801 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
raid0.c : Multiple Devices driver for Linux
Copyright (C) 1994-96 Marc ZYNGIER
<zyngier@ufr-info-p7.ibp.fr> or
<maz@gloups.fdn.fr>
Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
RAID-0 management functions.
*/
#include <linux/blkdev.h>
#include <linux/seq_file.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <trace/events/block.h>
#include "md.h"
#include "raid0.h"
#include "raid5.h"
static int default_layout = 0;
module_param(default_layout, int, 0644);
#define UNSUPPORTED_MDDEV_FLAGS \
((1L << MD_HAS_JOURNAL) | \
(1L << MD_JOURNAL_CLEAN) | \
(1L << MD_FAILFAST_SUPPORTED) |\
(1L << MD_HAS_PPL) | \
(1L << MD_HAS_MULTIPLE_PPLS))
/*
* inform the user of the raid configuration
*/
static void dump_zones(struct mddev *mddev)
{
int j, k;
sector_t zone_size = 0;
sector_t zone_start = 0;
struct r0conf *conf = mddev->private;
int raid_disks = conf->strip_zone[0].nb_dev;
pr_debug("md: RAID0 configuration for %s - %d zone%s\n",
mdname(mddev),
conf->nr_strip_zones, conf->nr_strip_zones==1?"":"s");
for (j = 0; j < conf->nr_strip_zones; j++) {
char line[200];
int len = 0;
for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 766038846e875 ("md/raid0: replace printk() with pr_*()") Reviewed-by: Michael Kelley <mikelley@microsoft.com> Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com> Signed-off-by: Song Liu <song@kernel.org>
2022-08-23 11:51:04 -07:00
len += scnprintf(line+len, 200-len, "%s%pg", k?"/":"",
conf->devlist[j * raid_disks + k]->bdev);
pr_debug("md: zone%d=[%s]\n", j, line);
zone_size = conf->strip_zone[j].zone_end - zone_start;
pr_debug(" zone-offset=%10lluKB, device-offset=%10lluKB, size=%10lluKB\n",
(unsigned long long)zone_start>>1,
(unsigned long long)conf->strip_zone[j].dev_start>>1,
(unsigned long long)zone_size>>1);
zone_start = conf->strip_zone[j].zone_end;
}
}
static int create_strip_zones(struct mddev *mddev, struct r0conf **private_conf)
{
int i, c, err;
sector_t curr_zone_end, sectors;
struct md_rdev *smallest, *rdev1, *rdev2, *rdev, **dev;
struct strip_zone *zone;
int cnt;
struct r0conf *conf = kzalloc(sizeof(*conf), GFP_KERNEL);
unsigned blksize = 512;
*private_conf = ERR_PTR(-ENOMEM);
if (!conf)
return -ENOMEM;
rdev_for_each(rdev1, mddev) {
pr_debug("md/raid0:%s: looking at %pg\n",
mdname(mddev),
rdev1->bdev);
c = 0;
/* round size to chunk_size */
sectors = rdev1->sectors;
sector_div(sectors, mddev->chunk_sectors);
rdev1->sectors = sectors * mddev->chunk_sectors;
blksize = max(blksize, queue_logical_block_size(
rdev1->bdev->bd_disk->queue));
rdev_for_each(rdev2, mddev) {
pr_debug("md/raid0:%s: comparing %pg(%llu)"
" with %pg(%llu)\n",
mdname(mddev),
rdev1->bdev,
(unsigned long long)rdev1->sectors,
rdev2->bdev,
(unsigned long long)rdev2->sectors);
if (rdev2 == rdev1) {
pr_debug("md/raid0:%s: END\n",
mdname(mddev));
break;
}
if (rdev2->sectors == rdev1->sectors) {
/*
* Not unique, don't count it as a new
* group
*/
pr_debug("md/raid0:%s: EQUAL\n",
mdname(mddev));
c = 1;
break;
}
pr_debug("md/raid0:%s: NOT EQUAL\n",
mdname(mddev));
}
if (!c) {
pr_debug("md/raid0:%s: ==> UNIQUE\n",
mdname(mddev));
conf->nr_strip_zones++;
pr_debug("md/raid0:%s: %d zones\n",
mdname(mddev), conf->nr_strip_zones);
}
}
pr_debug("md/raid0:%s: FINAL %d zones\n",
mdname(mddev), conf->nr_strip_zones);
/*
* now since we have the hard sector sizes, we can make sure
* chunk size is a multiple of that sector size
*/
if ((mddev->chunk_sectors << 9) % blksize) {
pr_warn("md/raid0:%s: chunk_size of %d not multiple of block size %d\n",
mdname(mddev),
mddev->chunk_sectors << 9, blksize);
err = -EINVAL;
goto abort;
}
err = -ENOMEM;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
conf->strip_zone = kcalloc(conf->nr_strip_zones,
sizeof(struct strip_zone),
GFP_KERNEL);
if (!conf->strip_zone)
goto abort;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
conf->devlist = kzalloc(array3_size(sizeof(struct md_rdev *),
conf->nr_strip_zones,
mddev->raid_disks),
GFP_KERNEL);
if (!conf->devlist)
goto abort;
/* The first zone must contain all devices, so here we check that
* there is a proper alignment of slots to devices and find them all
*/
zone = &conf->strip_zone[0];
cnt = 0;
smallest = NULL;
dev = conf->devlist;
err = -EINVAL;
rdev_for_each(rdev1, mddev) {
int j = rdev1->raid_disk;
if (mddev->level == 10) {
/* taking over a raid10-n2 array */
j /= 2;
rdev1->new_raid_disk = j;
}
if (mddev->level == 1) {
/* taiking over a raid1 array-
* we have only one active disk
*/
j = 0;
rdev1->new_raid_disk = j;
}
if (j < 0) {
pr_warn("md/raid0:%s: remove inactive devices before converting to RAID0\n",
mdname(mddev));
goto abort;
}
if (j >= mddev->raid_disks) {
pr_warn("md/raid0:%s: bad disk number %d - aborting!\n",
mdname(mddev), j);
goto abort;
}
if (dev[j]) {
pr_warn("md/raid0:%s: multiple devices for %d - aborting!\n",
mdname(mddev), j);
goto abort;
}
dev[j] = rdev1;
if (!smallest || (rdev1->sectors < smallest->sectors))
smallest = rdev1;
cnt++;
}
if (cnt != mddev->raid_disks) {
pr_warn("md/raid0:%s: too few disks (%d of %d) - aborting!\n",
mdname(mddev), cnt, mddev->raid_disks);
goto abort;
}
zone->nb_dev = cnt;
zone->zone_end = smallest->sectors * cnt;
curr_zone_end = zone->zone_end;
/* now do the other zones */
for (i = 1; i < conf->nr_strip_zones; i++)
{
int j;
zone = conf->strip_zone + i;
dev = conf->devlist + i * mddev->raid_disks;
pr_debug("md/raid0:%s: zone %d\n", mdname(mddev), i);
zone->dev_start = smallest->sectors;
smallest = NULL;
c = 0;
for (j=0; j<cnt; j++) {
rdev = conf->devlist[j];
if (rdev->sectors <= zone->dev_start) {
pr_debug("md/raid0:%s: checking %pg ... nope\n",
mdname(mddev),
rdev->bdev);
continue;
}
pr_debug("md/raid0:%s: checking %pg ..."
" contained as device %d\n",
mdname(mddev),
rdev->bdev, c);
dev[c] = rdev;
c++;
if (!smallest || rdev->sectors < smallest->sectors) {
smallest = rdev;
pr_debug("md/raid0:%s: (%llu) is smallest!.\n",
mdname(mddev),
(unsigned long long)rdev->sectors);
}
}
zone->nb_dev = c;
sectors = (smallest->sectors - zone->dev_start) * c;
pr_debug("md/raid0:%s: zone->nb_dev: %d, sectors: %llu\n",
mdname(mddev),
zone->nb_dev, (unsigned long long)sectors);
curr_zone_end += sectors;
zone->zone_end = curr_zone_end;
pr_debug("md/raid0:%s: current zone start: %llu\n",
mdname(mddev),
(unsigned long long)smallest->sectors);
}
if (conf->nr_strip_zones == 1 || conf->strip_zone[1].nb_dev == 1) {
conf->layout = RAID0_ORIG_LAYOUT;
} else if (mddev->layout == RAID0_ORIG_LAYOUT ||
mddev->layout == RAID0_ALT_MULTIZONE_LAYOUT) {
conf->layout = mddev->layout;
} else if (default_layout == RAID0_ORIG_LAYOUT ||
default_layout == RAID0_ALT_MULTIZONE_LAYOUT) {
conf->layout = default_layout;
} else {
pr_err("md/raid0:%s: cannot assemble multi-zone RAID0 with default_layout setting\n",
mdname(mddev));
pr_err("md/raid0: please set raid0.default_layout to 1 or 2\n");
err = -EOPNOTSUPP;
goto abort;
}
pr_debug("md/raid0:%s: done.\n", mdname(mddev));
*private_conf = conf;
return 0;
abort:
kfree(conf->strip_zone);
kfree(conf->devlist);
kfree(conf);
*private_conf = ERR_PTR(err);
return err;
}
/* Find the zone which holds a particular offset
* Update *sectorp to be an offset in that zone
*/
static struct strip_zone *find_zone(struct r0conf *conf,
sector_t *sectorp)
{
int i;
struct strip_zone *z = conf->strip_zone;
sector_t sector = *sectorp;
for (i = 0; i < conf->nr_strip_zones; i++)
if (sector < z[i].zone_end) {
if (i)
*sectorp = sector - z[i-1].zone_end;
return z + i;
}
BUG();
}
/*
* remaps the bio to the target device. we separate two flows.
* power 2 flow and a general flow for the sake of performance
*/
static struct md_rdev *map_sector(struct mddev *mddev, struct strip_zone *zone,
sector_t sector, sector_t *sector_offset)
{
unsigned int sect_in_chunk;
sector_t chunk;
struct r0conf *conf = mddev->private;
int raid_disks = conf->strip_zone[0].nb_dev;
unsigned int chunk_sects = mddev->chunk_sectors;
if (is_power_of_2(chunk_sects)) {
int chunksect_bits = ffz(~chunk_sects);
/* find the sector offset inside the chunk */
sect_in_chunk = sector & (chunk_sects - 1);
sector >>= chunksect_bits;
/* chunk in zone */
chunk = *sector_offset;
/* quotient is the chunk in real device*/
sector_div(chunk, zone->nb_dev << chunksect_bits);
} else{
sect_in_chunk = sector_div(sector, chunk_sects);
chunk = *sector_offset;
sector_div(chunk, chunk_sects * zone->nb_dev);
}
/*
* position the bio over the real device
* real sector = chunk in device + starting of zone
* + the position in the chunk
*/
*sector_offset = (chunk * chunk_sects) + sect_in_chunk;
return conf->devlist[(zone - conf->strip_zone)*raid_disks
+ sector_div(sector, zone->nb_dev)];
}
static sector_t raid0_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
sector_t array_sectors = 0;
struct md_rdev *rdev;
WARN_ONCE(sectors || raid_disks,
"%s does not support generic reshape\n", __func__);
rdev_for_each(rdev, mddev)
array_sectors += (rdev->sectors &
~(sector_t)(mddev->chunk_sectors-1));
return array_sectors;
}
md: Move alloc/free acct bioset in to personality bioset acct is only needed for raid0 and raid5. Therefore, md_run only allocates it for raid0 and raid5. However, this does not cover personality takeover, which may cause uninitialized bioset. For example, the following repro steps: mdadm -CR /dev/md0 -l1 -n2 /dev/loop0 /dev/loop1 mdadm --wait /dev/md0 mkfs.xfs /dev/md0 mdadm /dev/md0 --grow -l5 mount /dev/md0 /mnt causes panic like: [ 225.933939] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 225.934903] #PF: supervisor instruction fetch in kernel mode [ 225.935639] #PF: error_code(0x0010) - not-present page [ 225.936361] PGD 0 P4D 0 [ 225.936677] Oops: 0010 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN PTI [ 225.937525] CPU: 27 PID: 1133 Comm: mount Not tainted 5.16.0-rc3+ #706 [ 225.938416] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.module_el8.4.0+547+a85d02ba 04/01/2014 [ 225.939922] RIP: 0010:0x0 [ 225.940289] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [ 225.941196] RSP: 0018:ffff88815897eff0 EFLAGS: 00010246 [ 225.941897] RAX: 0000000000000000 RBX: 0000000000092800 RCX: ffffffff81370a39 [ 225.942813] RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000092800 [ 225.943772] RBP: 1ffff1102b12fe04 R08: fffffbfff0b43c01 R09: fffffbfff0b43c01 [ 225.944807] R10: ffffffff85a1e007 R11: fffffbfff0b43c00 R12: ffff88810eaaaf58 [ 225.945757] R13: 0000000000000000 R14: ffff88810eaaafb8 R15: ffff88815897f040 [ 225.946709] FS: 00007ff3f2505080(0000) GS:ffff888fb5e00000(0000) knlGS:0000000000000000 [ 225.947814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 225.948556] CR2: ffffffffffffffd6 CR3: 000000015aa5a006 CR4: 0000000000370ee0 [ 225.949537] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 225.950455] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 225.951414] Call Trace: [ 225.951787] <TASK> [ 225.952120] mempool_alloc+0xe5/0x250 [ 225.952625] ? mempool_resize+0x370/0x370 [ 225.953187] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.953862] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.954464] ? sched_clock_cpu+0x15/0x120 [ 225.955019] ? find_held_lock+0xac/0xd0 [ 225.955564] bio_alloc_bioset+0x1ed/0x2a0 [ 225.956080] ? lock_downgrade+0x3a0/0x3a0 [ 225.956644] ? bvec_alloc+0xc0/0xc0 [ 225.957135] bio_clone_fast+0x19/0x80 [ 225.957651] raid5_make_request+0x1370/0x1b70 [ 225.958286] ? sched_clock_cpu+0x15/0x120 [ 225.958797] ? __lock_acquire+0x8b2/0x3510 [ 225.959339] ? raid5_get_active_stripe+0xce0/0xce0 [ 225.959986] ? lock_is_held_type+0xd8/0x130 [ 225.960528] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.961135] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.961703] ? sched_clock_cpu+0x15/0x120 [ 225.962232] ? lock_release+0x27a/0x6c0 [ 225.962746] ? do_wait_intr_irq+0x130/0x130 [ 225.963302] ? lock_downgrade+0x3a0/0x3a0 [ 225.963815] ? lock_release+0x6c0/0x6c0 [ 225.964348] md_handle_request+0x342/0x530 [ 225.964888] ? set_in_sync+0x170/0x170 [ 225.965397] ? blk_queue_split+0x133/0x150 [ 225.965988] ? __blk_queue_split+0x8b0/0x8b0 [ 225.966524] ? submit_bio_checks+0x3b2/0x9d0 [ 225.967069] md_submit_bio+0x127/0x1c0 [...] Fix this by moving alloc/free of acct bioset to pers->run and pers->free. While we are on this, properly handle md_integrity_register() error in raid0_run(). Fixes: daee2024715d (md: check level before create and exit io_acct_set) Cc: stable@vger.kernel.org Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <song@kernel.org>
2021-12-10 17:31:15 +08:00
static void free_conf(struct mddev *mddev, struct r0conf *conf)
{
kfree(conf->strip_zone);
kfree(conf->devlist);
kfree(conf);
}
static void raid0_free(struct mddev *mddev, void *priv)
{
struct r0conf *conf = priv;
free_conf(mddev, conf);
acct_bioset_exit(mddev);
}
static int raid0_run(struct mddev *mddev)
{
struct r0conf *conf;
int ret;
if (mddev->chunk_sectors == 0) {
pr_warn("md/raid0:%s: chunk size must be set.\n", mdname(mddev));
return -EINVAL;
}
if (md_check_no_bitmap(mddev))
return -EINVAL;
md: Move alloc/free acct bioset in to personality bioset acct is only needed for raid0 and raid5. Therefore, md_run only allocates it for raid0 and raid5. However, this does not cover personality takeover, which may cause uninitialized bioset. For example, the following repro steps: mdadm -CR /dev/md0 -l1 -n2 /dev/loop0 /dev/loop1 mdadm --wait /dev/md0 mkfs.xfs /dev/md0 mdadm /dev/md0 --grow -l5 mount /dev/md0 /mnt causes panic like: [ 225.933939] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 225.934903] #PF: supervisor instruction fetch in kernel mode [ 225.935639] #PF: error_code(0x0010) - not-present page [ 225.936361] PGD 0 P4D 0 [ 225.936677] Oops: 0010 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN PTI [ 225.937525] CPU: 27 PID: 1133 Comm: mount Not tainted 5.16.0-rc3+ #706 [ 225.938416] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.module_el8.4.0+547+a85d02ba 04/01/2014 [ 225.939922] RIP: 0010:0x0 [ 225.940289] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [ 225.941196] RSP: 0018:ffff88815897eff0 EFLAGS: 00010246 [ 225.941897] RAX: 0000000000000000 RBX: 0000000000092800 RCX: ffffffff81370a39 [ 225.942813] RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000092800 [ 225.943772] RBP: 1ffff1102b12fe04 R08: fffffbfff0b43c01 R09: fffffbfff0b43c01 [ 225.944807] R10: ffffffff85a1e007 R11: fffffbfff0b43c00 R12: ffff88810eaaaf58 [ 225.945757] R13: 0000000000000000 R14: ffff88810eaaafb8 R15: ffff88815897f040 [ 225.946709] FS: 00007ff3f2505080(0000) GS:ffff888fb5e00000(0000) knlGS:0000000000000000 [ 225.947814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 225.948556] CR2: ffffffffffffffd6 CR3: 000000015aa5a006 CR4: 0000000000370ee0 [ 225.949537] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 225.950455] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 225.951414] Call Trace: [ 225.951787] <TASK> [ 225.952120] mempool_alloc+0xe5/0x250 [ 225.952625] ? mempool_resize+0x370/0x370 [ 225.953187] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.953862] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.954464] ? sched_clock_cpu+0x15/0x120 [ 225.955019] ? find_held_lock+0xac/0xd0 [ 225.955564] bio_alloc_bioset+0x1ed/0x2a0 [ 225.956080] ? lock_downgrade+0x3a0/0x3a0 [ 225.956644] ? bvec_alloc+0xc0/0xc0 [ 225.957135] bio_clone_fast+0x19/0x80 [ 225.957651] raid5_make_request+0x1370/0x1b70 [ 225.958286] ? sched_clock_cpu+0x15/0x120 [ 225.958797] ? __lock_acquire+0x8b2/0x3510 [ 225.959339] ? raid5_get_active_stripe+0xce0/0xce0 [ 225.959986] ? lock_is_held_type+0xd8/0x130 [ 225.960528] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.961135] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.961703] ? sched_clock_cpu+0x15/0x120 [ 225.962232] ? lock_release+0x27a/0x6c0 [ 225.962746] ? do_wait_intr_irq+0x130/0x130 [ 225.963302] ? lock_downgrade+0x3a0/0x3a0 [ 225.963815] ? lock_release+0x6c0/0x6c0 [ 225.964348] md_handle_request+0x342/0x530 [ 225.964888] ? set_in_sync+0x170/0x170 [ 225.965397] ? blk_queue_split+0x133/0x150 [ 225.965988] ? __blk_queue_split+0x8b0/0x8b0 [ 225.966524] ? submit_bio_checks+0x3b2/0x9d0 [ 225.967069] md_submit_bio+0x127/0x1c0 [...] Fix this by moving alloc/free of acct bioset to pers->run and pers->free. While we are on this, properly handle md_integrity_register() error in raid0_run(). Fixes: daee2024715d (md: check level before create and exit io_acct_set) Cc: stable@vger.kernel.org Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <song@kernel.org>
2021-12-10 17:31:15 +08:00
if (acct_bioset_init(mddev)) {
pr_err("md/raid0:%s: alloc acct bioset failed.\n", mdname(mddev));
return -ENOMEM;
}
/* if private is not null, we are here after takeover */
if (mddev->private == NULL) {
ret = create_strip_zones(mddev, &conf);
if (ret < 0)
md: Move alloc/free acct bioset in to personality bioset acct is only needed for raid0 and raid5. Therefore, md_run only allocates it for raid0 and raid5. However, this does not cover personality takeover, which may cause uninitialized bioset. For example, the following repro steps: mdadm -CR /dev/md0 -l1 -n2 /dev/loop0 /dev/loop1 mdadm --wait /dev/md0 mkfs.xfs /dev/md0 mdadm /dev/md0 --grow -l5 mount /dev/md0 /mnt causes panic like: [ 225.933939] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 225.934903] #PF: supervisor instruction fetch in kernel mode [ 225.935639] #PF: error_code(0x0010) - not-present page [ 225.936361] PGD 0 P4D 0 [ 225.936677] Oops: 0010 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN PTI [ 225.937525] CPU: 27 PID: 1133 Comm: mount Not tainted 5.16.0-rc3+ #706 [ 225.938416] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.module_el8.4.0+547+a85d02ba 04/01/2014 [ 225.939922] RIP: 0010:0x0 [ 225.940289] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [ 225.941196] RSP: 0018:ffff88815897eff0 EFLAGS: 00010246 [ 225.941897] RAX: 0000000000000000 RBX: 0000000000092800 RCX: ffffffff81370a39 [ 225.942813] RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000092800 [ 225.943772] RBP: 1ffff1102b12fe04 R08: fffffbfff0b43c01 R09: fffffbfff0b43c01 [ 225.944807] R10: ffffffff85a1e007 R11: fffffbfff0b43c00 R12: ffff88810eaaaf58 [ 225.945757] R13: 0000000000000000 R14: ffff88810eaaafb8 R15: ffff88815897f040 [ 225.946709] FS: 00007ff3f2505080(0000) GS:ffff888fb5e00000(0000) knlGS:0000000000000000 [ 225.947814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 225.948556] CR2: ffffffffffffffd6 CR3: 000000015aa5a006 CR4: 0000000000370ee0 [ 225.949537] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 225.950455] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 225.951414] Call Trace: [ 225.951787] <TASK> [ 225.952120] mempool_alloc+0xe5/0x250 [ 225.952625] ? mempool_resize+0x370/0x370 [ 225.953187] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.953862] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.954464] ? sched_clock_cpu+0x15/0x120 [ 225.955019] ? find_held_lock+0xac/0xd0 [ 225.955564] bio_alloc_bioset+0x1ed/0x2a0 [ 225.956080] ? lock_downgrade+0x3a0/0x3a0 [ 225.956644] ? bvec_alloc+0xc0/0xc0 [ 225.957135] bio_clone_fast+0x19/0x80 [ 225.957651] raid5_make_request+0x1370/0x1b70 [ 225.958286] ? sched_clock_cpu+0x15/0x120 [ 225.958797] ? __lock_acquire+0x8b2/0x3510 [ 225.959339] ? raid5_get_active_stripe+0xce0/0xce0 [ 225.959986] ? lock_is_held_type+0xd8/0x130 [ 225.960528] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.961135] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.961703] ? sched_clock_cpu+0x15/0x120 [ 225.962232] ? lock_release+0x27a/0x6c0 [ 225.962746] ? do_wait_intr_irq+0x130/0x130 [ 225.963302] ? lock_downgrade+0x3a0/0x3a0 [ 225.963815] ? lock_release+0x6c0/0x6c0 [ 225.964348] md_handle_request+0x342/0x530 [ 225.964888] ? set_in_sync+0x170/0x170 [ 225.965397] ? blk_queue_split+0x133/0x150 [ 225.965988] ? __blk_queue_split+0x8b0/0x8b0 [ 225.966524] ? submit_bio_checks+0x3b2/0x9d0 [ 225.967069] md_submit_bio+0x127/0x1c0 [...] Fix this by moving alloc/free of acct bioset to pers->run and pers->free. While we are on this, properly handle md_integrity_register() error in raid0_run(). Fixes: daee2024715d (md: check level before create and exit io_acct_set) Cc: stable@vger.kernel.org Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <song@kernel.org>
2021-12-10 17:31:15 +08:00
goto exit_acct_set;
mddev->private = conf;
}
conf = mddev->private;
if (mddev->queue) {
struct md_rdev *rdev;
blk_queue_max_hw_sectors(mddev->queue, mddev->chunk_sectors);
blk_queue_max_write_zeroes_sectors(mddev->queue, mddev->chunk_sectors);
blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
blk_queue_io_opt(mddev->queue,
(mddev->chunk_sectors << 9) * mddev->raid_disks);
rdev_for_each(rdev, mddev) {
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
}
}
/* calculate array device size */
md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
pr_debug("md/raid0:%s: md_size is %llu sectors.\n",
mdname(mddev),
(unsigned long long)mddev->array_sectors);
dump_zones(mddev);
ret = md_integrity_register(mddev);
md: Move alloc/free acct bioset in to personality bioset acct is only needed for raid0 and raid5. Therefore, md_run only allocates it for raid0 and raid5. However, this does not cover personality takeover, which may cause uninitialized bioset. For example, the following repro steps: mdadm -CR /dev/md0 -l1 -n2 /dev/loop0 /dev/loop1 mdadm --wait /dev/md0 mkfs.xfs /dev/md0 mdadm /dev/md0 --grow -l5 mount /dev/md0 /mnt causes panic like: [ 225.933939] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 225.934903] #PF: supervisor instruction fetch in kernel mode [ 225.935639] #PF: error_code(0x0010) - not-present page [ 225.936361] PGD 0 P4D 0 [ 225.936677] Oops: 0010 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN PTI [ 225.937525] CPU: 27 PID: 1133 Comm: mount Not tainted 5.16.0-rc3+ #706 [ 225.938416] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.module_el8.4.0+547+a85d02ba 04/01/2014 [ 225.939922] RIP: 0010:0x0 [ 225.940289] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [ 225.941196] RSP: 0018:ffff88815897eff0 EFLAGS: 00010246 [ 225.941897] RAX: 0000000000000000 RBX: 0000000000092800 RCX: ffffffff81370a39 [ 225.942813] RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000092800 [ 225.943772] RBP: 1ffff1102b12fe04 R08: fffffbfff0b43c01 R09: fffffbfff0b43c01 [ 225.944807] R10: ffffffff85a1e007 R11: fffffbfff0b43c00 R12: ffff88810eaaaf58 [ 225.945757] R13: 0000000000000000 R14: ffff88810eaaafb8 R15: ffff88815897f040 [ 225.946709] FS: 00007ff3f2505080(0000) GS:ffff888fb5e00000(0000) knlGS:0000000000000000 [ 225.947814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 225.948556] CR2: ffffffffffffffd6 CR3: 000000015aa5a006 CR4: 0000000000370ee0 [ 225.949537] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 225.950455] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 225.951414] Call Trace: [ 225.951787] <TASK> [ 225.952120] mempool_alloc+0xe5/0x250 [ 225.952625] ? mempool_resize+0x370/0x370 [ 225.953187] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.953862] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.954464] ? sched_clock_cpu+0x15/0x120 [ 225.955019] ? find_held_lock+0xac/0xd0 [ 225.955564] bio_alloc_bioset+0x1ed/0x2a0 [ 225.956080] ? lock_downgrade+0x3a0/0x3a0 [ 225.956644] ? bvec_alloc+0xc0/0xc0 [ 225.957135] bio_clone_fast+0x19/0x80 [ 225.957651] raid5_make_request+0x1370/0x1b70 [ 225.958286] ? sched_clock_cpu+0x15/0x120 [ 225.958797] ? __lock_acquire+0x8b2/0x3510 [ 225.959339] ? raid5_get_active_stripe+0xce0/0xce0 [ 225.959986] ? lock_is_held_type+0xd8/0x130 [ 225.960528] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.961135] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.961703] ? sched_clock_cpu+0x15/0x120 [ 225.962232] ? lock_release+0x27a/0x6c0 [ 225.962746] ? do_wait_intr_irq+0x130/0x130 [ 225.963302] ? lock_downgrade+0x3a0/0x3a0 [ 225.963815] ? lock_release+0x6c0/0x6c0 [ 225.964348] md_handle_request+0x342/0x530 [ 225.964888] ? set_in_sync+0x170/0x170 [ 225.965397] ? blk_queue_split+0x133/0x150 [ 225.965988] ? __blk_queue_split+0x8b0/0x8b0 [ 225.966524] ? submit_bio_checks+0x3b2/0x9d0 [ 225.967069] md_submit_bio+0x127/0x1c0 [...] Fix this by moving alloc/free of acct bioset to pers->run and pers->free. While we are on this, properly handle md_integrity_register() error in raid0_run(). Fixes: daee2024715d (md: check level before create and exit io_acct_set) Cc: stable@vger.kernel.org Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <song@kernel.org>
2021-12-10 17:31:15 +08:00
if (ret)
goto free;
return ret;
md: Move alloc/free acct bioset in to personality bioset acct is only needed for raid0 and raid5. Therefore, md_run only allocates it for raid0 and raid5. However, this does not cover personality takeover, which may cause uninitialized bioset. For example, the following repro steps: mdadm -CR /dev/md0 -l1 -n2 /dev/loop0 /dev/loop1 mdadm --wait /dev/md0 mkfs.xfs /dev/md0 mdadm /dev/md0 --grow -l5 mount /dev/md0 /mnt causes panic like: [ 225.933939] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 225.934903] #PF: supervisor instruction fetch in kernel mode [ 225.935639] #PF: error_code(0x0010) - not-present page [ 225.936361] PGD 0 P4D 0 [ 225.936677] Oops: 0010 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN PTI [ 225.937525] CPU: 27 PID: 1133 Comm: mount Not tainted 5.16.0-rc3+ #706 [ 225.938416] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.module_el8.4.0+547+a85d02ba 04/01/2014 [ 225.939922] RIP: 0010:0x0 [ 225.940289] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [ 225.941196] RSP: 0018:ffff88815897eff0 EFLAGS: 00010246 [ 225.941897] RAX: 0000000000000000 RBX: 0000000000092800 RCX: ffffffff81370a39 [ 225.942813] RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000092800 [ 225.943772] RBP: 1ffff1102b12fe04 R08: fffffbfff0b43c01 R09: fffffbfff0b43c01 [ 225.944807] R10: ffffffff85a1e007 R11: fffffbfff0b43c00 R12: ffff88810eaaaf58 [ 225.945757] R13: 0000000000000000 R14: ffff88810eaaafb8 R15: ffff88815897f040 [ 225.946709] FS: 00007ff3f2505080(0000) GS:ffff888fb5e00000(0000) knlGS:0000000000000000 [ 225.947814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 225.948556] CR2: ffffffffffffffd6 CR3: 000000015aa5a006 CR4: 0000000000370ee0 [ 225.949537] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 225.950455] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 225.951414] Call Trace: [ 225.951787] <TASK> [ 225.952120] mempool_alloc+0xe5/0x250 [ 225.952625] ? mempool_resize+0x370/0x370 [ 225.953187] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.953862] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.954464] ? sched_clock_cpu+0x15/0x120 [ 225.955019] ? find_held_lock+0xac/0xd0 [ 225.955564] bio_alloc_bioset+0x1ed/0x2a0 [ 225.956080] ? lock_downgrade+0x3a0/0x3a0 [ 225.956644] ? bvec_alloc+0xc0/0xc0 [ 225.957135] bio_clone_fast+0x19/0x80 [ 225.957651] raid5_make_request+0x1370/0x1b70 [ 225.958286] ? sched_clock_cpu+0x15/0x120 [ 225.958797] ? __lock_acquire+0x8b2/0x3510 [ 225.959339] ? raid5_get_active_stripe+0xce0/0xce0 [ 225.959986] ? lock_is_held_type+0xd8/0x130 [ 225.960528] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 225.961135] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 225.961703] ? sched_clock_cpu+0x15/0x120 [ 225.962232] ? lock_release+0x27a/0x6c0 [ 225.962746] ? do_wait_intr_irq+0x130/0x130 [ 225.963302] ? lock_downgrade+0x3a0/0x3a0 [ 225.963815] ? lock_release+0x6c0/0x6c0 [ 225.964348] md_handle_request+0x342/0x530 [ 225.964888] ? set_in_sync+0x170/0x170 [ 225.965397] ? blk_queue_split+0x133/0x150 [ 225.965988] ? __blk_queue_split+0x8b0/0x8b0 [ 225.966524] ? submit_bio_checks+0x3b2/0x9d0 [ 225.967069] md_submit_bio+0x127/0x1c0 [...] Fix this by moving alloc/free of acct bioset to pers->run and pers->free. While we are on this, properly handle md_integrity_register() error in raid0_run(). Fixes: daee2024715d (md: check level before create and exit io_acct_set) Cc: stable@vger.kernel.org Acked-by: Guoqing Jiang <guoqing.jiang@linux.dev> Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <song@kernel.org>
2021-12-10 17:31:15 +08:00
free:
free_conf(mddev, conf);
exit_acct_set:
acct_bioset_exit(mddev);
return ret;
}
static void raid0_handle_discard(struct mddev *mddev, struct bio *bio)
{
struct r0conf *conf = mddev->private;
struct strip_zone *zone;
sector_t start = bio->bi_iter.bi_sector;
sector_t end;
unsigned int stripe_size;
sector_t first_stripe_index, last_stripe_index;
sector_t start_disk_offset;
unsigned int start_disk_index;
sector_t end_disk_offset;
unsigned int end_disk_index;
unsigned int disk;
zone = find_zone(conf, &start);
if (bio_end_sector(bio) > zone->zone_end) {
struct bio *split = bio_split(bio,
zone->zone_end - bio->bi_iter.bi_sector, GFP_NOIO,
&mddev->bio_set);
bio_chain(split, bio);
submit_bio_noacct(bio);
bio = split;
end = zone->zone_end;
} else
end = bio_end_sector(bio);
if (zone != conf->strip_zone)
end = end - zone[-1].zone_end;
/* Now start and end is the offset in zone */
stripe_size = zone->nb_dev * mddev->chunk_sectors;
first_stripe_index = start;
sector_div(first_stripe_index, stripe_size);
last_stripe_index = end;
sector_div(last_stripe_index, stripe_size);
start_disk_index = (int)(start - first_stripe_index * stripe_size) /
mddev->chunk_sectors;
start_disk_offset = ((int)(start - first_stripe_index * stripe_size) %
mddev->chunk_sectors) +
first_stripe_index * mddev->chunk_sectors;
end_disk_index = (int)(end - last_stripe_index * stripe_size) /
mddev->chunk_sectors;
end_disk_offset = ((int)(end - last_stripe_index * stripe_size) %
mddev->chunk_sectors) +
last_stripe_index * mddev->chunk_sectors;
for (disk = 0; disk < zone->nb_dev; disk++) {
sector_t dev_start, dev_end;
struct md_rdev *rdev;
if (disk < start_disk_index)
dev_start = (first_stripe_index + 1) *
mddev->chunk_sectors;
else if (disk > start_disk_index)
dev_start = first_stripe_index * mddev->chunk_sectors;
else
dev_start = start_disk_offset;
if (disk < end_disk_index)
dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
else if (disk > end_disk_index)
dev_end = last_stripe_index * mddev->chunk_sectors;
else
dev_end = end_disk_offset;
if (dev_end <= dev_start)
continue;
rdev = conf->devlist[(zone - conf->strip_zone) *
conf->strip_zone[0].nb_dev + disk];
md_submit_discard_bio(mddev, rdev, bio,
dev_start + zone->dev_start + rdev->data_offset,
dev_end - dev_start);
}
bio_endio(bio);
}
static bool raid0_make_request(struct mddev *mddev, struct bio *bio)
{
struct r0conf *conf = mddev->private;
struct strip_zone *zone;
struct md_rdev *tmp_dev;
sector_t bio_sector;
sector_t sector;
sector_t orig_sector;
unsigned chunk_sects;
unsigned sectors;
if (unlikely(bio->bi_opf & REQ_PREFLUSH)
&& md_flush_request(mddev, bio))
return true;
if (unlikely((bio_op(bio) == REQ_OP_DISCARD))) {
raid0_handle_discard(mddev, bio);
return true;
}
bio_sector = bio->bi_iter.bi_sector;
sector = bio_sector;
chunk_sects = mddev->chunk_sectors;
sectors = chunk_sects -
(likely(is_power_of_2(chunk_sects))
? (sector & (chunk_sects-1))
: sector_div(sector, chunk_sects));
/* Restore due to sector_div */
sector = bio_sector;
if (sectors < bio_sectors(bio)) {
struct bio *split = bio_split(bio, sectors, GFP_NOIO,
&mddev->bio_set);
bio_chain(split, bio);
submit_bio_noacct(bio);
bio = split;
}
if (bio->bi_pool != &mddev->bio_set)
md_account_bio(mddev, &bio);
orig_sector = sector;
zone = find_zone(mddev->private, &sector);
switch (conf->layout) {
case RAID0_ORIG_LAYOUT:
tmp_dev = map_sector(mddev, zone, orig_sector, &sector);
break;
case RAID0_ALT_MULTIZONE_LAYOUT:
tmp_dev = map_sector(mddev, zone, sector, &sector);
break;
default:
WARN(1, "md/raid0:%s: Invalid layout\n", mdname(mddev));
bio_io_error(bio);
return true;
}
md raid0/linear: Mark array as 'broken' and fail BIOs if a member is gone Currently md raid0/linear are not provided with any mechanism to validate if an array member got removed or failed. The driver keeps sending BIOs regardless of the state of array members, and kernel shows state 'clean' in the 'array_state' sysfs attribute. This leads to the following situation: if a raid0/linear array member is removed and the array is mounted, some user writing to this array won't realize that errors are happening unless they check dmesg or perform one fsync per written file. Despite udev signaling the member device is gone, 'mdadm' cannot issue the STOP_ARRAY ioctl successfully, given the array is mounted. In other words, no -EIO is returned and writes (except direct ones) appear normal. Meaning the user might think the wrote data is correctly stored in the array, but instead garbage was written given that raid0 does stripping (and so, it requires all its members to be working in order to not corrupt data). For md/linear, writes to the available members will work fine, but if the writes go to the missing member(s), it'll cause a file corruption situation, whereas the portion of the writes to the missing devices aren't written effectively. This patch changes this behavior: we check if the block device's gendisk is UP when submitting the BIO to the array member, and if it isn't, we flag the md device as MD_BROKEN and fail subsequent I/Os to that device; a read request to the array requiring data from a valid member is still completed. While flagging the device as MD_BROKEN, we also show a rate-limited warning in the kernel log. A new array state 'broken' was added too: it mimics the state 'clean' in every aspect, being useful only to distinguish if the array has some member missing. We rely on the MD_BROKEN flag to put the array in the 'broken' state. This state cannot be written in 'array_state' as it just shows one or more members of the array are missing but acts like 'clean', it wouldn't make sense to write it. With this patch, the filesystem reacts much faster to the event of missing array member: after some I/O errors, ext4 for instance aborts the journal and prevents corruption. Without this change, we're able to keep writing in the disk and after a machine reboot, e2fsck shows some severe fs errors that demand fixing. This patch was tested in ext4 and xfs filesystems, and requires a 'mdadm' counterpart to handle the 'broken' state. Cc: Song Liu <songliubraving@fb.com> Reviewed-by: NeilBrown <neilb@suse.de> Signed-off-by: Guilherme G. Piccoli <gpiccoli@canonical.com> Signed-off-by: Song Liu <songliubraving@fb.com>
2019-09-03 16:49:00 -03:00
if (unlikely(is_rdev_broken(tmp_dev))) {
md raid0/linear: Mark array as 'broken' and fail BIOs if a member is gone Currently md raid0/linear are not provided with any mechanism to validate if an array member got removed or failed. The driver keeps sending BIOs regardless of the state of array members, and kernel shows state 'clean' in the 'array_state' sysfs attribute. This leads to the following situation: if a raid0/linear array member is removed and the array is mounted, some user writing to this array won't realize that errors are happening unless they check dmesg or perform one fsync per written file. Despite udev signaling the member device is gone, 'mdadm' cannot issue the STOP_ARRAY ioctl successfully, given the array is mounted. In other words, no -EIO is returned and writes (except direct ones) appear normal. Meaning the user might think the wrote data is correctly stored in the array, but instead garbage was written given that raid0 does stripping (and so, it requires all its members to be working in order to not corrupt data). For md/linear, writes to the available members will work fine, but if the writes go to the missing member(s), it'll cause a file corruption situation, whereas the portion of the writes to the missing devices aren't written effectively. This patch changes this behavior: we check if the block device's gendisk is UP when submitting the BIO to the array member, and if it isn't, we flag the md device as MD_BROKEN and fail subsequent I/Os to that device; a read request to the array requiring data from a valid member is still completed. While flagging the device as MD_BROKEN, we also show a rate-limited warning in the kernel log. A new array state 'broken' was added too: it mimics the state 'clean' in every aspect, being useful only to distinguish if the array has some member missing. We rely on the MD_BROKEN flag to put the array in the 'broken' state. This state cannot be written in 'array_state' as it just shows one or more members of the array are missing but acts like 'clean', it wouldn't make sense to write it. With this patch, the filesystem reacts much faster to the event of missing array member: after some I/O errors, ext4 for instance aborts the journal and prevents corruption. Without this change, we're able to keep writing in the disk and after a machine reboot, e2fsck shows some severe fs errors that demand fixing. This patch was tested in ext4 and xfs filesystems, and requires a 'mdadm' counterpart to handle the 'broken' state. Cc: Song Liu <songliubraving@fb.com> Reviewed-by: NeilBrown <neilb@suse.de> Signed-off-by: Guilherme G. Piccoli <gpiccoli@canonical.com> Signed-off-by: Song Liu <songliubraving@fb.com>
2019-09-03 16:49:00 -03:00
bio_io_error(bio);
md_error(mddev, tmp_dev);
md raid0/linear: Mark array as 'broken' and fail BIOs if a member is gone Currently md raid0/linear are not provided with any mechanism to validate if an array member got removed or failed. The driver keeps sending BIOs regardless of the state of array members, and kernel shows state 'clean' in the 'array_state' sysfs attribute. This leads to the following situation: if a raid0/linear array member is removed and the array is mounted, some user writing to this array won't realize that errors are happening unless they check dmesg or perform one fsync per written file. Despite udev signaling the member device is gone, 'mdadm' cannot issue the STOP_ARRAY ioctl successfully, given the array is mounted. In other words, no -EIO is returned and writes (except direct ones) appear normal. Meaning the user might think the wrote data is correctly stored in the array, but instead garbage was written given that raid0 does stripping (and so, it requires all its members to be working in order to not corrupt data). For md/linear, writes to the available members will work fine, but if the writes go to the missing member(s), it'll cause a file corruption situation, whereas the portion of the writes to the missing devices aren't written effectively. This patch changes this behavior: we check if the block device's gendisk is UP when submitting the BIO to the array member, and if it isn't, we flag the md device as MD_BROKEN and fail subsequent I/Os to that device; a read request to the array requiring data from a valid member is still completed. While flagging the device as MD_BROKEN, we also show a rate-limited warning in the kernel log. A new array state 'broken' was added too: it mimics the state 'clean' in every aspect, being useful only to distinguish if the array has some member missing. We rely on the MD_BROKEN flag to put the array in the 'broken' state. This state cannot be written in 'array_state' as it just shows one or more members of the array are missing but acts like 'clean', it wouldn't make sense to write it. With this patch, the filesystem reacts much faster to the event of missing array member: after some I/O errors, ext4 for instance aborts the journal and prevents corruption. Without this change, we're able to keep writing in the disk and after a machine reboot, e2fsck shows some severe fs errors that demand fixing. This patch was tested in ext4 and xfs filesystems, and requires a 'mdadm' counterpart to handle the 'broken' state. Cc: Song Liu <songliubraving@fb.com> Reviewed-by: NeilBrown <neilb@suse.de> Signed-off-by: Guilherme G. Piccoli <gpiccoli@canonical.com> Signed-off-by: Song Liu <songliubraving@fb.com>
2019-09-03 16:49:00 -03:00
return true;
}
bio_set_dev(bio, tmp_dev->bdev);
bio->bi_iter.bi_sector = sector + zone->dev_start +
tmp_dev->data_offset;
if (mddev->gendisk)
trace_block_bio_remap(bio, disk_devt(mddev->gendisk),
bio_sector);
mddev_check_write_zeroes(mddev, bio);
submit_bio_noacct(bio);
return true;
}
static void raid0_status(struct seq_file *seq, struct mddev *mddev)
{
seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2);
return;
}
static void raid0_error(struct mddev *mddev, struct md_rdev *rdev)
{
if (!test_and_set_bit(MD_BROKEN, &mddev->flags)) {
char *md_name = mdname(mddev);
pr_crit("md/raid0%s: Disk failure on %pg detected, failing array.\n",
md_name, rdev->bdev);
}
}
static void *raid0_takeover_raid45(struct mddev *mddev)
{
struct md_rdev *rdev;
struct r0conf *priv_conf;
if (mddev->degraded != 1) {
pr_warn("md/raid0:%s: raid5 must be degraded! Degraded disks: %d\n",
mdname(mddev),
mddev->degraded);
return ERR_PTR(-EINVAL);
}
rdev_for_each(rdev, mddev) {
/* check slot number for a disk */
if (rdev->raid_disk == mddev->raid_disks-1) {
pr_warn("md/raid0:%s: raid5 must have missing parity disk!\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
rdev->sectors = mddev->dev_sectors;
}
/* Set new parameters */
mddev->new_level = 0;
mddev->new_layout = 0;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks--;
mddev->delta_disks = -1;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
create_strip_zones(mddev, &priv_conf);
return priv_conf;
}
static void *raid0_takeover_raid10(struct mddev *mddev)
{
struct r0conf *priv_conf;
/* Check layout:
* - far_copies must be 1
* - near_copies must be 2
* - disks number must be even
* - all mirrors must be already degraded
*/
if (mddev->layout != ((1 << 8) + 2)) {
pr_warn("md/raid0:%s:: Raid0 cannot takeover layout: 0x%x\n",
mdname(mddev),
mddev->layout);
return ERR_PTR(-EINVAL);
}
if (mddev->raid_disks & 1) {
pr_warn("md/raid0:%s: Raid0 cannot takeover Raid10 with odd disk number.\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
if (mddev->degraded != (mddev->raid_disks>>1)) {
pr_warn("md/raid0:%s: All mirrors must be already degraded!\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
/* Set new parameters */
mddev->new_level = 0;
mddev->new_layout = 0;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->delta_disks = - mddev->raid_disks / 2;
mddev->raid_disks += mddev->delta_disks;
mddev->degraded = 0;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
create_strip_zones(mddev, &priv_conf);
return priv_conf;
}
static void *raid0_takeover_raid1(struct mddev *mddev)
{
struct r0conf *priv_conf;
int chunksect;
/* Check layout:
* - (N - 1) mirror drives must be already faulty
*/
if ((mddev->raid_disks - 1) != mddev->degraded) {
pr_err("md/raid0:%s: (N - 1) mirrors drives must be already faulty!\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
/*
* a raid1 doesn't have the notion of chunk size, so
* figure out the largest suitable size we can use.
*/
chunksect = 64 * 2; /* 64K by default */
/* The array must be an exact multiple of chunksize */
while (chunksect && (mddev->array_sectors & (chunksect - 1)))
chunksect >>= 1;
if ((chunksect << 9) < PAGE_SIZE)
/* array size does not allow a suitable chunk size */
return ERR_PTR(-EINVAL);
/* Set new parameters */
mddev->new_level = 0;
mddev->new_layout = 0;
mddev->new_chunk_sectors = chunksect;
mddev->chunk_sectors = chunksect;
mddev->delta_disks = 1 - mddev->raid_disks;
mddev->raid_disks = 1;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
create_strip_zones(mddev, &priv_conf);
return priv_conf;
}
static void *raid0_takeover(struct mddev *mddev)
{
/* raid0 can take over:
* raid4 - if all data disks are active.
* raid5 - providing it is Raid4 layout and one disk is faulty
* raid10 - assuming we have all necessary active disks
* raid1 - with (N -1) mirror drives faulty
*/
if (mddev->bitmap) {
pr_warn("md/raid0: %s: cannot takeover array with bitmap\n",
mdname(mddev));
return ERR_PTR(-EBUSY);
}
if (mddev->level == 4)
return raid0_takeover_raid45(mddev);
if (mddev->level == 5) {
if (mddev->layout == ALGORITHM_PARITY_N)
return raid0_takeover_raid45(mddev);
pr_warn("md/raid0:%s: Raid can only takeover Raid5 with layout: %d\n",
mdname(mddev), ALGORITHM_PARITY_N);
}
if (mddev->level == 10)
return raid0_takeover_raid10(mddev);
if (mddev->level == 1)
return raid0_takeover_raid1(mddev);
pr_warn("Takeover from raid%i to raid0 not supported\n",
mddev->level);
return ERR_PTR(-EINVAL);
}
static void raid0_quiesce(struct mddev *mddev, int quiesce)
{
}
static struct md_personality raid0_personality=
{
.name = "raid0",
.level = 0,
.owner = THIS_MODULE,
.make_request = raid0_make_request,
.run = raid0_run,
.free = raid0_free,
.status = raid0_status,
.size = raid0_size,
.takeover = raid0_takeover,
.quiesce = raid0_quiesce,
.error_handler = raid0_error,
};
static int __init raid0_init (void)
{
return register_md_personality (&raid0_personality);
}
static void raid0_exit (void)
{
unregister_md_personality (&raid0_personality);
}
module_init(raid0_init);
module_exit(raid0_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID0 (striping) personality for MD");
MODULE_ALIAS("md-personality-2"); /* RAID0 */
MODULE_ALIAS("md-raid0");
MODULE_ALIAS("md-level-0");