linux-next/security/tomoyo/gc.c

671 lines
17 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* security/tomoyo/gc.c
*
* Copyright (C) 2005-2011 NTT DATA CORPORATION
*/
#include "common.h"
#include <linux/kthread.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
/**
* tomoyo_memory_free - Free memory for elements.
*
* @ptr: Pointer to allocated memory.
*
* Returns nothing.
*
* Caller holds tomoyo_policy_lock mutex.
*/
static inline void tomoyo_memory_free(void *ptr)
{
tomoyo_memory_used[TOMOYO_MEMORY_POLICY] -= ksize(ptr);
kfree(ptr);
}
/* The list for "struct tomoyo_io_buffer". */
static LIST_HEAD(tomoyo_io_buffer_list);
/* Lock for protecting tomoyo_io_buffer_list. */
static DEFINE_SPINLOCK(tomoyo_io_buffer_list_lock);
/**
* tomoyo_struct_used_by_io_buffer - Check whether the list element is used by /sys/kernel/security/tomoyo/ users or not.
*
* @element: Pointer to "struct list_head".
*
* Returns true if @element is used by /sys/kernel/security/tomoyo/ users,
* false otherwise.
*/
static bool tomoyo_struct_used_by_io_buffer(const struct list_head *element)
{
struct tomoyo_io_buffer *head;
bool in_use = false;
spin_lock(&tomoyo_io_buffer_list_lock);
list_for_each_entry(head, &tomoyo_io_buffer_list, list) {
head->users++;
spin_unlock(&tomoyo_io_buffer_list_lock);
mutex_lock(&head->io_sem);
if (head->r.domain == element || head->r.group == element ||
head->r.acl == element || &head->w.domain->list == element)
in_use = true;
mutex_unlock(&head->io_sem);
spin_lock(&tomoyo_io_buffer_list_lock);
head->users--;
if (in_use)
break;
}
spin_unlock(&tomoyo_io_buffer_list_lock);
return in_use;
}
/**
* tomoyo_name_used_by_io_buffer - Check whether the string is used by /sys/kernel/security/tomoyo/ users or not.
*
* @string: String to check.
*
* Returns true if @string is used by /sys/kernel/security/tomoyo/ users,
* false otherwise.
*/
static bool tomoyo_name_used_by_io_buffer(const char *string)
{
struct tomoyo_io_buffer *head;
const size_t size = strlen(string) + 1;
bool in_use = false;
spin_lock(&tomoyo_io_buffer_list_lock);
list_for_each_entry(head, &tomoyo_io_buffer_list, list) {
int i;
head->users++;
spin_unlock(&tomoyo_io_buffer_list_lock);
mutex_lock(&head->io_sem);
for (i = 0; i < TOMOYO_MAX_IO_READ_QUEUE; i++) {
const char *w = head->r.w[i];
if (w < string || w > string + size)
continue;
in_use = true;
break;
}
mutex_unlock(&head->io_sem);
spin_lock(&tomoyo_io_buffer_list_lock);
head->users--;
if (in_use)
break;
}
spin_unlock(&tomoyo_io_buffer_list_lock);
return in_use;
}
/**
* tomoyo_del_transition_control - Delete members in "struct tomoyo_transition_control".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_transition_control(struct list_head *element)
{
struct tomoyo_transition_control *ptr =
container_of(element, typeof(*ptr), head.list);
tomoyo_put_name(ptr->domainname);
tomoyo_put_name(ptr->program);
}
/**
* tomoyo_del_aggregator - Delete members in "struct tomoyo_aggregator".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_aggregator(struct list_head *element)
{
struct tomoyo_aggregator *ptr =
container_of(element, typeof(*ptr), head.list);
tomoyo_put_name(ptr->original_name);
tomoyo_put_name(ptr->aggregated_name);
}
/**
* tomoyo_del_manager - Delete members in "struct tomoyo_manager".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_manager(struct list_head *element)
{
struct tomoyo_manager *ptr =
container_of(element, typeof(*ptr), head.list);
tomoyo_put_name(ptr->manager);
}
/**
* tomoyo_del_acl - Delete members in "struct tomoyo_acl_info".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static void tomoyo_del_acl(struct list_head *element)
{
struct tomoyo_acl_info *acl =
container_of(element, typeof(*acl), list);
tomoyo_put_condition(acl->cond);
switch (acl->type) {
case TOMOYO_TYPE_PATH_ACL:
{
struct tomoyo_path_acl *entry
= container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->name);
}
break;
case TOMOYO_TYPE_PATH2_ACL:
{
struct tomoyo_path2_acl *entry
= container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->name1);
tomoyo_put_name_union(&entry->name2);
}
break;
case TOMOYO_TYPE_PATH_NUMBER_ACL:
{
struct tomoyo_path_number_acl *entry
= container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->name);
tomoyo_put_number_union(&entry->number);
}
break;
case TOMOYO_TYPE_MKDEV_ACL:
{
struct tomoyo_mkdev_acl *entry
= container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->name);
tomoyo_put_number_union(&entry->mode);
tomoyo_put_number_union(&entry->major);
tomoyo_put_number_union(&entry->minor);
}
break;
case TOMOYO_TYPE_MOUNT_ACL:
{
struct tomoyo_mount_acl *entry
= container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->dev_name);
tomoyo_put_name_union(&entry->dir_name);
tomoyo_put_name_union(&entry->fs_type);
tomoyo_put_number_union(&entry->flags);
}
break;
case TOMOYO_TYPE_ENV_ACL:
{
struct tomoyo_env_acl *entry =
container_of(acl, typeof(*entry), head);
tomoyo_put_name(entry->env);
}
break;
case TOMOYO_TYPE_INET_ACL:
{
struct tomoyo_inet_acl *entry =
container_of(acl, typeof(*entry), head);
tomoyo_put_group(entry->address.group);
tomoyo_put_number_union(&entry->port);
}
break;
case TOMOYO_TYPE_UNIX_ACL:
{
struct tomoyo_unix_acl *entry =
container_of(acl, typeof(*entry), head);
tomoyo_put_name_union(&entry->name);
}
break;
case TOMOYO_TYPE_MANUAL_TASK_ACL:
{
struct tomoyo_task_acl *entry =
container_of(acl, typeof(*entry), head);
tomoyo_put_name(entry->domainname);
}
break;
}
}
/**
* tomoyo_del_domain - Delete members in "struct tomoyo_domain_info".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*
* Caller holds tomoyo_policy_lock mutex.
*/
static inline void tomoyo_del_domain(struct list_head *element)
{
struct tomoyo_domain_info *domain =
container_of(element, typeof(*domain), list);
struct tomoyo_acl_info *acl;
struct tomoyo_acl_info *tmp;
/*
* Since this domain is referenced from neither
* "struct tomoyo_io_buffer" nor "struct cred"->security, we can delete
* elements without checking for is_deleted flag.
*/
list_for_each_entry_safe(acl, tmp, &domain->acl_info_list, list) {
tomoyo_del_acl(&acl->list);
tomoyo_memory_free(acl);
}
tomoyo_put_name(domain->domainname);
}
/**
* tomoyo_del_condition - Delete members in "struct tomoyo_condition".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
void tomoyo_del_condition(struct list_head *element)
{
struct tomoyo_condition *cond = container_of(element, typeof(*cond),
head.list);
const u16 condc = cond->condc;
const u16 numbers_count = cond->numbers_count;
const u16 names_count = cond->names_count;
const u16 argc = cond->argc;
const u16 envc = cond->envc;
unsigned int i;
const struct tomoyo_condition_element *condp
= (const struct tomoyo_condition_element *) (cond + 1);
struct tomoyo_number_union *numbers_p
= (struct tomoyo_number_union *) (condp + condc);
struct tomoyo_name_union *names_p
= (struct tomoyo_name_union *) (numbers_p + numbers_count);
const struct tomoyo_argv *argv
= (const struct tomoyo_argv *) (names_p + names_count);
const struct tomoyo_envp *envp
= (const struct tomoyo_envp *) (argv + argc);
for (i = 0; i < numbers_count; i++)
tomoyo_put_number_union(numbers_p++);
for (i = 0; i < names_count; i++)
tomoyo_put_name_union(names_p++);
for (i = 0; i < argc; argv++, i++)
tomoyo_put_name(argv->value);
for (i = 0; i < envc; envp++, i++) {
tomoyo_put_name(envp->name);
tomoyo_put_name(envp->value);
}
}
/**
* tomoyo_del_name - Delete members in "struct tomoyo_name".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_name(struct list_head *element)
{
/* Nothing to do. */
}
/**
* tomoyo_del_path_group - Delete members in "struct tomoyo_path_group".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_path_group(struct list_head *element)
{
struct tomoyo_path_group *member =
container_of(element, typeof(*member), head.list);
tomoyo_put_name(member->member_name);
}
/**
* tomoyo_del_group - Delete "struct tomoyo_group".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_group(struct list_head *element)
{
struct tomoyo_group *group =
container_of(element, typeof(*group), head.list);
tomoyo_put_name(group->group_name);
}
/**
* tomoyo_del_address_group - Delete members in "struct tomoyo_address_group".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_address_group(struct list_head *element)
{
/* Nothing to do. */
}
/**
* tomoyo_del_number_group - Delete members in "struct tomoyo_number_group".
*
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*/
static inline void tomoyo_del_number_group(struct list_head *element)
{
/* Nothing to do. */
}
/**
* tomoyo_try_to_gc - Try to kfree() an entry.
*
* @type: One of values in "enum tomoyo_policy_id".
* @element: Pointer to "struct list_head".
*
* Returns nothing.
*
* Caller holds tomoyo_policy_lock mutex.
*/
static void tomoyo_try_to_gc(const enum tomoyo_policy_id type,
struct list_head *element)
{
/*
* __list_del_entry() guarantees that the list element became no longer
* reachable from the list which the element was originally on (e.g.
* tomoyo_domain_list). Also, synchronize_srcu() guarantees that the
* list element became no longer referenced by syscall users.
*/
__list_del_entry(element);
mutex_unlock(&tomoyo_policy_lock);
synchronize_srcu(&tomoyo_ss);
/*
* However, there are two users which may still be using the list
* element. We need to defer until both users forget this element.
*
* Don't kfree() until "struct tomoyo_io_buffer"->r.{domain,group,acl}
* and "struct tomoyo_io_buffer"->w.domain forget this element.
*/
if (tomoyo_struct_used_by_io_buffer(element))
goto reinject;
switch (type) {
case TOMOYO_ID_TRANSITION_CONTROL:
tomoyo_del_transition_control(element);
break;
case TOMOYO_ID_MANAGER:
tomoyo_del_manager(element);
break;
case TOMOYO_ID_AGGREGATOR:
tomoyo_del_aggregator(element);
break;
case TOMOYO_ID_GROUP:
tomoyo_del_group(element);
break;
case TOMOYO_ID_PATH_GROUP:
tomoyo_del_path_group(element);
break;
case TOMOYO_ID_ADDRESS_GROUP:
tomoyo_del_address_group(element);
break;
case TOMOYO_ID_NUMBER_GROUP:
tomoyo_del_number_group(element);
break;
case TOMOYO_ID_CONDITION:
tomoyo_del_condition(element);
break;
case TOMOYO_ID_NAME:
/*
* Don't kfree() until all "struct tomoyo_io_buffer"->r.w[]
* forget this element.
*/
if (tomoyo_name_used_by_io_buffer
(container_of(element, typeof(struct tomoyo_name),
head.list)->entry.name))
goto reinject;
tomoyo_del_name(element);
break;
case TOMOYO_ID_ACL:
tomoyo_del_acl(element);
break;
case TOMOYO_ID_DOMAIN:
/*
* Don't kfree() until all "struct cred"->security forget this
* element.
*/
if (atomic_read(&container_of
(element, typeof(struct tomoyo_domain_info),
list)->users))
goto reinject;
break;
case TOMOYO_MAX_POLICY:
break;
}
mutex_lock(&tomoyo_policy_lock);
if (type == TOMOYO_ID_DOMAIN)
tomoyo_del_domain(element);
tomoyo_memory_free(element);
return;
reinject:
/*
* We can safely reinject this element here because
* (1) Appending list elements and removing list elements are protected
* by tomoyo_policy_lock mutex.
* (2) Only this function removes list elements and this function is
* exclusively executed by tomoyo_gc_mutex mutex.
* are true.
*/
mutex_lock(&tomoyo_policy_lock);
list_add_rcu(element, element->prev);
}
/**
* tomoyo_collect_member - Delete elements with "struct tomoyo_acl_head".
*
* @id: One of values in "enum tomoyo_policy_id".
* @member_list: Pointer to "struct list_head".
*
* Returns nothing.
*/
static void tomoyo_collect_member(const enum tomoyo_policy_id id,
struct list_head *member_list)
{
struct tomoyo_acl_head *member;
struct tomoyo_acl_head *tmp;
list_for_each_entry_safe(member, tmp, member_list, list) {
if (!member->is_deleted)
continue;
member->is_deleted = TOMOYO_GC_IN_PROGRESS;
tomoyo_try_to_gc(id, &member->list);
}
}
/**
* tomoyo_collect_acl - Delete elements in "struct tomoyo_domain_info".
*
* @list: Pointer to "struct list_head".
*
* Returns nothing.
*/
static void tomoyo_collect_acl(struct list_head *list)
{
struct tomoyo_acl_info *acl;
struct tomoyo_acl_info *tmp;
list_for_each_entry_safe(acl, tmp, list, list) {
if (!acl->is_deleted)
continue;
acl->is_deleted = TOMOYO_GC_IN_PROGRESS;
tomoyo_try_to_gc(TOMOYO_ID_ACL, &acl->list);
}
}
/**
* tomoyo_collect_entry - Try to kfree() deleted elements.
*
* Returns nothing.
*/
static void tomoyo_collect_entry(void)
{
int i;
enum tomoyo_policy_id id;
struct tomoyo_policy_namespace *ns;
mutex_lock(&tomoyo_policy_lock);
{
struct tomoyo_domain_info *domain;
struct tomoyo_domain_info *tmp;
list_for_each_entry_safe(domain, tmp, &tomoyo_domain_list,
list) {
tomoyo_collect_acl(&domain->acl_info_list);
if (!domain->is_deleted || atomic_read(&domain->users))
continue;
tomoyo_try_to_gc(TOMOYO_ID_DOMAIN, &domain->list);
}
}
list_for_each_entry(ns, &tomoyo_namespace_list, namespace_list) {
for (id = 0; id < TOMOYO_MAX_POLICY; id++)
tomoyo_collect_member(id, &ns->policy_list[id]);
for (i = 0; i < TOMOYO_MAX_ACL_GROUPS; i++)
tomoyo_collect_acl(&ns->acl_group[i]);
}
{
struct tomoyo_shared_acl_head *ptr;
struct tomoyo_shared_acl_head *tmp;
list_for_each_entry_safe(ptr, tmp, &tomoyo_condition_list,
list) {
if (atomic_read(&ptr->users) > 0)
continue;
atomic_set(&ptr->users, TOMOYO_GC_IN_PROGRESS);
tomoyo_try_to_gc(TOMOYO_ID_CONDITION, &ptr->list);
}
}
list_for_each_entry(ns, &tomoyo_namespace_list, namespace_list) {
for (i = 0; i < TOMOYO_MAX_GROUP; i++) {
struct list_head *list = &ns->group_list[i];
struct tomoyo_group *group;
struct tomoyo_group *tmp;
switch (i) {
case 0:
id = TOMOYO_ID_PATH_GROUP;
break;
case 1:
id = TOMOYO_ID_NUMBER_GROUP;
break;
default:
id = TOMOYO_ID_ADDRESS_GROUP;
break;
}
list_for_each_entry_safe(group, tmp, list, head.list) {
tomoyo_collect_member(id, &group->member_list);
if (!list_empty(&group->member_list) ||
atomic_read(&group->head.users) > 0)
continue;
atomic_set(&group->head.users,
TOMOYO_GC_IN_PROGRESS);
tomoyo_try_to_gc(TOMOYO_ID_GROUP,
&group->head.list);
}
}
}
for (i = 0; i < TOMOYO_MAX_HASH; i++) {
struct list_head *list = &tomoyo_name_list[i];
struct tomoyo_shared_acl_head *ptr;
struct tomoyo_shared_acl_head *tmp;
list_for_each_entry_safe(ptr, tmp, list, list) {
if (atomic_read(&ptr->users) > 0)
continue;
atomic_set(&ptr->users, TOMOYO_GC_IN_PROGRESS);
tomoyo_try_to_gc(TOMOYO_ID_NAME, &ptr->list);
}
}
mutex_unlock(&tomoyo_policy_lock);
}
/**
* tomoyo_gc_thread - Garbage collector thread function.
*
* @unused: Unused.
*
* Returns 0.
*/
static int tomoyo_gc_thread(void *unused)
{
/* Garbage collector thread is exclusive. */
static DEFINE_MUTEX(tomoyo_gc_mutex);
if (!mutex_trylock(&tomoyo_gc_mutex))
goto out;
tomoyo_collect_entry();
{
struct tomoyo_io_buffer *head;
struct tomoyo_io_buffer *tmp;
spin_lock(&tomoyo_io_buffer_list_lock);
list_for_each_entry_safe(head, tmp, &tomoyo_io_buffer_list,
list) {
if (head->users)
continue;
list_del(&head->list);
kfree(head->read_buf);
kfree(head->write_buf);
kfree(head);
}
spin_unlock(&tomoyo_io_buffer_list_lock);
}
mutex_unlock(&tomoyo_gc_mutex);
out:
/* This acts as do_exit(0). */
return 0;
}
/**
* tomoyo_notify_gc - Register/unregister /sys/kernel/security/tomoyo/ users.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @is_register: True if register, false if unregister.
*
* Returns nothing.
*/
void tomoyo_notify_gc(struct tomoyo_io_buffer *head, const bool is_register)
{
bool is_write = false;
spin_lock(&tomoyo_io_buffer_list_lock);
if (is_register) {
head->users = 1;
list_add(&head->list, &tomoyo_io_buffer_list);
} else {
is_write = head->write_buf != NULL;
if (!--head->users) {
list_del(&head->list);
kfree(head->read_buf);
kfree(head->write_buf);
kfree(head);
}
}
spin_unlock(&tomoyo_io_buffer_list_lock);
if (is_write)
kthread_run(tomoyo_gc_thread, NULL, "GC for TOMOYO");
}