linux-next/drivers/counter/microchip-tcb-capture.c

393 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Microchip
*
* Author: Kamel Bouhara <kamel.bouhara@bootlin.com>
*/
#include <linux/clk.h>
#include <linux/counter.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <soc/at91/atmel_tcb.h>
#define ATMEL_TC_CMR_MASK (ATMEL_TC_LDRA_RISING | ATMEL_TC_LDRB_FALLING | \
ATMEL_TC_ETRGEDG_RISING | ATMEL_TC_LDBDIS | \
ATMEL_TC_LDBSTOP)
#define ATMEL_TC_QDEN BIT(8)
#define ATMEL_TC_POSEN BIT(9)
struct mchp_tc_data {
const struct atmel_tcb_config *tc_cfg;
struct counter_device counter;
struct regmap *regmap;
int qdec_mode;
int num_channels;
int channel[2];
bool trig_inverted;
};
static const enum counter_function mchp_tc_count_functions[] = {
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static const enum counter_synapse_action mchp_tc_synapse_actions[] = {
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
};
static struct counter_signal mchp_tc_count_signals[] = {
{
.id = 0,
.name = "Channel A",
},
{
.id = 1,
.name = "Channel B",
}
};
static struct counter_synapse mchp_tc_count_synapses[] = {
{
.actions_list = mchp_tc_synapse_actions,
.num_actions = ARRAY_SIZE(mchp_tc_synapse_actions),
.signal = &mchp_tc_count_signals[0]
},
{
.actions_list = mchp_tc_synapse_actions,
.num_actions = ARRAY_SIZE(mchp_tc_synapse_actions),
.signal = &mchp_tc_count_signals[1]
}
};
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
static int mchp_tc_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct mchp_tc_data *const priv = counter_priv(counter);
if (priv->qdec_mode)
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*function = COUNTER_FUNCTION_QUADRATURE_X4;
else
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
static int mchp_tc_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct mchp_tc_data *const priv = counter_priv(counter);
u32 bmr, cmr;
regmap_read(priv->regmap, ATMEL_TC_BMR, &bmr);
regmap_read(priv->regmap, ATMEL_TC_REG(priv->channel[0], CMR), &cmr);
/* Set capture mode */
cmr &= ~ATMEL_TC_WAVE;
switch (function) {
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_FUNCTION_INCREASE:
priv->qdec_mode = 0;
/* Set highest rate based on whether soc has gclk or not */
bmr &= ~(ATMEL_TC_QDEN | ATMEL_TC_POSEN);
if (priv->tc_cfg->has_gclk)
cmr |= ATMEL_TC_TIMER_CLOCK2;
else
cmr |= ATMEL_TC_TIMER_CLOCK1;
/* Setup the period capture mode */
cmr |= ATMEL_TC_CMR_MASK;
cmr &= ~(ATMEL_TC_ABETRG | ATMEL_TC_XC0);
break;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_FUNCTION_QUADRATURE_X4:
if (!priv->tc_cfg->has_qdec)
return -EINVAL;
/* In QDEC mode settings both channels 0 and 1 are required */
if (priv->num_channels < 2 || priv->channel[0] != 0 ||
priv->channel[1] != 1) {
pr_err("Invalid channels number or id for quadrature mode\n");
return -EINVAL;
}
priv->qdec_mode = 1;
bmr |= ATMEL_TC_QDEN | ATMEL_TC_POSEN;
cmr |= ATMEL_TC_ETRGEDG_RISING | ATMEL_TC_ABETRG | ATMEL_TC_XC0;
break;
default:
/* should never reach this path */
return -EINVAL;
}
regmap_write(priv->regmap, ATMEL_TC_BMR, bmr);
regmap_write(priv->regmap, ATMEL_TC_REG(priv->channel[0], CMR), cmr);
/* Enable clock and trigger counter */
regmap_write(priv->regmap, ATMEL_TC_REG(priv->channel[0], CCR),
ATMEL_TC_CLKEN | ATMEL_TC_SWTRG);
if (priv->qdec_mode) {
regmap_write(priv->regmap,
ATMEL_TC_REG(priv->channel[1], CMR), cmr);
regmap_write(priv->regmap,
ATMEL_TC_REG(priv->channel[1], CCR),
ATMEL_TC_CLKEN | ATMEL_TC_SWTRG);
}
return 0;
}
static int mchp_tc_count_signal_read(struct counter_device *counter,
struct counter_signal *signal,
enum counter_signal_level *lvl)
{
struct mchp_tc_data *const priv = counter_priv(counter);
bool sigstatus;
u32 sr;
regmap_read(priv->regmap, ATMEL_TC_REG(priv->channel[0], SR), &sr);
if (priv->trig_inverted)
sigstatus = (sr & ATMEL_TC_MTIOB);
else
sigstatus = (sr & ATMEL_TC_MTIOA);
*lvl = sigstatus ? COUNTER_SIGNAL_LEVEL_HIGH : COUNTER_SIGNAL_LEVEL_LOW;
return 0;
}
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
static int mchp_tc_count_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct mchp_tc_data *const priv = counter_priv(counter);
u32 cmr;
regmap_read(priv->regmap, ATMEL_TC_REG(priv->channel[0], CMR), &cmr);
switch (cmr & ATMEL_TC_ETRGEDG) {
default:
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*action = COUNTER_SYNAPSE_ACTION_NONE;
break;
case ATMEL_TC_ETRGEDG_RISING:
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
break;
case ATMEL_TC_ETRGEDG_FALLING:
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
break;
case ATMEL_TC_ETRGEDG_BOTH:
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
break;
}
return 0;
}
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
static int mchp_tc_count_action_write(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action)
{
struct mchp_tc_data *const priv = counter_priv(counter);
u32 edge = ATMEL_TC_ETRGEDG_NONE;
/* QDEC mode is rising edge only */
if (priv->qdec_mode)
return -EINVAL;
switch (action) {
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_SYNAPSE_ACTION_NONE:
edge = ATMEL_TC_ETRGEDG_NONE;
break;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_SYNAPSE_ACTION_RISING_EDGE:
edge = ATMEL_TC_ETRGEDG_RISING;
break;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_SYNAPSE_ACTION_FALLING_EDGE:
edge = ATMEL_TC_ETRGEDG_FALLING;
break;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
case COUNTER_SYNAPSE_ACTION_BOTH_EDGES:
edge = ATMEL_TC_ETRGEDG_BOTH;
break;
default:
/* should never reach this path */
return -EINVAL;
}
return regmap_write_bits(priv->regmap,
ATMEL_TC_REG(priv->channel[0], CMR),
ATMEL_TC_ETRGEDG, edge);
}
static int mchp_tc_count_read(struct counter_device *counter,
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
struct counter_count *count, u64 *val)
{
struct mchp_tc_data *const priv = counter_priv(counter);
u32 cnt;
regmap_read(priv->regmap, ATMEL_TC_REG(priv->channel[0], CV), &cnt);
*val = cnt;
return 0;
}
static struct counter_count mchp_tc_counts[] = {
{
.id = 0,
.name = "Timer Counter",
.functions_list = mchp_tc_count_functions,
.num_functions = ARRAY_SIZE(mchp_tc_count_functions),
.synapses = mchp_tc_count_synapses,
.num_synapses = ARRAY_SIZE(mchp_tc_count_synapses),
},
};
static const struct counter_ops mchp_tc_ops = {
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 03:47:47 +00:00
.signal_read = mchp_tc_count_signal_read,
.count_read = mchp_tc_count_read,
.function_read = mchp_tc_count_function_read,
.function_write = mchp_tc_count_function_write,
.action_read = mchp_tc_count_action_read,
.action_write = mchp_tc_count_action_write
};
static const struct atmel_tcb_config tcb_rm9200_config = {
.counter_width = 16,
};
static const struct atmel_tcb_config tcb_sam9x5_config = {
.counter_width = 32,
};
static const struct atmel_tcb_config tcb_sama5d2_config = {
.counter_width = 32,
.has_gclk = true,
.has_qdec = true,
};
static const struct atmel_tcb_config tcb_sama5d3_config = {
.counter_width = 32,
.has_qdec = true,
};
static const struct of_device_id atmel_tc_of_match[] = {
{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
{ .compatible = "atmel,sama5d3-tcb", .data = &tcb_sama5d3_config, },
{ /* sentinel */ }
};
static void mchp_tc_clk_remove(void *ptr)
{
clk_disable_unprepare((struct clk *)ptr);
}
static int mchp_tc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct atmel_tcb_config *tcb_config;
const struct of_device_id *match;
struct mchp_tc_data *priv;
char clk_name[7];
struct regmap *regmap;
struct clk *clk[3];
int channel;
int ret, i;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
match = of_match_node(atmel_tc_of_match, np->parent);
tcb_config = match->data;
if (!tcb_config) {
dev_err(&pdev->dev, "No matching parent node found\n");
return -ENODEV;
}
regmap = syscon_node_to_regmap(np->parent);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
/* max. channels number is 2 when in QDEC mode */
priv->num_channels = of_property_count_u32_elems(np, "reg");
if (priv->num_channels < 0) {
dev_err(&pdev->dev, "Invalid or missing channel\n");
return -EINVAL;
}
/* Register channels and initialize clocks */
for (i = 0; i < priv->num_channels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &channel);
if (ret < 0 || channel > 2)
return -ENODEV;
priv->channel[i] = channel;
snprintf(clk_name, sizeof(clk_name), "t%d_clk", channel);
clk[i] = of_clk_get_by_name(np->parent, clk_name);
if (IS_ERR(clk[i])) {
/* Fallback to t0_clk */
clk[i] = of_clk_get_by_name(np->parent, "t0_clk");
if (IS_ERR(clk[i]))
return PTR_ERR(clk[i]);
}
ret = clk_prepare_enable(clk[i]);
if (ret)
return ret;
ret = devm_add_action_or_reset(&pdev->dev,
mchp_tc_clk_remove,
clk[i]);
if (ret)
return ret;
dev_dbg(&pdev->dev,
"Initialized capture mode on channel %d\n",
channel);
}
priv->tc_cfg = tcb_config;
priv->regmap = regmap;
priv->counter.name = dev_name(&pdev->dev);
priv->counter.parent = &pdev->dev;
priv->counter.ops = &mchp_tc_ops;
priv->counter.num_counts = ARRAY_SIZE(mchp_tc_counts);
priv->counter.counts = mchp_tc_counts;
priv->counter.num_signals = ARRAY_SIZE(mchp_tc_count_signals);
priv->counter.signals = mchp_tc_count_signals;
priv->counter.priv = priv;
return devm_counter_register(&pdev->dev, &priv->counter);
}
static const struct of_device_id mchp_tc_dt_ids[] = {
{ .compatible = "microchip,tcb-capture", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mchp_tc_dt_ids);
static struct platform_driver mchp_tc_driver = {
.probe = mchp_tc_probe,
.driver = {
.name = "microchip-tcb-capture",
.of_match_table = mchp_tc_dt_ids,
},
};
module_platform_driver(mchp_tc_driver);
MODULE_AUTHOR("Kamel Bouhara <kamel.bouhara@bootlin.com>");
MODULE_DESCRIPTION("Microchip TCB Capture driver");
MODULE_LICENSE("GPL v2");