linux-next/drivers/edac/i10nm_base.c

1181 lines
31 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Intel(R) 10nm server memory controller.
* Copyright (c) 2019, Intel Corporation.
*
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"
#define I10NM_REVISION "v0.0.6"
#define EDAC_MOD_STR "i10nm_edac"
/* Debug macros */
#define i10nm_printk(level, fmt, arg...) \
edac_printk(level, "i10nm", fmt, ##arg)
#define I10NM_GET_SCK_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd0, &(reg))
#define I10NM_GET_IMC_BAR(d, i, reg) \
pci_read_config_dword((d)->uracu, \
(res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg))
#define I10NM_GET_SAD(d, offset, i, reg)\
pci_read_config_dword((d)->sad_all, (offset) + (i) * \
(res_cfg->type == GNR ? 12 : 8), &(reg))
#define I10NM_GET_HBM_IMC_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd4, &(reg))
#define I10NM_GET_CAPID3_CFG(d, reg) \
pci_read_config_dword((d)->pcu_cr3, \
res_cfg->type == GNR ? 0x290 : 0x90, &(reg))
#define I10NM_GET_CAPID5_CFG(d, reg) \
pci_read_config_dword((d)->pcu_cr3, \
res_cfg->type == GNR ? 0x298 : 0x98, &(reg))
#define I10NM_GET_DIMMMTR(m, i, j) \
readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \
(res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \
(i) * (m)->chan_mmio_sz + (j) * 4)
#define I10NM_GET_MCDDRTCFG(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_MCMTR(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \
(res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_REG32(m, i, offset) \
readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_REG64(m, i, offset) \
readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_SET_REG32(m, i, offset, v) \
writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23)
#define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12)
#define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \
GET_BITFIELD(reg, 0, 10) + 1) << 12)
#define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \
((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000)
#define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000
#define I10NM_GNR_IMC_MMIO_SIZE 0x4000
#define I10NM_HBM_IMC_MMIO_SIZE 0x9000
#define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24)
#define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30)
#define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29)
#define I10NM_MAX_SAD 16
#define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5)
#define RETRY_RD_ERR_LOG_UC BIT(1)
#define RETRY_RD_ERR_LOG_NOOVER BIT(14)
#define RETRY_RD_ERR_LOG_EN BIT(15)
#define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1))
#define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0))
static struct list_head *i10nm_edac_list;
static struct res_config *res_cfg;
static int retry_rd_err_log;
static int decoding_via_mca;
static bool mem_cfg_2lm;
static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr_hbm0[] = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8};
static u32 offsets_scrub_spr_hbm1[] = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8};
static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10};
static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0};
static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0};
static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable,
u32 *offsets_scrub, u32 *offsets_demand,
u32 *offsets_demand2)
{
u32 s, d, d2;
s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]);
d = I10NM_GET_REG32(imc, chan, offsets_demand[0]);
if (offsets_demand2)
d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]);
if (enable) {
/* Save default configurations */
imc->chan[chan].retry_rd_err_log_s = s;
imc->chan[chan].retry_rd_err_log_d = d;
if (offsets_demand2)
imc->chan[chan].retry_rd_err_log_d2 = d2;
s &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
s |= RETRY_RD_ERR_LOG_EN;
d &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
d |= RETRY_RD_ERR_LOG_EN;
if (offsets_demand2) {
d2 &= ~RETRY_RD_ERR_LOG_UC;
d2 |= RETRY_RD_ERR_LOG_NOOVER;
d2 |= RETRY_RD_ERR_LOG_EN;
}
} else {
/* Restore default configurations */
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC)
s |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER)
s |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN))
s &= ~RETRY_RD_ERR_LOG_EN;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC)
d |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER)
d |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN))
d &= ~RETRY_RD_ERR_LOG_EN;
if (offsets_demand2) {
if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC)
d2 |= RETRY_RD_ERR_LOG_UC;
if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER))
d2 &= ~RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN))
d2 &= ~RETRY_RD_ERR_LOG_EN;
}
}
I10NM_SET_REG32(imc, chan, offsets_scrub[0], s);
I10NM_SET_REG32(imc, chan, offsets_demand[0], d);
if (offsets_demand2)
I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2);
}
static void enable_retry_rd_err_log(bool enable)
{
int i, j, imc_num, chan_num;
struct skx_imc *imc;
struct skx_dev *d;
edac_dbg(2, "\n");
list_for_each_entry(d, i10nm_edac_list, list) {
imc_num = res_cfg->ddr_imc_num;
chan_num = res_cfg->ddr_chan_num;
for (i = 0; i < imc_num; i++) {
imc = &d->imc[i];
if (!imc->mbase)
continue;
for (j = 0; j < chan_num; j++)
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub,
res_cfg->offsets_demand,
res_cfg->offsets_demand2);
}
imc_num += res_cfg->hbm_imc_num;
chan_num = res_cfg->hbm_chan_num;
for (; i < imc_num; i++) {
imc = &d->imc[i];
if (!imc->mbase || !imc->hbm_mc)
continue;
for (j = 0; j < chan_num; j++) {
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub_hbm0,
res_cfg->offsets_demand_hbm0,
NULL);
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub_hbm1,
res_cfg->offsets_demand_hbm1,
NULL);
}
}
}
}
static void show_retry_rd_err_log(struct decoded_addr *res, char *msg,
int len, bool scrub_err)
{
struct skx_imc *imc = &res->dev->imc[res->imc];
u32 log0, log1, log2, log3, log4;
u32 corr0, corr1, corr2, corr3;
u32 lxg0, lxg1, lxg3, lxg4;
u32 *xffsets = NULL;
u64 log2a, log5;
u64 lxg2a, lxg5;
u32 *offsets;
int n, pch;
if (!imc->mbase)
return;
if (imc->hbm_mc) {
pch = res->cs & 1;
if (pch)
offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 :
res_cfg->offsets_demand_hbm1;
else
offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 :
res_cfg->offsets_demand_hbm0;
} else {
if (scrub_err) {
offsets = res_cfg->offsets_scrub;
} else {
offsets = res_cfg->offsets_demand;
xffsets = res_cfg->offsets_demand2;
}
}
log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]);
log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]);
log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]);
log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]);
log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]);
if (xffsets) {
lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]);
lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]);
lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]);
lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]);
lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]);
}
if (res_cfg->type == SPR) {
log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx",
log0, log1, log2a, log3, log4, log5);
if (len - n > 0) {
if (xffsets) {
lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]);
n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]",
lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5);
} else {
n += snprintf(msg + n, len - n, "]");
}
}
} else {
log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]",
log0, log1, log2, log3, log4, log5);
}
if (imc->hbm_mc) {
if (pch) {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24);
} else {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824);
}
} else {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24);
}
if (len - n > 0)
snprintf(msg + n, len - n,
" correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
corr0 & 0xffff, corr0 >> 16,
corr1 & 0xffff, corr1 >> 16,
corr2 & 0xffff, corr2 >> 16,
corr3 & 0xffff, corr3 >> 16);
/* Clear status bits */
if (retry_rd_err_log == 2) {
if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) {
log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
I10NM_SET_REG32(imc, res->channel, offsets[0], log0);
}
if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) {
lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0);
}
}
}
static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus,
unsigned int dev, unsigned int fun)
{
struct pci_dev *pdev;
pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun));
if (!pdev) {
edac_dbg(2, "No device %02x:%02x.%x\n",
bus, dev, fun);
return NULL;
}
if (unlikely(pci_enable_device(pdev) < 0)) {
edac_dbg(2, "Failed to enable device %02x:%02x.%x\n",
bus, dev, fun);
pci_dev_put(pdev);
return NULL;
}
return pdev;
}
/**
* i10nm_get_imc_num() - Get the number of present DDR memory controllers.
*
* @cfg : The pointer to the structure of EDAC resource configurations.
*
* For Granite Rapids CPUs, the number of present DDR memory controllers read
* at runtime overwrites the value statically configured in @cfg->ddr_imc_num.
* For other CPUs, the number of present DDR memory controllers is statically
* configured in @cfg->ddr_imc_num.
*
* RETURNS : 0 on success, < 0 on failure.
*/
static int i10nm_get_imc_num(struct res_config *cfg)
{
int n, imc_num, chan_num = 0;
struct skx_dev *d;
u32 reg;
list_for_each_entry(d, i10nm_edac_list, list) {
d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus],
res_cfg->pcu_cr3_bdf.dev,
res_cfg->pcu_cr3_bdf.fun);
if (!d->pcu_cr3)
continue;
if (I10NM_GET_CAPID5_CFG(d, reg))
continue;
n = I10NM_DDR_IMC_CH_CNT(reg);
if (!chan_num) {
chan_num = n;
edac_dbg(2, "Get DDR CH number: %d\n", chan_num);
} else if (chan_num != n) {
i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n);
}
}
switch (cfg->type) {
case GNR:
/*
* One channel per DDR memory controller for Granite Rapids CPUs.
*/
imc_num = chan_num;
if (!imc_num) {
i10nm_printk(KERN_ERR, "Invalid DDR MC number\n");
return -ENODEV;
}
if (imc_num > I10NM_NUM_DDR_IMC) {
i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num);
return -EINVAL;
}
if (cfg->ddr_imc_num != imc_num) {
/*
* Store the number of present DDR memory controllers.
*/
cfg->ddr_imc_num = imc_num;
edac_dbg(2, "Set DDR MC number: %d", imc_num);
}
return 0;
default:
/*
* For other CPUs, the number of present DDR memory controllers
* is statically pre-configured in cfg->ddr_imc_num.
*/
return 0;
}
}
static bool i10nm_check_2lm(struct res_config *cfg)
{
struct skx_dev *d;
u32 reg;
int i;
list_for_each_entry(d, i10nm_edac_list, list) {
d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus],
res_cfg->sad_all_bdf.dev,
res_cfg->sad_all_bdf.fun);
if (!d->sad_all)
continue;
for (i = 0; i < I10NM_MAX_SAD; i++) {
I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg);
if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) {
edac_dbg(2, "2-level memory configuration.\n");
return true;
}
}
}
return false;
}
/*
* Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code.
* Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS.
*/
static bool i10nm_mscod_is_ddrt(u32 mscod)
{
switch (res_cfg->type) {
case I10NM:
switch (mscod) {
case 0x0106: case 0x0107:
case 0x0800: case 0x0804:
case 0x0806 ... 0x0808:
case 0x080a ... 0x080e:
case 0x0810: case 0x0811:
case 0x0816: case 0x081e:
case 0x081f:
return true;
}
break;
case SPR:
switch (mscod) {
case 0x0800: case 0x0804:
case 0x0806 ... 0x0808:
case 0x080a ... 0x080e:
case 0x0810: case 0x0811:
case 0x0816: case 0x081e:
case 0x081f:
return true;
}
break;
default:
return false;
}
return false;
}
static bool i10nm_mc_decode_available(struct mce *mce)
{
#define ICX_IMCx_CHy 0x06666000
u8 bank;
if (!decoding_via_mca || mem_cfg_2lm)
return false;
if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
!= (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
return false;
bank = mce->bank;
switch (res_cfg->type) {
case I10NM:
/* Check whether the bank is one of {13,14,17,18,21,22,25,26} */
if (!(ICX_IMCx_CHy & (1 << bank)))
return false;
break;
case SPR:
if (bank < 13 || bank > 20)
return false;
break;
default:
return false;
}
/* DDRT errors can't be decoded from MCA bank registers */
if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT)
return false;
if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status)))
return false;
return true;
}
static bool i10nm_mc_decode(struct decoded_addr *res)
{
struct mce *m = res->mce;
struct skx_dev *d;
u8 bank;
if (!i10nm_mc_decode_available(m))
return false;
list_for_each_entry(d, i10nm_edac_list, list) {
if (d->imc[0].src_id == m->socketid) {
res->socket = m->socketid;
res->dev = d;
break;
}
}
switch (res_cfg->type) {
case I10NM:
bank = m->bank - 13;
res->imc = bank / 4;
res->channel = bank % 2;
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
res->row = GET_BITFIELD(m->misc, 19, 39);
res->bank_group = GET_BITFIELD(m->misc, 40, 41);
res->bank_address = GET_BITFIELD(m->misc, 42, 43);
res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2;
res->rank = GET_BITFIELD(m->misc, 56, 58);
res->dimm = res->rank >> 2;
res->rank = res->rank % 4;
break;
case SPR:
bank = m->bank - 13;
res->imc = bank / 2;
res->channel = bank % 2;
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
res->row = GET_BITFIELD(m->misc, 19, 36);
res->bank_group = GET_BITFIELD(m->misc, 37, 38);
res->bank_address = GET_BITFIELD(m->misc, 39, 40);
res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2;
res->rank = GET_BITFIELD(m->misc, 57, 57);
res->dimm = GET_BITFIELD(m->misc, 58, 58);
break;
default:
return false;
}
if (!res->dev) {
skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
m->socketid, res->imc);
return false;
}
return true;
}
/**
* get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller.
*
* @d : The pointer to the structure of CPU socket EDAC device.
* @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1).
* @physical_idx : To store the corresponding physical index of @logical_idx.
*
* RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure.
*/
static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx)
{
#define GNR_MAX_IMC_PCI_CNT 28
struct pci_dev *mdev;
int i, logical = 0;
/*
* Detect present memory controllers from { PCI device: 8-5, function 7-1 }
*/
for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) {
mdev = pci_get_dev_wrapper(d->seg,
d->bus[res_cfg->ddr_mdev_bdf.bus],
res_cfg->ddr_mdev_bdf.dev + i / 7,
res_cfg->ddr_mdev_bdf.fun + i % 7);
if (mdev) {
if (logical == logical_idx) {
*physical_idx = i;
return mdev;
}
pci_dev_put(mdev);
logical++;
}
}
return NULL;
}
/**
* get_ddr_munit() - Get the resource of the i-th DDR memory controller.
*
* @d : The pointer to the structure of CPU socket EDAC device.
* @i : The index of the CPU socket relative DDR memory controller.
* @offset : To store the MMIO offset of the i-th DDR memory controller.
* @size : To store the MMIO size of the i-th DDR memory controller.
*
* RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure.
*/
static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size)
{
struct pci_dev *mdev;
int physical_idx;
u32 reg;
switch (res_cfg->type) {
case GNR:
if (I10NM_GET_IMC_BAR(d, 0, reg)) {
i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n");
return NULL;
}
mdev = get_gnr_mdev(d, i, &physical_idx);
if (!mdev)
return NULL;
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg) +
I10NM_GNR_IMC_MMIO_OFFSET +
physical_idx * I10NM_GNR_IMC_MMIO_SIZE;
*size = I10NM_GNR_IMC_MMIO_SIZE;
break;
default:
if (I10NM_GET_IMC_BAR(d, i, reg)) {
i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i);
return NULL;
}
mdev = pci_get_dev_wrapper(d->seg,
d->bus[res_cfg->ddr_mdev_bdf.bus],
res_cfg->ddr_mdev_bdf.dev + i,
res_cfg->ddr_mdev_bdf.fun);
if (!mdev)
return NULL;
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg);
*size = I10NM_GET_IMC_MMIO_SIZE(reg);
}
return mdev;
}
/**
* i10nm_imc_absent() - Check whether the memory controller @imc is absent
*
* @imc : The pointer to the structure of memory controller EDAC device.
*
* RETURNS : true if the memory controller EDAC device is absent, false otherwise.
*/
static bool i10nm_imc_absent(struct skx_imc *imc)
{
u32 mcmtr;
int i;
switch (res_cfg->type) {
case SPR:
for (i = 0; i < res_cfg->ddr_chan_num; i++) {
mcmtr = I10NM_GET_MCMTR(imc, i);
edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr);
if (mcmtr != ~0)
return false;
}
/*
* Some workstations' absent memory controllers still
* appear as PCIe devices, misleading the EDAC driver.
* By observing that the MMIO registers of these absent
* memory controllers consistently hold the value of ~0.
*
* We identify a memory controller as absent by checking
* if its MMIO register "mcmtr" == ~0 in all its channels.
*/
return true;
default:
return false;
}
}
static int i10nm_get_ddr_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
unsigned long size;
struct skx_dev *d;
int i, lmc, j = 0;
u32 reg, off;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus],
res_cfg->util_all_bdf.dev,
res_cfg->util_all_bdf.fun);
if (!d->util_all)
return -ENODEV;
d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus],
res_cfg->uracu_bdf.dev,
res_cfg->uracu_bdf.fun);
if (!d->uracu)
return -ENODEV;
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n",
j++, base, reg);
for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) {
mdev = get_ddr_munit(d, i, &off, &size);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No IMC found\n");
return -ENODEV;
}
if (!mdev)
continue;
edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n",
i, base + off, size, reg);
mbase = ioremap(base + off, size);
if (!mbase) {
i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n",
base + off);
return -ENODEV;
}
d->imc[lmc].mbase = mbase;
if (i10nm_imc_absent(&d->imc[lmc])) {
pci_dev_put(mdev);
iounmap(mbase);
d->imc[lmc].mbase = NULL;
edac_dbg(2, "Skip absent mc%d\n", i);
continue;
} else {
d->imc[lmc].mdev = mdev;
lmc++;
}
}
}
return 0;
}
static bool i10nm_check_hbm_imc(struct skx_dev *d)
{
u32 reg;
if (I10NM_GET_CAPID3_CFG(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n");
return false;
}
return I10NM_IS_HBM_PRESENT(reg) != 0;
}
static int i10nm_get_hbm_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
u32 reg, off, mcmtr;
struct skx_dev *d;
int i, lmc;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
if (!d->pcu_cr3)
return -ENODEV;
if (!i10nm_check_hbm_imc(d)) {
i10nm_printk(KERN_DEBUG, "No hbm memory\n");
return -ENODEV;
}
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
if (I10NM_GET_HBM_IMC_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n");
return -ENODEV;
}
base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg);
lmc = res_cfg->ddr_imc_num;
for (i = 0; i < res_cfg->hbm_imc_num; i++) {
mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus],
res_cfg->hbm_mdev_bdf.dev + i / 4,
res_cfg->hbm_mdev_bdf.fun + i % 4);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No hbm mc found\n");
return -ENODEV;
}
if (!mdev)
continue;
d->imc[lmc].mdev = mdev;
off = i * I10NM_HBM_IMC_MMIO_SIZE;
edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n",
lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE);
mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE);
if (!mbase) {
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n",
base + off);
return -ENOMEM;
}
d->imc[lmc].mbase = mbase;
d->imc[lmc].hbm_mc = true;
mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0);
if (!I10NM_IS_HBM_IMC(mcmtr)) {
iounmap(d->imc[lmc].mbase);
d->imc[lmc].mbase = NULL;
d->imc[lmc].hbm_mc = false;
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n");
return -ENODEV;
}
lmc++;
}
}
return 0;
}
static struct res_config i10nm_cfg0 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xcc,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_bdf = {1, 29, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config i10nm_cfg1 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_bdf = {1, 29, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config spr_cfg = {
.type = SPR,
.decs_did = 0x3252,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.hbm_imc_num = 16,
.hbm_chan_num = 2,
.hbm_dimm_num = 1,
.ddr_chan_mmio_sz = 0x8000,
.hbm_chan_mmio_sz = 0x4000,
.support_ddr5 = true,
.sad_all_bdf = {1, 10, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x300,
.offsets_scrub = offsets_scrub_spr,
.offsets_scrub_hbm0 = offsets_scrub_spr_hbm0,
.offsets_scrub_hbm1 = offsets_scrub_spr_hbm1,
.offsets_demand = offsets_demand_spr,
.offsets_demand2 = offsets_demand2_spr,
.offsets_demand_hbm0 = offsets_demand_spr_hbm0,
.offsets_demand_hbm1 = offsets_demand_spr_hbm1,
};
static struct res_config gnr_cfg = {
.type = GNR,
.decs_did = 0x3252,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 12,
.ddr_chan_num = 1,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.support_ddr5 = true,
.sad_all_bdf = {0, 13, 0},
.pcu_cr3_bdf = {0, 5, 0},
.util_all_bdf = {0, 13, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 5, 1},
.sad_all_offset = 0x300,
};
static const struct x86_cpu_id i10nm_cpuids[] = {
x86/cpu: Expose only stepping min/max interface The x86_match_cpu() infrastructure can match CPU steppings. Since there are only 16 possible steppings, the matching infrastructure goes all out and stores the stepping match as a bitmap. That means it can match any possible steppings in a single list entry. Fun. But it exposes this bitmap to each of the X86_MATCH_*() helpers when none of them really need a bitmap. It makes up for this by exporting a helper (X86_STEPPINGS()) which converts a contiguous stepping range into the bitmap which every single user leverages. Instead of a bitmap, have the main helper for this sort of thing (X86_MATCH_VFM_STEPS()) just take a stepping range. This ends up actually being even more compact than before. Leave the helper in place (renamed to __X86_STEPPINGS()) to make it more clear what is going on instead of just having a random GENMASK() in the middle of an already complicated macro. One oddity that I hit was this macro: X86_MATCH_VFM_STEPS(vfm, X86_STEPPING_MIN, max_stepping, issues) It *could* have been converted over to take a min/max stepping value for each entry. But that would have been a bit too verbose and would prevent the one oddball in the list (INTEL_COMETLAKE_L stepping 0) from sticking out. Instead, just have it take a *maximum* stepping and imply that the match is from 0=>max_stepping. This is functional for all the cases now and also retains the nice property of having INTEL_COMETLAKE_L stepping 0 stick out like a sore thumb. skx_cpuids[] is goofy. It uses the stepping match but encodes all possible steppings. Just use a normal, non-stepping match helper. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20241213185129.65527B2A%40davehans-spike.ostc.intel.com
2024-12-13 18:51:29 +00:00
X86_MATCH_VFM_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MIN, 0x3, &i10nm_cfg0),
X86_MATCH_VFM_STEPS(INTEL_ATOM_TREMONT_D, 0x4, X86_STEP_MAX, &i10nm_cfg1),
X86_MATCH_VFM_STEPS(INTEL_ICELAKE_X, X86_STEP_MIN, 0x3, &i10nm_cfg0),
X86_MATCH_VFM_STEPS(INTEL_ICELAKE_X, 0x4, X86_STEP_MAX, &i10nm_cfg1),
X86_MATCH_VFM( INTEL_ICELAKE_D, &i10nm_cfg1),
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &spr_cfg),
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &spr_cfg),
X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, &gnr_cfg),
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, &gnr_cfg),
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT, &gnr_cfg),
{}
};
MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids);
static bool i10nm_check_ecc(struct skx_imc *imc, int chan)
{
u32 mcmtr;
mcmtr = I10NM_GET_MCMTR(imc, chan);
edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr);
return !!GET_BITFIELD(mcmtr, 2, 2);
}
static int i10nm_get_dimm_config(struct mem_ctl_info *mci,
struct res_config *cfg)
{
struct skx_pvt *pvt = mci->pvt_info;
struct skx_imc *imc = pvt->imc;
u32 mtr, mcddrtcfg = 0;
struct dimm_info *dimm;
int i, j, ndimms;
for (i = 0; i < imc->num_channels; i++) {
if (!imc->mbase)
continue;
ndimms = 0;
if (res_cfg->type != GNR)
mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i);
for (j = 0; j < imc->num_dimms; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
mtr = I10NM_GET_DIMMMTR(imc, i, j);
edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n",
mtr, mcddrtcfg, imc->mc, i, j);
if (IS_DIMM_PRESENT(mtr))
ndimms += skx_get_dimm_info(mtr, 0, 0, dimm,
imc, i, j, cfg);
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
EDAC_MOD_STR);
}
if (ndimms && !i10nm_check_ecc(imc, i)) {
i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n",
imc->mc, i);
return -ENODEV;
}
}
return 0;
}
static struct notifier_block i10nm_mce_dec = {
.notifier_call = skx_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
static int __init i10nm_init(void)
{
u8 mc = 0, src_id = 0, node_id = 0;
const struct x86_cpu_id *id;
struct res_config *cfg;
const char *owner;
struct skx_dev *d;
int rc, i, off[3] = {0xd0, 0xc8, 0xcc};
u64 tolm, tohm;
int imc_num;
edac_dbg(2, "\n");
if (ghes_get_devices())
return -EBUSY;
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
return -ENODEV;
id = x86_match_cpu(i10nm_cpuids);
if (!id)
return -ENODEV;
cfg = (struct res_config *)id->driver_data;
skx_set_res_cfg(cfg);
res_cfg = cfg;
rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);
if (rc)
return rc;
rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list);
if (rc < 0)
goto fail;
if (rc == 0) {
i10nm_printk(KERN_ERR, "No memory controllers found\n");
return -ENODEV;
}
rc = i10nm_get_imc_num(cfg);
if (rc < 0)
goto fail;
mem_cfg_2lm = i10nm_check_2lm(cfg);
skx_set_mem_cfg(mem_cfg_2lm);
rc = i10nm_get_ddr_munits();
if (i10nm_get_hbm_munits() && rc)
goto fail;
imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num;
list_for_each_entry(d, i10nm_edac_list, list) {
rc = skx_get_src_id(d, 0xf8, &src_id);
if (rc < 0)
goto fail;
rc = skx_get_node_id(d, &node_id);
if (rc < 0)
goto fail;
edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id);
for (i = 0; i < imc_num; i++) {
if (!d->imc[i].mdev)
continue;
d->imc[i].mc = mc++;
d->imc[i].lmc = i;
d->imc[i].src_id = src_id;
d->imc[i].node_id = node_id;
if (d->imc[i].hbm_mc) {
d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz;
d->imc[i].num_channels = cfg->hbm_chan_num;
d->imc[i].num_dimms = cfg->hbm_dimm_num;
} else {
d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz;
d->imc[i].num_channels = cfg->ddr_chan_num;
d->imc[i].num_dimms = cfg->ddr_dimm_num;
}
rc = skx_register_mci(&d->imc[i], d->imc[i].mdev,
"Intel_10nm Socket", EDAC_MOD_STR,
i10nm_get_dimm_config, cfg);
if (rc < 0)
goto fail;
}
}
rc = skx_adxl_get();
if (rc)
goto fail;
opstate_init();
mce_register_decode_chain(&i10nm_mce_dec);
skx_setup_debug("i10nm_test");
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(true);
} else {
skx_set_decode(i10nm_mc_decode, NULL);
}
i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION);
return 0;
fail:
skx_remove();
return rc;
}
static void __exit i10nm_exit(void)
{
edac_dbg(2, "\n");
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(NULL, NULL);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(false);
}
skx_teardown_debug();
mce_unregister_decode_chain(&i10nm_mce_dec);
skx_adxl_put();
skx_remove();
}
module_init(i10nm_init);
module_exit(i10nm_exit);
static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp)
{
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret || val > 1)
return -EINVAL;
if (val && mem_cfg_2lm) {
i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n");
return -EIO;
}
ret = param_set_int(buf, kp);
return ret;
}
static const struct kernel_param_ops decoding_via_mca_param_ops = {
.set = set_decoding_via_mca,
.get = param_get_int,
};
module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644);
MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable");
module_param(retry_rd_err_log, int, 0444);
MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");