775 lines
21 KiB
C
Raw Normal View History

/*
* Frame buffer device for IBM GXT4500P and GXT6000P display adaptors
*
* Copyright (C) 2006 Paul Mackerras, IBM Corp. <paulus@samba.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fb.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/delay.h>
#include <linux/string.h>
#define PCI_DEVICE_ID_IBM_GXT4500P 0x21c
#define PCI_DEVICE_ID_IBM_GXT6000P 0x170
/* GXT4500P registers */
/* Registers in PCI config space */
#define CFG_ENDIAN0 0x40
/* Misc control/status registers */
#define STATUS 0x1000
#define CTRL_REG0 0x1004
#define CR0_HALT_DMA 0x4
#define CR0_RASTER_RESET 0x8
#define CR0_GEOM_RESET 0x10
#define CR0_MEM_CTRLER_RESET 0x20
/* Framebuffer control registers */
#define FB_AB_CTRL 0x1100
#define FB_CD_CTRL 0x1104
#define FB_WID_CTRL 0x1108
#define FB_Z_CTRL 0x110c
#define FB_VGA_CTRL 0x1110
#define REFRESH_AB_CTRL 0x1114
#define REFRESH_CD_CTRL 0x1118
#define FB_OVL_CTRL 0x111c
#define FB_CTRL_TYPE 0x80000000
#define FB_CTRL_WIDTH_MASK 0x007f0000
#define FB_CTRL_WIDTH_SHIFT 16
#define FB_CTRL_START_SEG_MASK 0x00003fff
#define REFRESH_START 0x1098
#define REFRESH_SIZE 0x109c
/* "Direct" framebuffer access registers */
#define DFA_FB_A 0x11e0
#define DFA_FB_B 0x11e4
#define DFA_FB_C 0x11e8
#define DFA_FB_D 0x11ec
#define DFA_FB_ENABLE 0x80000000
#define DFA_FB_BASE_MASK 0x03f00000
#define DFA_FB_STRIDE_1k 0x00000000
#define DFA_FB_STRIDE_2k 0x00000010
#define DFA_FB_STRIDE_4k 0x00000020
#define DFA_PIX_8BIT 0x00000000
#define DFA_PIX_16BIT_565 0x00000001
#define DFA_PIX_16BIT_1555 0x00000002
#define DFA_PIX_24BIT 0x00000004
#define DFA_PIX_32BIT 0x00000005
/* maps DFA_PIX_* to pixel size in bytes */
static const unsigned char pixsize[] = {
1, 2, 2, 2, 4, 4
};
/* Display timing generator registers */
#define DTG_CONTROL 0x1900
#define DTG_CTL_SCREEN_REFRESH 2
#define DTG_CTL_ENABLE 1
#define DTG_HORIZ_EXTENT 0x1904
#define DTG_HORIZ_DISPLAY 0x1908
#define DTG_HSYNC_START 0x190c
#define DTG_HSYNC_END 0x1910
#define DTG_HSYNC_END_COMP 0x1914
#define DTG_VERT_EXTENT 0x1918
#define DTG_VERT_DISPLAY 0x191c
#define DTG_VSYNC_START 0x1920
#define DTG_VSYNC_END 0x1924
#define DTG_VERT_SHORT 0x1928
/* PLL/RAMDAC registers */
#define DISP_CTL 0x402c
#define DISP_CTL_OFF 2
#define SYNC_CTL 0x4034
#define SYNC_CTL_SYNC_ON_RGB 1
#define SYNC_CTL_SYNC_OFF 2
#define SYNC_CTL_HSYNC_INV 8
#define SYNC_CTL_VSYNC_INV 0x10
#define SYNC_CTL_HSYNC_OFF 0x20
#define SYNC_CTL_VSYNC_OFF 0x40
#define PLL_M 0x4040
#define PLL_N 0x4044
#define PLL_POSTDIV 0x4048
#define PLL_C 0x404c
/* Hardware cursor */
#define CURSOR_X 0x4078
#define CURSOR_Y 0x407c
#define CURSOR_HOTSPOT 0x4080
#define CURSOR_MODE 0x4084
#define CURSOR_MODE_OFF 0
#define CURSOR_MODE_4BPP 1
#define CURSOR_PIXMAP 0x5000
#define CURSOR_CMAP 0x7400
/* Window attribute table */
#define WAT_FMT 0x4100
#define WAT_FMT_24BIT 0
#define WAT_FMT_16BIT_565 1
#define WAT_FMT_16BIT_1555 2
#define WAT_FMT_32BIT 3 /* 0 vs. 3 is a guess */
#define WAT_FMT_8BIT_332 9
#define WAT_FMT_8BIT 0xa
#define WAT_FMT_NO_CMAP 4 /* ORd in to other values */
#define WAT_CMAP_OFFSET 0x4104 /* 4-bit value gets << 6 */
#define WAT_CTRL 0x4108
#define WAT_CTRL_SEL_B 1 /* select B buffer if 1 */
#define WAT_CTRL_NO_INC 2
#define WAT_GAMMA_CTRL 0x410c
#define WAT_GAMMA_DISABLE 1 /* disables gamma cmap */
#define WAT_OVL_CTRL 0x430c /* controls overlay */
/* Indexed by DFA_PIX_* values */
static const unsigned char watfmt[] = {
WAT_FMT_8BIT, WAT_FMT_16BIT_565, WAT_FMT_16BIT_1555, 0,
WAT_FMT_24BIT, WAT_FMT_32BIT
};
/* Colormap array; 1k entries of 4 bytes each */
#define CMAP 0x6000
#define readreg(par, reg) readl((par)->regs + (reg))
#define writereg(par, reg, val) writel((val), (par)->regs + (reg))
struct gxt4500_par {
void __iomem *regs;
int pixfmt; /* pixel format, see DFA_PIX_* values */
/* PLL parameters */
int refclk_ps; /* ref clock period in picoseconds */
int pll_m; /* ref clock divisor */
int pll_n; /* VCO divisor */
int pll_pd1; /* first post-divisor */
int pll_pd2; /* second post-divisor */
u32 pseudo_palette[16]; /* used in color blits */
};
/* mode requested by user */
static char *mode_option;
/* default mode: 1280x1024 @ 60 Hz, 8 bpp */
static const struct fb_videomode defaultmode __devinitconst = {
.refresh = 60,
.xres = 1280,
.yres = 1024,
.pixclock = 9295,
.left_margin = 248,
.right_margin = 48,
.upper_margin = 38,
.lower_margin = 1,
.hsync_len = 112,
.vsync_len = 3,
.vmode = FB_VMODE_NONINTERLACED
};
/* List of supported cards */
enum gxt_cards {
GXT4500P,
GXT6000P
};
/* Card-specific information */
static const struct cardinfo {
int refclk_ps; /* period of PLL reference clock in ps */
const char *cardname;
} cardinfo[] = {
[GXT4500P] = { .refclk_ps = 9259, .cardname = "IBM GXT4500P" },
[GXT6000P] = { .refclk_ps = 40000, .cardname = "IBM GXT6000P" },
};
/*
* The refclk and VCO dividers appear to use a linear feedback shift
* register, which gets reloaded when it reaches a terminal value, at
* which point the divider output is toggled. Thus one can obtain
* whatever divisor is required by putting the appropriate value into
* the reload register. For a divisor of N, one puts the value from
* the LFSR sequence that comes N-1 places before the terminal value
* into the reload register.
*/
static const unsigned char mdivtab[] = {
/* 1 */ 0x3f, 0x00, 0x20, 0x10, 0x28, 0x14, 0x2a, 0x15, 0x0a,
/* 10 */ 0x25, 0x32, 0x19, 0x0c, 0x26, 0x13, 0x09, 0x04, 0x22, 0x11,
/* 20 */ 0x08, 0x24, 0x12, 0x29, 0x34, 0x1a, 0x2d, 0x36, 0x1b, 0x0d,
/* 30 */ 0x06, 0x23, 0x31, 0x38, 0x1c, 0x2e, 0x17, 0x0b, 0x05, 0x02,
/* 40 */ 0x21, 0x30, 0x18, 0x2c, 0x16, 0x2b, 0x35, 0x3a, 0x1d, 0x0e,
/* 50 */ 0x27, 0x33, 0x39, 0x3c, 0x1e, 0x2f, 0x37, 0x3b, 0x3d, 0x3e,
/* 60 */ 0x1f, 0x0f, 0x07, 0x03, 0x01,
};
static const unsigned char ndivtab[] = {
/* 2 */ 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0x78, 0xbc, 0x5e,
/* 10 */ 0x2f, 0x17, 0x0b, 0x85, 0xc2, 0xe1, 0x70, 0x38, 0x9c, 0x4e,
/* 20 */ 0xa7, 0xd3, 0xe9, 0xf4, 0xfa, 0xfd, 0xfe, 0x7f, 0xbf, 0xdf,
/* 30 */ 0xef, 0x77, 0x3b, 0x1d, 0x8e, 0xc7, 0xe3, 0x71, 0xb8, 0xdc,
/* 40 */ 0x6e, 0xb7, 0x5b, 0x2d, 0x16, 0x8b, 0xc5, 0xe2, 0xf1, 0xf8,
/* 50 */ 0xfc, 0x7e, 0x3f, 0x9f, 0xcf, 0x67, 0xb3, 0xd9, 0x6c, 0xb6,
/* 60 */ 0xdb, 0x6d, 0x36, 0x9b, 0x4d, 0x26, 0x13, 0x89, 0xc4, 0x62,
/* 70 */ 0xb1, 0xd8, 0xec, 0xf6, 0xfb, 0x7d, 0xbe, 0x5f, 0xaf, 0x57,
/* 80 */ 0x2b, 0x95, 0x4a, 0x25, 0x92, 0x49, 0xa4, 0x52, 0x29, 0x94,
/* 90 */ 0xca, 0x65, 0xb2, 0x59, 0x2c, 0x96, 0xcb, 0xe5, 0xf2, 0x79,
/* 100 */ 0x3c, 0x1e, 0x0f, 0x07, 0x83, 0x41, 0x20, 0x90, 0x48, 0x24,
/* 110 */ 0x12, 0x09, 0x84, 0x42, 0xa1, 0x50, 0x28, 0x14, 0x8a, 0x45,
/* 120 */ 0xa2, 0xd1, 0xe8, 0x74, 0xba, 0xdd, 0xee, 0xf7, 0x7b, 0x3d,
/* 130 */ 0x9e, 0x4f, 0x27, 0x93, 0xc9, 0xe4, 0x72, 0x39, 0x1c, 0x0e,
/* 140 */ 0x87, 0xc3, 0x61, 0x30, 0x18, 0x8c, 0xc6, 0x63, 0x31, 0x98,
/* 150 */ 0xcc, 0xe6, 0x73, 0xb9, 0x5c, 0x2e, 0x97, 0x4b, 0xa5, 0xd2,
/* 160 */ 0x69,
};
static int calc_pll(int period_ps, struct gxt4500_par *par)
{
int m, n, pdiv1, pdiv2, postdiv;
int pll_period, best_error, t, intf;
/* only deal with range 5MHz - 300MHz */
if (period_ps < 3333 || period_ps > 200000)
return -1;
best_error = 1000000;
for (pdiv1 = 1; pdiv1 <= 8; ++pdiv1) {
for (pdiv2 = 1; pdiv2 <= pdiv1; ++pdiv2) {
postdiv = pdiv1 * pdiv2;
pll_period = DIV_ROUND_UP(period_ps, postdiv);
/* keep pll in range 350..600 MHz */
if (pll_period < 1666 || pll_period > 2857)
continue;
for (m = 1; m <= 64; ++m) {
intf = m * par->refclk_ps;
if (intf > 500000)
break;
n = intf * postdiv / period_ps;
if (n < 3 || n > 160)
continue;
t = par->refclk_ps * m * postdiv / n;
t -= period_ps;
if (t >= 0 && t < best_error) {
par->pll_m = m;
par->pll_n = n;
par->pll_pd1 = pdiv1;
par->pll_pd2 = pdiv2;
best_error = t;
}
}
}
}
if (best_error == 1000000)
return -1;
return 0;
}
static int calc_pixclock(struct gxt4500_par *par)
{
return par->refclk_ps * par->pll_m * par->pll_pd1 * par->pll_pd2
/ par->pll_n;
}
static int gxt4500_var_to_par(struct fb_var_screeninfo *var,
struct gxt4500_par *par)
{
if (var->xres + var->xoffset > var->xres_virtual ||
var->yres + var->yoffset > var->yres_virtual ||
var->xres_virtual > 4096)
return -EINVAL;
if ((var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
if (calc_pll(var->pixclock, par) < 0)
return -EINVAL;
switch (var->bits_per_pixel) {
case 32:
if (var->transp.length)
par->pixfmt = DFA_PIX_32BIT;
else
par->pixfmt = DFA_PIX_24BIT;
break;
case 24:
par->pixfmt = DFA_PIX_24BIT;
break;
case 16:
if (var->green.length == 5)
par->pixfmt = DFA_PIX_16BIT_1555;
else
par->pixfmt = DFA_PIX_16BIT_565;
break;
case 8:
par->pixfmt = DFA_PIX_8BIT;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct fb_bitfield eightbits = {0, 8};
static const struct fb_bitfield nobits = {0, 0};
static void gxt4500_unpack_pixfmt(struct fb_var_screeninfo *var,
int pixfmt)
{
var->bits_per_pixel = pixsize[pixfmt] * 8;
var->red = eightbits;
var->green = eightbits;
var->blue = eightbits;
var->transp = nobits;
switch (pixfmt) {
case DFA_PIX_16BIT_565:
var->red.length = 5;
var->green.length = 6;
var->blue.length = 5;
break;
case DFA_PIX_16BIT_1555:
var->red.length = 5;
var->green.length = 5;
var->blue.length = 5;
var->transp.length = 1;
break;
case DFA_PIX_32BIT:
var->transp.length = 8;
break;
}
if (pixfmt != DFA_PIX_8BIT) {
var->green.offset = var->red.length;
var->blue.offset = var->green.offset + var->green.length;
if (var->transp.length)
var->transp.offset =
var->blue.offset + var->blue.length;
}
}
static int gxt4500_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct gxt4500_par par;
int err;
par = *(struct gxt4500_par *)info->par;
err = gxt4500_var_to_par(var, &par);
if (!err) {
var->pixclock = calc_pixclock(&par);
gxt4500_unpack_pixfmt(var, par.pixfmt);
}
return err;
}
static int gxt4500_set_par(struct fb_info *info)
{
struct gxt4500_par *par = info->par;
struct fb_var_screeninfo *var = &info->var;
int err;
u32 ctrlreg, tmp;
unsigned int dfa_ctl, pixfmt, stride;
unsigned int wid_tiles, i;
unsigned int prefetch_pix, htot;
struct gxt4500_par save_par;
save_par = *par;
err = gxt4500_var_to_par(var, par);
if (err) {
*par = save_par;
return err;
}
/* turn off DTG for now */
ctrlreg = readreg(par, DTG_CONTROL);
ctrlreg &= ~(DTG_CTL_ENABLE | DTG_CTL_SCREEN_REFRESH);
writereg(par, DTG_CONTROL, ctrlreg);
/* set PLL registers */
tmp = readreg(par, PLL_C) & ~0x7f;
if (par->pll_n < 38)
tmp |= 0x29;
if (par->pll_n < 69)
tmp |= 0x35;
else if (par->pll_n < 100)
tmp |= 0x76;
else
tmp |= 0x7e;
writereg(par, PLL_C, tmp);
writereg(par, PLL_M, mdivtab[par->pll_m - 1]);
writereg(par, PLL_N, ndivtab[par->pll_n - 2]);
tmp = ((8 - par->pll_pd2) << 3) | (8 - par->pll_pd1);
if (par->pll_pd1 == 8 || par->pll_pd2 == 8) {
/* work around erratum */
writereg(par, PLL_POSTDIV, tmp | 0x9);
udelay(1);
}
writereg(par, PLL_POSTDIV, tmp);
msleep(20);
/* turn off hardware cursor */
writereg(par, CURSOR_MODE, CURSOR_MODE_OFF);
/* reset raster engine */
writereg(par, CTRL_REG0, CR0_RASTER_RESET | (CR0_RASTER_RESET << 16));
udelay(10);
writereg(par, CTRL_REG0, CR0_RASTER_RESET << 16);
/* set display timing generator registers */
htot = var->xres + var->left_margin + var->right_margin +
var->hsync_len;
writereg(par, DTG_HORIZ_EXTENT, htot - 1);
writereg(par, DTG_HORIZ_DISPLAY, var->xres - 1);
writereg(par, DTG_HSYNC_START, var->xres + var->right_margin - 1);
writereg(par, DTG_HSYNC_END,
var->xres + var->right_margin + var->hsync_len - 1);
writereg(par, DTG_HSYNC_END_COMP,
var->xres + var->right_margin + var->hsync_len - 1);
writereg(par, DTG_VERT_EXTENT,
var->yres + var->upper_margin + var->lower_margin +
var->vsync_len - 1);
writereg(par, DTG_VERT_DISPLAY, var->yres - 1);
writereg(par, DTG_VSYNC_START, var->yres + var->lower_margin - 1);
writereg(par, DTG_VSYNC_END,
var->yres + var->lower_margin + var->vsync_len - 1);
prefetch_pix = 3300000 / var->pixclock;
if (prefetch_pix >= htot)
prefetch_pix = htot - 1;
writereg(par, DTG_VERT_SHORT, htot - prefetch_pix - 1);
ctrlreg |= DTG_CTL_ENABLE | DTG_CTL_SCREEN_REFRESH;
writereg(par, DTG_CONTROL, ctrlreg);
/* calculate stride in DFA aperture */
if (var->xres_virtual > 2048) {
stride = 4096;
dfa_ctl = DFA_FB_STRIDE_4k;
} else if (var->xres_virtual > 1024) {
stride = 2048;
dfa_ctl = DFA_FB_STRIDE_2k;
} else {
stride = 1024;
dfa_ctl = DFA_FB_STRIDE_1k;
}
/* Set up framebuffer definition */
wid_tiles = (var->xres_virtual + 63) >> 6;
/* XXX add proper FB allocation here someday */
writereg(par, FB_AB_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0);
writereg(par, REFRESH_AB_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0);
writereg(par, FB_CD_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0);
writereg(par, REFRESH_CD_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0);
writereg(par, REFRESH_START, (var->xoffset << 16) | var->yoffset);
writereg(par, REFRESH_SIZE, (var->xres << 16) | var->yres);
/* Set up framebuffer access by CPU */
pixfmt = par->pixfmt;
dfa_ctl |= DFA_FB_ENABLE | pixfmt;
writereg(par, DFA_FB_A, dfa_ctl);
/*
* Set up window attribute table.
* We set all WAT entries the same so it doesn't matter what the
* window ID (WID) plane contains.
*/
for (i = 0; i < 32; ++i) {
writereg(par, WAT_FMT + (i << 4), watfmt[pixfmt]);
writereg(par, WAT_CMAP_OFFSET + (i << 4), 0);
writereg(par, WAT_CTRL + (i << 4), 0);
writereg(par, WAT_GAMMA_CTRL + (i << 4), WAT_GAMMA_DISABLE);
}
/* Set sync polarity etc. */
ctrlreg = readreg(par, SYNC_CTL) &
~(SYNC_CTL_SYNC_ON_RGB | SYNC_CTL_HSYNC_INV |
SYNC_CTL_VSYNC_INV);
if (var->sync & FB_SYNC_ON_GREEN)
ctrlreg |= SYNC_CTL_SYNC_ON_RGB;
if (!(var->sync & FB_SYNC_HOR_HIGH_ACT))
ctrlreg |= SYNC_CTL_HSYNC_INV;
if (!(var->sync & FB_SYNC_VERT_HIGH_ACT))
ctrlreg |= SYNC_CTL_VSYNC_INV;
writereg(par, SYNC_CTL, ctrlreg);
info->fix.line_length = stride * pixsize[pixfmt];
info->fix.visual = (pixfmt == DFA_PIX_8BIT)? FB_VISUAL_PSEUDOCOLOR:
FB_VISUAL_DIRECTCOLOR;
return 0;
}
static int gxt4500_setcolreg(unsigned int reg, unsigned int red,
unsigned int green, unsigned int blue,
unsigned int transp, struct fb_info *info)
{
u32 cmap_entry;
struct gxt4500_par *par = info->par;
if (reg > 1023)
return 1;
cmap_entry = ((transp & 0xff00) << 16) | ((red & 0xff00) << 8) |
(green & 0xff00) | (blue >> 8);
writereg(par, CMAP + reg * 4, cmap_entry);
if (reg < 16 && par->pixfmt != DFA_PIX_8BIT) {
u32 *pal = info->pseudo_palette;
u32 val = reg;
switch (par->pixfmt) {
case DFA_PIX_16BIT_565:
val |= (reg << 11) | (reg << 6);
break;
case DFA_PIX_16BIT_1555:
val |= (reg << 10) | (reg << 5);
break;
case DFA_PIX_32BIT:
val |= (reg << 24);
/* fall through */
case DFA_PIX_24BIT:
val |= (reg << 16) | (reg << 8);
break;
}
pal[reg] = val;
}
return 0;
}
static int gxt4500_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct gxt4500_par *par = info->par;
if (var->xoffset & 7)
return -EINVAL;
if (var->xoffset + info->var.xres > info->var.xres_virtual ||
var->yoffset + info->var.yres > info->var.yres_virtual)
return -EINVAL;
writereg(par, REFRESH_START, (var->xoffset << 16) | var->yoffset);
return 0;
}
static int gxt4500_blank(int blank, struct fb_info *info)
{
struct gxt4500_par *par = info->par;
int ctrl, dctl;
ctrl = readreg(par, SYNC_CTL);
ctrl &= ~(SYNC_CTL_SYNC_OFF | SYNC_CTL_HSYNC_OFF | SYNC_CTL_VSYNC_OFF);
dctl = readreg(par, DISP_CTL);
dctl |= DISP_CTL_OFF;
switch (blank) {
case FB_BLANK_UNBLANK:
dctl &= ~DISP_CTL_OFF;
break;
case FB_BLANK_POWERDOWN:
ctrl |= SYNC_CTL_SYNC_OFF;
break;
case FB_BLANK_HSYNC_SUSPEND:
ctrl |= SYNC_CTL_HSYNC_OFF;
break;
case FB_BLANK_VSYNC_SUSPEND:
ctrl |= SYNC_CTL_VSYNC_OFF;
break;
default: ;
}
writereg(par, SYNC_CTL, ctrl);
writereg(par, DISP_CTL, dctl);
return 0;
}
static const struct fb_fix_screeninfo gxt4500_fix __devinitconst = {
.id = "IBM GXT4500P",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 8,
.ypanstep = 1,
.mmio_len = 0x20000,
};
static struct fb_ops gxt4500_ops = {
.owner = THIS_MODULE,
.fb_check_var = gxt4500_check_var,
.fb_set_par = gxt4500_set_par,
.fb_setcolreg = gxt4500_setcolreg,
.fb_pan_display = gxt4500_pan_display,
.fb_blank = gxt4500_blank,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/* PCI functions */
static int __devinit gxt4500_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err;
unsigned long reg_phys, fb_phys;
struct gxt4500_par *par;
struct fb_info *info;
struct fb_var_screeninfo var;
enum gxt_cards cardtype;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "gxt4500: cannot enable PCI device: %d\n",
err);
return err;
}
reg_phys = pci_resource_start(pdev, 0);
if (!request_mem_region(reg_phys, pci_resource_len(pdev, 0),
"gxt4500 regs")) {
dev_err(&pdev->dev, "gxt4500: cannot get registers\n");
goto err_nodev;
}
fb_phys = pci_resource_start(pdev, 1);
if (!request_mem_region(fb_phys, pci_resource_len(pdev, 1),
"gxt4500 FB")) {
dev_err(&pdev->dev, "gxt4500: cannot get framebuffer\n");
goto err_free_regs;
}
info = framebuffer_alloc(sizeof(struct gxt4500_par), &pdev->dev);
if (!info) {
dev_err(&pdev->dev, "gxt4500: cannot alloc FB info record\n");
goto err_free_fb;
}
par = info->par;
cardtype = ent->driver_data;
par->refclk_ps = cardinfo[cardtype].refclk_ps;
info->fix = gxt4500_fix;
strlcpy(info->fix.id, cardinfo[cardtype].cardname,
sizeof(info->fix.id));
info->pseudo_palette = par->pseudo_palette;
info->fix.mmio_start = reg_phys;
par->regs = pci_ioremap_bar(pdev, 0);
if (!par->regs) {
dev_err(&pdev->dev, "gxt4500: cannot map registers\n");
goto err_free_all;
}
info->fix.smem_start = fb_phys;
info->fix.smem_len = pci_resource_len(pdev, 1);
info->screen_base = pci_ioremap_bar(pdev, 1);
if (!info->screen_base) {
dev_err(&pdev->dev, "gxt4500: cannot map framebuffer\n");
goto err_unmap_regs;
}
pci_set_drvdata(pdev, info);
/* Set byte-swapping for DFA aperture for all pixel sizes */
pci_write_config_dword(pdev, CFG_ENDIAN0, 0x333300);
info->fbops = &gxt4500_ops;
info->flags = FBINFO_FLAG_DEFAULT;
err = fb_alloc_cmap(&info->cmap, 256, 0);
if (err) {
dev_err(&pdev->dev, "gxt4500: cannot allocate cmap\n");
goto err_unmap_all;
}
gxt4500_blank(FB_BLANK_UNBLANK, info);
if (!fb_find_mode(&var, info, mode_option, NULL, 0, &defaultmode, 8)) {
dev_err(&pdev->dev, "gxt4500: cannot find valid video mode\n");
goto err_free_cmap;
}
info->var = var;
if (gxt4500_set_par(info)) {
printk(KERN_ERR "gxt4500: cannot set video mode\n");
goto err_free_cmap;
}
if (register_framebuffer(info) < 0) {
dev_err(&pdev->dev, "gxt4500: cannot register framebuffer\n");
goto err_free_cmap;
}
printk(KERN_INFO "fb%d: %s frame buffer device\n",
info->node, info->fix.id);
return 0;
err_free_cmap:
fb_dealloc_cmap(&info->cmap);
err_unmap_all:
iounmap(info->screen_base);
err_unmap_regs:
iounmap(par->regs);
err_free_all:
framebuffer_release(info);
err_free_fb:
release_mem_region(fb_phys, pci_resource_len(pdev, 1));
err_free_regs:
release_mem_region(reg_phys, pci_resource_len(pdev, 0));
err_nodev:
return -ENODEV;
}
static void __devexit gxt4500_remove(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct gxt4500_par *par;
if (!info)
return;
par = info->par;
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
iounmap(par->regs);
iounmap(info->screen_base);
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
release_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
framebuffer_release(info);
}
/* supported chipsets */
static const struct pci_device_id gxt4500_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_GXT4500P),
.driver_data = GXT4500P },
{ PCI_DEVICE(PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_GXT6000P),
.driver_data = GXT6000P },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, gxt4500_pci_tbl);
static struct pci_driver gxt4500_driver = {
.name = "gxt4500",
.id_table = gxt4500_pci_tbl,
.probe = gxt4500_probe,
.remove = __devexit_p(gxt4500_remove),
};
static int __devinit gxt4500_init(void)
{
#ifndef MODULE
if (fb_get_options("gxt4500", &mode_option))
return -ENODEV;
#endif
return pci_register_driver(&gxt4500_driver);
}
module_init(gxt4500_init);
static void __exit gxt4500_exit(void)
{
pci_unregister_driver(&gxt4500_driver);
}
module_exit(gxt4500_exit);
MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
MODULE_DESCRIPTION("FBDev driver for IBM GXT4500P/6000P");
MODULE_LICENSE("GPL");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\"");