mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 22:05:08 +00:00
273 lines
6.2 KiB
C
273 lines
6.2 KiB
C
|
/*
|
||
|
* Host AP crypt: host-based WEP encryption implementation for Host AP driver
|
||
|
*
|
||
|
* Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation. See README and COPYING for
|
||
|
* more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/version.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <asm/string.h>
|
||
|
|
||
|
#include <net/ieee80211.h>
|
||
|
|
||
|
|
||
|
#include <linux/crypto.h>
|
||
|
#include <asm/scatterlist.h>
|
||
|
#include <linux/crc32.h>
|
||
|
|
||
|
MODULE_AUTHOR("Jouni Malinen");
|
||
|
MODULE_DESCRIPTION("Host AP crypt: WEP");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
|
||
|
struct prism2_wep_data {
|
||
|
u32 iv;
|
||
|
#define WEP_KEY_LEN 13
|
||
|
u8 key[WEP_KEY_LEN + 1];
|
||
|
u8 key_len;
|
||
|
u8 key_idx;
|
||
|
struct crypto_tfm *tfm;
|
||
|
};
|
||
|
|
||
|
|
||
|
static void * prism2_wep_init(int keyidx)
|
||
|
{
|
||
|
struct prism2_wep_data *priv;
|
||
|
|
||
|
priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
|
||
|
if (priv == NULL)
|
||
|
goto fail;
|
||
|
memset(priv, 0, sizeof(*priv));
|
||
|
priv->key_idx = keyidx;
|
||
|
|
||
|
priv->tfm = crypto_alloc_tfm("arc4", 0);
|
||
|
if (priv->tfm == NULL) {
|
||
|
printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
|
||
|
"crypto API arc4\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* start WEP IV from a random value */
|
||
|
get_random_bytes(&priv->iv, 4);
|
||
|
|
||
|
return priv;
|
||
|
|
||
|
fail:
|
||
|
if (priv) {
|
||
|
if (priv->tfm)
|
||
|
crypto_free_tfm(priv->tfm);
|
||
|
kfree(priv);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void prism2_wep_deinit(void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *_priv = priv;
|
||
|
if (_priv && _priv->tfm)
|
||
|
crypto_free_tfm(_priv->tfm);
|
||
|
kfree(priv);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP encryption on given skb that has at least 4 bytes of headroom
|
||
|
* for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
|
||
|
* so the payload length increases with 8 bytes.
|
||
|
*
|
||
|
* WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
|
||
|
*/
|
||
|
static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *wep = priv;
|
||
|
u32 crc, klen, len;
|
||
|
u8 key[WEP_KEY_LEN + 3];
|
||
|
u8 *pos, *icv;
|
||
|
struct scatterlist sg;
|
||
|
|
||
|
if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 ||
|
||
|
skb->len < hdr_len)
|
||
|
return -1;
|
||
|
|
||
|
len = skb->len - hdr_len;
|
||
|
pos = skb_push(skb, 4);
|
||
|
memmove(pos, pos + 4, hdr_len);
|
||
|
pos += hdr_len;
|
||
|
|
||
|
klen = 3 + wep->key_len;
|
||
|
|
||
|
wep->iv++;
|
||
|
|
||
|
/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
|
||
|
* scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
|
||
|
* can be used to speedup attacks, so avoid using them. */
|
||
|
if ((wep->iv & 0xff00) == 0xff00) {
|
||
|
u8 B = (wep->iv >> 16) & 0xff;
|
||
|
if (B >= 3 && B < klen)
|
||
|
wep->iv += 0x0100;
|
||
|
}
|
||
|
|
||
|
/* Prepend 24-bit IV to RC4 key and TX frame */
|
||
|
*pos++ = key[0] = (wep->iv >> 16) & 0xff;
|
||
|
*pos++ = key[1] = (wep->iv >> 8) & 0xff;
|
||
|
*pos++ = key[2] = wep->iv & 0xff;
|
||
|
*pos++ = wep->key_idx << 6;
|
||
|
|
||
|
/* Copy rest of the WEP key (the secret part) */
|
||
|
memcpy(key + 3, wep->key, wep->key_len);
|
||
|
|
||
|
/* Append little-endian CRC32 and encrypt it to produce ICV */
|
||
|
crc = ~crc32_le(~0, pos, len);
|
||
|
icv = skb_put(skb, 4);
|
||
|
icv[0] = crc;
|
||
|
icv[1] = crc >> 8;
|
||
|
icv[2] = crc >> 16;
|
||
|
icv[3] = crc >> 24;
|
||
|
|
||
|
crypto_cipher_setkey(wep->tfm, key, klen);
|
||
|
sg.page = virt_to_page(pos);
|
||
|
sg.offset = offset_in_page(pos);
|
||
|
sg.length = len + 4;
|
||
|
crypto_cipher_encrypt(wep->tfm, &sg, &sg, len + 4);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
|
||
|
* the frame: IV (4 bytes), encrypted payload (including SNAP header),
|
||
|
* ICV (4 bytes). len includes both IV and ICV.
|
||
|
*
|
||
|
* Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
|
||
|
* failure. If frame is OK, IV and ICV will be removed.
|
||
|
*/
|
||
|
static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *wep = priv;
|
||
|
u32 crc, klen, plen;
|
||
|
u8 key[WEP_KEY_LEN + 3];
|
||
|
u8 keyidx, *pos, icv[4];
|
||
|
struct scatterlist sg;
|
||
|
|
||
|
if (skb->len < hdr_len + 8)
|
||
|
return -1;
|
||
|
|
||
|
pos = skb->data + hdr_len;
|
||
|
key[0] = *pos++;
|
||
|
key[1] = *pos++;
|
||
|
key[2] = *pos++;
|
||
|
keyidx = *pos++ >> 6;
|
||
|
if (keyidx != wep->key_idx)
|
||
|
return -1;
|
||
|
|
||
|
klen = 3 + wep->key_len;
|
||
|
|
||
|
/* Copy rest of the WEP key (the secret part) */
|
||
|
memcpy(key + 3, wep->key, wep->key_len);
|
||
|
|
||
|
/* Apply RC4 to data and compute CRC32 over decrypted data */
|
||
|
plen = skb->len - hdr_len - 8;
|
||
|
|
||
|
crypto_cipher_setkey(wep->tfm, key, klen);
|
||
|
sg.page = virt_to_page(pos);
|
||
|
sg.offset = offset_in_page(pos);
|
||
|
sg.length = plen + 4;
|
||
|
crypto_cipher_decrypt(wep->tfm, &sg, &sg, plen + 4);
|
||
|
|
||
|
crc = ~crc32_le(~0, pos, plen);
|
||
|
icv[0] = crc;
|
||
|
icv[1] = crc >> 8;
|
||
|
icv[2] = crc >> 16;
|
||
|
icv[3] = crc >> 24;
|
||
|
if (memcmp(icv, pos + plen, 4) != 0) {
|
||
|
/* ICV mismatch - drop frame */
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
/* Remove IV and ICV */
|
||
|
memmove(skb->data + 4, skb->data, hdr_len);
|
||
|
skb_pull(skb, 4);
|
||
|
skb_trim(skb, skb->len - 4);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int prism2_wep_set_key(void *key, int len, u8 *seq, void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *wep = priv;
|
||
|
|
||
|
if (len < 0 || len > WEP_KEY_LEN)
|
||
|
return -1;
|
||
|
|
||
|
memcpy(wep->key, key, len);
|
||
|
wep->key_len = len;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int prism2_wep_get_key(void *key, int len, u8 *seq, void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *wep = priv;
|
||
|
|
||
|
if (len < wep->key_len)
|
||
|
return -1;
|
||
|
|
||
|
memcpy(key, wep->key, wep->key_len);
|
||
|
|
||
|
return wep->key_len;
|
||
|
}
|
||
|
|
||
|
|
||
|
static char * prism2_wep_print_stats(char *p, void *priv)
|
||
|
{
|
||
|
struct prism2_wep_data *wep = priv;
|
||
|
p += sprintf(p, "key[%d] alg=WEP len=%d\n",
|
||
|
wep->key_idx, wep->key_len);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
|
||
|
.name = "WEP",
|
||
|
.init = prism2_wep_init,
|
||
|
.deinit = prism2_wep_deinit,
|
||
|
.encrypt_mpdu = prism2_wep_encrypt,
|
||
|
.decrypt_mpdu = prism2_wep_decrypt,
|
||
|
.encrypt_msdu = NULL,
|
||
|
.decrypt_msdu = NULL,
|
||
|
.set_key = prism2_wep_set_key,
|
||
|
.get_key = prism2_wep_get_key,
|
||
|
.print_stats = prism2_wep_print_stats,
|
||
|
.extra_prefix_len = 4, /* IV */
|
||
|
.extra_postfix_len = 4, /* ICV */
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
|
||
|
static int __init ieee80211_crypto_wep_init(void)
|
||
|
{
|
||
|
return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void __exit ieee80211_crypto_wep_exit(void)
|
||
|
{
|
||
|
ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
|
||
|
}
|
||
|
|
||
|
|
||
|
module_init(ieee80211_crypto_wep_init);
|
||
|
module_exit(ieee80211_crypto_wep_exit);
|