if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
CSOR_NAND_ECC_MODE_4) {
layout = &oob_4096_ecc4;
} else {
layout = &oob_4096_ecc8;
chip->ecc.bytes = 16;
}
priv->bufnum_mask = 1;
break;
default:
dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
return -ENODEV;
}
/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
if (csor & CSOR_NAND_ECC_DEC_EN) {
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.layout = layout;
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
return 0;
}
static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
{
nand_release(&priv->mtd);
kfree(priv->mtd.name);
if (priv->vbase)
iounmap(priv->vbase);
ifc_nand_ctrl->chips[priv->bank] = NULL;
dev_set_drvdata(priv->dev, NULL);
kfree(priv);
return 0;
}
static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank,
phys_addr_t addr)
{
u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr);
if (!(cspr & CSPR_V))
return 0;
if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
return 0;
return (cspr & CSPR_BA) == convert_ifc_address(addr);
}
static DEFINE_MUTEX(fsl_ifc_nand_mutex);
static int __devinit fsl_ifc_nand_probe(struct platform_device *dev)
{
struct fsl_ifc_regs __iomem *ifc;
struct fsl_ifc_mtd *priv;
struct resource res;
static const char *part_probe_types[]
= { "cmdlinepart", "RedBoot", "ofpart", NULL };
int ret;
int bank;
struct device_node *node = dev->dev.of_node;
struct mtd_part_parser_data ppdata;
ppdata.of_node = dev->dev.of_node;
if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
return -ENODEV;
ifc = fsl_ifc_ctrl_dev->regs;
/* get, allocate and map the memory resource */
ret = of_address_to_resource(node, 0, &res);
if (ret) {
dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
return ret;
}
/* find which chip select it is connected to */
for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) {
if (match_bank(ifc, bank, res.start))
break;
}
if (bank >= FSL_IFC_BANK_COUNT) {
dev_err(&dev->dev, "%s: address did not match any chip selects\n",
__func__);
return -ENODEV;
}
priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_lock(&fsl_ifc_nand_mutex);
if (!fsl_ifc_ctrl_dev->nand) {
ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
if (!ifc_nand_ctrl) {
dev_err(&dev->dev, "failed to allocate memory\n");
mutex_unlock(&fsl_ifc_nand_mutex);
return -ENOMEM;
}
ifc_nand_ctrl->read_bytes = 0;
ifc_nand_ctrl->index = 0;
ifc_nand_ctrl->addr = NULL;
fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
spin_lock_init(&ifc_nand_ctrl->controller.lock);
init_waitqueue_head(&ifc_nand_ctrl->controller.wq);
} else {
ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
}
mutex_unlock(&fsl_ifc_nand_mutex);
ifc_nand_ctrl->chips[bank] = priv;
priv->bank = bank;
priv->ctrl = fsl_ifc_ctrl_dev;
priv->dev = &dev->dev;
priv->vbase = ioremap(res.start, resource_size(&res));
if (!priv->vbase) {
dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
ret = -ENOMEM;
goto err;
}
dev_set_drvdata(priv->dev, priv);
out_be32(&ifc->ifc_nand.nand_evter_en,
IFC_NAND_EVTER_EN_OPC_EN |
IFC_NAND_EVTER_EN_FTOER_EN |
IFC_NAND_EVTER_EN_WPER_EN);
/* enable NAND Machine Interrupts */
out_be32(&ifc->ifc_nand.nand_evter_intr_en,
IFC_NAND_EVTER_INTR_OPCIR_EN |
IFC_NAND_EVTER_INTR_FTOERIR_EN |
IFC_NAND_EVTER_INTR_WPERIR_EN);
priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
if (!priv->mtd.name) {
ret = -ENOMEM;
goto err;
}
ret = fsl_ifc_chip_init(priv);
if (ret)
goto err;
ret = nand_scan_ident(&priv->mtd, 1, NULL);
if (ret)
goto err;
ret = fsl_ifc_chip_init_tail(&priv->mtd);
if (ret)
goto err;
ret = nand_scan_tail(&priv->mtd);
if (ret)
goto err;
/* First look for RedBoot table or partitions on the command
* line, these take precedence over device tree information */
mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
NULL, 0);
dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
(unsigned long long)res.start, priv->bank);
return 0;
err:
fsl_ifc_chip_remove(priv);
return ret;
}
static int fsl_ifc_nand_remove(struct platform_device *dev)
{
struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
fsl_ifc_chip_remove(priv);
mutex_lock(&fsl_ifc_nand_mutex);
ifc_nand_ctrl->counter--;
if (!ifc_nand_ctrl->counter) {
fsl_ifc_ctrl_dev->nand = NULL;
kfree(ifc_nand_ctrl);
}
mutex_unlock(&fsl_ifc_nand_mutex);
return 0;
}
static const struct of_device_id fsl_ifc_nand_match[] = {
{
.compatible = "fsl,ifc-nand",
},
{}
};
static struct platform_driver fsl_ifc_nand_driver = {
.driver = {
.name = "fsl,ifc-nand",
.owner = THIS_MODULE,
.of_match_table = fsl_ifc_nand_match,
},
.probe = fsl_ifc_nand_probe,
.remove = fsl_ifc_nand_remove,
};
static int __init fsl_ifc_nand_init(void)
{
int ret;
ret = platform_driver_register(&fsl_ifc_nand_driver);
if (ret)
printk(KERN_ERR "fsl-ifc: Failed to register platform"
"driver\n");
return ret;
}
static void __exit fsl_ifc_nand_exit(void)
{
platform_driver_unregister(&fsl_ifc_nand_driver);
}
module_init(fsl_ifc_nand_init);
module_exit(fsl_ifc_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");