linux-next/drivers/opp/ti-opp-supply.c

414 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Texas Instruments Incorporated - https://www.ti.com/
* Nishanth Menon <nm@ti.com>
* Dave Gerlach <d-gerlach@ti.com>
*
* TI OPP supply driver that provides override into the regulator control
* for generic opp core to handle devices with ABB regulator and/or
* SmartReflex Class0.
*/
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/**
* struct ti_opp_supply_optimum_voltage_table - optimized voltage table
* @reference_uv: reference voltage (usually Nominal voltage)
* @optimized_uv: Optimized voltage from efuse
*/
struct ti_opp_supply_optimum_voltage_table {
unsigned int reference_uv;
unsigned int optimized_uv;
};
/**
* struct ti_opp_supply_data - OMAP specific opp supply data
* @vdd_table: Optimized voltage mapping table
* @num_vdd_table: number of entries in vdd_table
* @vdd_absolute_max_voltage_uv: absolute maximum voltage in UV for the supply
* @old_supplies: Placeholder for supplies information for old OPP.
* @new_supplies: Placeholder for supplies information for new OPP.
*/
struct ti_opp_supply_data {
struct ti_opp_supply_optimum_voltage_table *vdd_table;
u32 num_vdd_table;
u32 vdd_absolute_max_voltage_uv;
struct dev_pm_opp_supply old_supplies[2];
struct dev_pm_opp_supply new_supplies[2];
};
static struct ti_opp_supply_data opp_data;
/**
* struct ti_opp_supply_of_data - device tree match data
* @flags: specific type of opp supply
* @efuse_voltage_mask: mask required for efuse register representing voltage
* @efuse_voltage_uv: Are the efuse entries in micro-volts? if not, assume
* milli-volts.
*/
struct ti_opp_supply_of_data {
#define OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE BIT(1)
#define OPPDM_HAS_NO_ABB BIT(2)
const u8 flags;
const u32 efuse_voltage_mask;
const bool efuse_voltage_uv;
};
/**
* _store_optimized_voltages() - store optimized voltages
* @dev: ti opp supply device for which we need to store info
* @data: data specific to the device
*
* Picks up efuse based optimized voltages for VDD unique per device and
* stores it in internal data structure for use during transition requests.
*
* Return: If successful, 0, else appropriate error value.
*/
static int _store_optimized_voltages(struct device *dev,
struct ti_opp_supply_data *data)
{
void __iomem *base;
struct property *prop;
struct resource *res;
const __be32 *val;
int proplen, i;
int ret = 0;
struct ti_opp_supply_optimum_voltage_table *table;
const struct ti_opp_supply_of_data *of_data = dev_get_drvdata(dev);
/* pick up Efuse based voltages */
res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "Unable to get IO resource\n");
ret = -ENODEV;
goto out_map;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
dev_err(dev, "Unable to map Efuse registers\n");
ret = -ENOMEM;
goto out_map;
}
/* Fetch efuse-settings. */
prop = of_find_property(dev->of_node, "ti,efuse-settings", NULL);
if (!prop) {
dev_err(dev, "No 'ti,efuse-settings' property found\n");
ret = -EINVAL;
goto out;
}
proplen = prop->length / sizeof(int);
data->num_vdd_table = proplen / 2;
/* Verify for corrupted OPP entries in dt */
if (data->num_vdd_table * 2 * sizeof(int) != prop->length) {
dev_err(dev, "Invalid 'ti,efuse-settings'\n");
ret = -EINVAL;
goto out;
}
ret = of_property_read_u32(dev->of_node, "ti,absolute-max-voltage-uv",
&data->vdd_absolute_max_voltage_uv);
if (ret) {
dev_err(dev, "ti,absolute-max-voltage-uv is missing\n");
ret = -EINVAL;
goto out;
}
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
table = kcalloc(data->num_vdd_table, sizeof(*data->vdd_table),
GFP_KERNEL);
if (!table) {
ret = -ENOMEM;
goto out;
}
data->vdd_table = table;
val = prop->value;
for (i = 0; i < data->num_vdd_table; i++, table++) {
u32 efuse_offset;
u32 tmp;
table->reference_uv = be32_to_cpup(val++);
efuse_offset = be32_to_cpup(val++);
tmp = readl(base + efuse_offset);
tmp &= of_data->efuse_voltage_mask;
tmp >>= __ffs(of_data->efuse_voltage_mask);
table->optimized_uv = of_data->efuse_voltage_uv ? tmp :
tmp * 1000;
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d vset=%d\n",
i, efuse_offset, table->reference_uv,
table->optimized_uv);
/*
* Some older samples might not have optimized efuse
* Use reference voltage for those - just add debug message
* for them.
*/
if (!table->optimized_uv) {
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d:vset0\n",
i, efuse_offset, table->reference_uv);
table->optimized_uv = table->reference_uv;
}
}
out:
iounmap(base);
out_map:
return ret;
}
/**
* _free_optimized_voltages() - free resources for optvoltages
* @dev: device for which we need to free info
* @data: data specific to the device
*/
static void _free_optimized_voltages(struct device *dev,
struct ti_opp_supply_data *data)
{
kfree(data->vdd_table);
data->vdd_table = NULL;
data->num_vdd_table = 0;
}
/**
* _get_optimal_vdd_voltage() - Finds optimal voltage for the supply
* @dev: device for which we need to find info
* @data: data specific to the device
* @reference_uv: reference voltage (OPP voltage) for which we need value
*
* Return: if a match is found, return optimized voltage, else return
* reference_uv, also return reference_uv if no optimization is needed.
*/
static int _get_optimal_vdd_voltage(struct device *dev,
struct ti_opp_supply_data *data,
int reference_uv)
{
int i;
struct ti_opp_supply_optimum_voltage_table *table;
if (!data->num_vdd_table)
return reference_uv;
table = data->vdd_table;
if (!table)
return -EINVAL;
/* Find a exact match - this list is usually very small */
for (i = 0; i < data->num_vdd_table; i++, table++)
if (table->reference_uv == reference_uv)
return table->optimized_uv;
/* IF things are screwed up, we'd make a mess on console.. ratelimit */
dev_err_ratelimited(dev, "%s: Failed optimized voltage match for %d\n",
__func__, reference_uv);
return reference_uv;
}
static int _opp_set_voltage(struct device *dev,
struct dev_pm_opp_supply *supply,
int new_target_uv, struct regulator *reg,
char *reg_name)
{
int ret;
unsigned long vdd_uv, uv_max;
if (new_target_uv)
vdd_uv = new_target_uv;
else
vdd_uv = supply->u_volt;
/*
* If we do have an absolute max voltage specified, then we should
* use that voltage instead to allow for cases where the voltage rails
* are ganged (example if we set the max for an opp as 1.12v, and
* the absolute max is 1.5v, for another rail to get 1.25v, it cannot
* be achieved if the regulator is constrainted to max of 1.12v, even
* if it can function at 1.25v
*/
if (opp_data.vdd_absolute_max_voltage_uv)
uv_max = opp_data.vdd_absolute_max_voltage_uv;
else
uv_max = supply->u_volt_max;
if (vdd_uv > uv_max ||
vdd_uv < supply->u_volt_min ||
supply->u_volt_min > uv_max) {
dev_warn(dev,
"Invalid range voltages [Min:%lu target:%lu Max:%lu]\n",
supply->u_volt_min, vdd_uv, uv_max);
return -EINVAL;
}
dev_dbg(dev, "%s scaling to %luuV[min %luuV max %luuV]\n", reg_name,
vdd_uv, supply->u_volt_min,
uv_max);
ret = regulator_set_voltage_triplet(reg,
supply->u_volt_min,
vdd_uv,
uv_max);
if (ret) {
dev_err(dev, "%s failed for %luuV[min %luuV max %luuV]\n",
reg_name, vdd_uv, supply->u_volt_min,
uv_max);
return ret;
}
return 0;
}
/* Do the opp supply transition */
static int ti_opp_config_regulators(struct device *dev,
struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
struct regulator **regulators, unsigned int count)
{
struct dev_pm_opp_supply *old_supply_vdd = &opp_data.old_supplies[0];
struct dev_pm_opp_supply *old_supply_vbb = &opp_data.old_supplies[1];
struct dev_pm_opp_supply *new_supply_vdd = &opp_data.new_supplies[0];
struct dev_pm_opp_supply *new_supply_vbb = &opp_data.new_supplies[1];
struct regulator *vdd_reg = regulators[0];
struct regulator *vbb_reg = regulators[1];
unsigned long old_freq, freq;
int vdd_uv;
int ret;
/* We must have two regulators here */
WARN_ON(count != 2);
/* Fetch supplies and freq information from OPP core */
ret = dev_pm_opp_get_supplies(new_opp, opp_data.new_supplies);
WARN_ON(ret);
old_freq = dev_pm_opp_get_freq(old_opp);
freq = dev_pm_opp_get_freq(new_opp);
WARN_ON(!old_freq || !freq);
vdd_uv = _get_optimal_vdd_voltage(dev, &opp_data,
new_supply_vdd->u_volt);
if (new_supply_vdd->u_volt_min < vdd_uv)
new_supply_vdd->u_volt_min = vdd_uv;
/* Scaling up? Scale voltage before frequency */
if (freq > old_freq) {
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
"vdd");
if (ret)
goto restore_voltage;
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
goto restore_voltage;
} else {
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
goto restore_voltage;
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
"vdd");
if (ret)
goto restore_voltage;
}
return 0;
restore_voltage:
/* Fetch old supplies information only if required */
ret = dev_pm_opp_get_supplies(old_opp, opp_data.old_supplies);
WARN_ON(ret);
/* This shouldn't harm even if the voltages weren't updated earlier */
if (old_supply_vdd->u_volt) {
ret = _opp_set_voltage(dev, old_supply_vbb, 0, vbb_reg, "vbb");
if (ret)
return ret;
ret = _opp_set_voltage(dev, old_supply_vdd, 0, vdd_reg,
"vdd");
if (ret)
return ret;
}
return ret;
}
static const struct ti_opp_supply_of_data omap_generic_of_data = {
};
static const struct ti_opp_supply_of_data omap_omap5_of_data = {
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE,
.efuse_voltage_mask = 0xFFF,
.efuse_voltage_uv = false,
};
static const struct ti_opp_supply_of_data omap_omap5core_of_data = {
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE | OPPDM_HAS_NO_ABB,
.efuse_voltage_mask = 0xFFF,
.efuse_voltage_uv = false,
};
static const struct of_device_id ti_opp_supply_of_match[] = {
{.compatible = "ti,omap-opp-supply", .data = &omap_generic_of_data},
{.compatible = "ti,omap5-opp-supply", .data = &omap_omap5_of_data},
{.compatible = "ti,omap5-core-opp-supply",
.data = &omap_omap5core_of_data},
{},
};
MODULE_DEVICE_TABLE(of, ti_opp_supply_of_match);
static int ti_opp_supply_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *cpu_dev = get_cpu_device(0);
const struct ti_opp_supply_of_data *of_data;
int ret = 0;
of_data = device_get_match_data(dev);
if (!of_data) {
/* Again, unlikely.. but mistakes do happen */
dev_err(dev, "%s: Bad data in match\n", __func__);
return -EINVAL;
}
dev_set_drvdata(dev, (void *)of_data);
/* If we need optimized voltage */
if (of_data->flags & OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE) {
ret = _store_optimized_voltages(dev, &opp_data);
if (ret)
return ret;
}
ret = dev_pm_opp_set_config_regulators(cpu_dev, ti_opp_config_regulators);
if (ret < 0)
_free_optimized_voltages(dev, &opp_data);
return ret;
}
static struct platform_driver ti_opp_supply_driver = {
.probe = ti_opp_supply_probe,
.driver = {
.name = "ti_opp_supply",
.of_match_table = of_match_ptr(ti_opp_supply_of_match),
},
};
module_platform_driver(ti_opp_supply_driver);
MODULE_DESCRIPTION("Texas Instruments OMAP OPP Supply driver");
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_LICENSE("GPL v2");