2008-06-11 16:50:36 -04:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public
|
|
|
|
* License v2 as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public
|
|
|
|
* License along with this program; if not, write to the
|
|
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
* Boston, MA 021110-1307, USA.
|
|
|
|
*/
|
|
|
|
|
2008-06-11 17:09:48 -04:00
|
|
|
#include <linux/version.h>
|
2008-06-11 16:50:36 -04:00
|
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/spinlock.h>
|
2008-06-11 17:09:48 -04:00
|
|
|
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
|
|
|
|
# include <linux/freezer.h>
|
|
|
|
#else
|
|
|
|
# include <linux/sched.h>
|
|
|
|
#endif
|
|
|
|
|
2008-06-11 16:50:36 -04:00
|
|
|
#include "async-thread.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* container for the kthread task pointer and the list of pending work
|
|
|
|
* One of these is allocated per thread.
|
|
|
|
*/
|
|
|
|
struct btrfs_worker_thread {
|
|
|
|
/* list of struct btrfs_work that are waiting for service */
|
|
|
|
struct list_head pending;
|
|
|
|
|
|
|
|
/* list of worker threads from struct btrfs_workers */
|
|
|
|
struct list_head worker_list;
|
|
|
|
|
|
|
|
/* kthread */
|
|
|
|
struct task_struct *task;
|
|
|
|
|
|
|
|
/* number of things on the pending list */
|
|
|
|
atomic_t num_pending;
|
|
|
|
|
|
|
|
/* protects the pending list. */
|
|
|
|
spinlock_t lock;
|
|
|
|
|
|
|
|
/* set to non-zero when this thread is already awake and kicking */
|
|
|
|
int working;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* main loop for servicing work items
|
|
|
|
*/
|
|
|
|
static int worker_loop(void *arg)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker = arg;
|
|
|
|
struct list_head *cur;
|
|
|
|
struct btrfs_work *work;
|
|
|
|
do {
|
|
|
|
spin_lock_irq(&worker->lock);
|
|
|
|
while(!list_empty(&worker->pending)) {
|
|
|
|
cur = worker->pending.next;
|
|
|
|
work = list_entry(cur, struct btrfs_work, list);
|
|
|
|
list_del(&work->list);
|
|
|
|
clear_bit(0, &work->flags);
|
|
|
|
|
|
|
|
work->worker = worker;
|
|
|
|
spin_unlock_irq(&worker->lock);
|
|
|
|
|
|
|
|
work->func(work);
|
|
|
|
|
|
|
|
atomic_dec(&worker->num_pending);
|
|
|
|
spin_lock_irq(&worker->lock);
|
|
|
|
}
|
|
|
|
worker->working = 0;
|
|
|
|
if (freezing(current)) {
|
|
|
|
refrigerator();
|
|
|
|
} else {
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
spin_unlock_irq(&worker->lock);
|
|
|
|
schedule();
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
}
|
|
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this will wait for all the worker threads to shutdown
|
|
|
|
*/
|
|
|
|
int btrfs_stop_workers(struct btrfs_workers *workers)
|
|
|
|
{
|
|
|
|
struct list_head *cur;
|
|
|
|
struct btrfs_worker_thread *worker;
|
|
|
|
|
|
|
|
while(!list_empty(&workers->worker_list)) {
|
|
|
|
cur = workers->worker_list.next;
|
|
|
|
worker = list_entry(cur, struct btrfs_worker_thread,
|
|
|
|
worker_list);
|
|
|
|
kthread_stop(worker->task);
|
|
|
|
list_del(&worker->worker_list);
|
|
|
|
kfree(worker);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* simple init on struct btrfs_workers
|
|
|
|
*/
|
|
|
|
void btrfs_init_workers(struct btrfs_workers *workers, int max)
|
|
|
|
{
|
|
|
|
workers->num_workers = 0;
|
|
|
|
INIT_LIST_HEAD(&workers->worker_list);
|
|
|
|
workers->last = NULL;
|
|
|
|
spin_lock_init(&workers->lock);
|
|
|
|
workers->max_workers = max;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* starts new worker threads. This does not enforce the max worker
|
|
|
|
* count in case you need to temporarily go past it.
|
|
|
|
*/
|
|
|
|
int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker;
|
|
|
|
int ret = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < num_workers; i++) {
|
|
|
|
worker = kzalloc(sizeof(*worker), GFP_NOFS);
|
|
|
|
if (!worker) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&worker->pending);
|
|
|
|
INIT_LIST_HEAD(&worker->worker_list);
|
|
|
|
spin_lock_init(&worker->lock);
|
|
|
|
atomic_set(&worker->num_pending, 0);
|
|
|
|
worker->task = kthread_run(worker_loop, worker, "btrfs");
|
|
|
|
if (IS_ERR(worker->task)) {
|
|
|
|
ret = PTR_ERR(worker->task);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irq(&workers->lock);
|
|
|
|
list_add_tail(&worker->worker_list, &workers->worker_list);
|
|
|
|
workers->last = worker;
|
|
|
|
workers->num_workers++;
|
|
|
|
spin_unlock_irq(&workers->lock);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
btrfs_stop_workers(workers);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* run through the list and find a worker thread that doesn't have a lot
|
|
|
|
* to do right now. This can return null if we aren't yet at the thread
|
|
|
|
* count limit and all of the threads are busy.
|
|
|
|
*/
|
|
|
|
static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker;
|
|
|
|
struct list_head *next;
|
|
|
|
struct list_head *start;
|
|
|
|
int enforce_min = workers->num_workers < workers->max_workers;
|
|
|
|
|
|
|
|
/* start with the last thread if it isn't busy */
|
|
|
|
worker = workers->last;
|
|
|
|
if (atomic_read(&worker->num_pending) < 64)
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
next = worker->worker_list.next;
|
|
|
|
start = &worker->worker_list;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* check all the workers for someone that is bored. FIXME, do
|
|
|
|
* something smart here
|
|
|
|
*/
|
|
|
|
while(next != start) {
|
|
|
|
if (next == &workers->worker_list) {
|
|
|
|
next = workers->worker_list.next;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
worker = list_entry(next, struct btrfs_worker_thread,
|
|
|
|
worker_list);
|
|
|
|
if (atomic_read(&worker->num_pending) < 64 || !enforce_min)
|
|
|
|
goto done;
|
|
|
|
next = next->next;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* nobody was bored, if we're already at the max thread count,
|
|
|
|
* use the last thread
|
|
|
|
*/
|
|
|
|
if (!enforce_min || atomic_read(&workers->last->num_pending) < 64) {
|
|
|
|
return workers->last;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
done:
|
|
|
|
workers->last = worker;
|
|
|
|
return worker;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
again:
|
|
|
|
spin_lock_irqsave(&workers->lock, flags);
|
|
|
|
worker = next_worker(workers);
|
|
|
|
spin_unlock_irqrestore(&workers->lock, flags);
|
|
|
|
|
|
|
|
if (!worker) {
|
|
|
|
spin_lock_irqsave(&workers->lock, flags);
|
|
|
|
if (workers->num_workers >= workers->max_workers) {
|
|
|
|
/*
|
|
|
|
* we have failed to find any workers, just
|
|
|
|
* return the force one
|
|
|
|
*/
|
|
|
|
worker = list_entry(workers->worker_list.next,
|
|
|
|
struct btrfs_worker_thread, worker_list);
|
|
|
|
spin_unlock_irqrestore(&workers->lock, flags);
|
|
|
|
} else {
|
|
|
|
spin_unlock_irqrestore(&workers->lock, flags);
|
|
|
|
/* we're below the limit, start another worker */
|
|
|
|
btrfs_start_workers(workers, 1);
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return worker;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* btrfs_requeue_work just puts the work item back on the tail of the list
|
|
|
|
* it was taken from. It is intended for use with long running work functions
|
|
|
|
* that make some progress and want to give the cpu up for others.
|
|
|
|
*/
|
|
|
|
int btrfs_requeue_work(struct btrfs_work *work)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker = work->worker;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (test_and_set_bit(0, &work->flags))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&worker->lock, flags);
|
|
|
|
atomic_inc(&worker->num_pending);
|
|
|
|
list_add_tail(&work->list, &worker->pending);
|
|
|
|
spin_unlock_irqrestore(&worker->lock, flags);
|
|
|
|
out:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* places a struct btrfs_work into the pending queue of one of the kthreads
|
|
|
|
*/
|
|
|
|
int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
|
|
|
|
{
|
|
|
|
struct btrfs_worker_thread *worker;
|
|
|
|
unsigned long flags;
|
|
|
|
int wake = 0;
|
|
|
|
|
|
|
|
/* don't requeue something already on a list */
|
|
|
|
if (test_and_set_bit(0, &work->flags))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
worker = find_worker(workers);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&worker->lock, flags);
|
|
|
|
atomic_inc(&worker->num_pending);
|
|
|
|
list_add_tail(&work->list, &worker->pending);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* avoid calling into wake_up_process if this thread has already
|
|
|
|
* been kicked
|
|
|
|
*/
|
|
|
|
if (!worker->working)
|
|
|
|
wake = 1;
|
|
|
|
worker->working = 1;
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&worker->lock, flags);
|
|
|
|
|
|
|
|
if (wake)
|
|
|
|
wake_up_process(worker->task);
|
|
|
|
out:
|
|
|
|
return 0;
|
|
|
|
}
|