1103 lines
28 KiB
C
Raw Normal View History

/*
* cfg80211 scan result handling
*
* Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/nl80211.h>
#include <linux/etherdevice.h>
#include <net/arp.h>
#include <net/cfg80211.h>
#include <net/iw_handler.h>
#include "core.h"
#include "nl80211.h"
#include "wext-compat.h"
#define IEEE80211_SCAN_RESULT_EXPIRE (15 * HZ)
void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool leak)
{
struct cfg80211_scan_request *request;
struct net_device *dev;
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
#endif
ASSERT_RDEV_LOCK(rdev);
request = rdev->scan_req;
if (!request)
return;
dev = request->dev;
/*
* This must be before sending the other events!
* Otherwise, wpa_supplicant gets completely confused with
* wext events.
*/
cfg80211_sme_scan_done(dev);
if (request->aborted)
nl80211_send_scan_aborted(rdev, dev);
else
nl80211_send_scan_done(rdev, dev);
#ifdef CONFIG_CFG80211_WEXT
if (!request->aborted) {
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
}
#endif
dev_put(dev);
rdev->scan_req = NULL;
/*
* OK. If this is invoked with "leak" then we can't
* free this ... but we've cleaned it up anyway. The
* driver failed to call the scan_done callback, so
* all bets are off, it might still be trying to use
* the scan request or not ... if it accesses the dev
* in there (it shouldn't anyway) then it may crash.
*/
if (!leak)
kfree(request);
}
void __cfg80211_scan_done(struct work_struct *wk)
{
struct cfg80211_registered_device *rdev;
rdev = container_of(wk, struct cfg80211_registered_device,
scan_done_wk);
cfg80211_lock_rdev(rdev);
___cfg80211_scan_done(rdev, false);
cfg80211_unlock_rdev(rdev);
}
void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted)
{
WARN_ON(request != wiphy_to_dev(request->wiphy)->scan_req);
request->aborted = aborted;
queue_work(cfg80211_wq, &wiphy_to_dev(request->wiphy)->scan_done_wk);
}
EXPORT_SYMBOL(cfg80211_scan_done);
static void bss_release(struct kref *ref)
{
struct cfg80211_internal_bss *bss;
bss = container_of(ref, struct cfg80211_internal_bss, ref);
if (bss->pub.free_priv)
bss->pub.free_priv(&bss->pub);
if (bss->beacon_ies_allocated)
kfree(bss->pub.beacon_ies);
if (bss->proberesp_ies_allocated)
kfree(bss->pub.proberesp_ies);
BUG_ON(atomic_read(&bss->hold));
kfree(bss);
}
/* must hold dev->bss_lock! */
void cfg80211_bss_age(struct cfg80211_registered_device *dev,
unsigned long age_secs)
{
struct cfg80211_internal_bss *bss;
unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
list_for_each_entry(bss, &dev->bss_list, list) {
bss->ts -= age_jiffies;
}
}
/* must hold dev->bss_lock! */
void cfg80211_bss_expire(struct cfg80211_registered_device *dev)
{
struct cfg80211_internal_bss *bss, *tmp;
bool expired = false;
list_for_each_entry_safe(bss, tmp, &dev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!time_after(jiffies, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE))
continue;
list_del(&bss->list);
rb_erase(&bss->rbn, &dev->bss_tree);
kref_put(&bss->ref, bss_release);
expired = true;
}
if (expired)
dev->bss_generation++;
}
const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
{
while (len > 2 && ies[0] != eid) {
len -= ies[1] + 2;
ies += ies[1] + 2;
}
if (len < 2)
return NULL;
if (len < 2 + ies[1])
return NULL;
return ies;
}
EXPORT_SYMBOL(cfg80211_find_ie);
static int cmp_ies(u8 num, u8 *ies1, size_t len1, u8 *ies2, size_t len2)
{
const u8 *ie1 = cfg80211_find_ie(num, ies1, len1);
const u8 *ie2 = cfg80211_find_ie(num, ies2, len2);
int r;
if (!ie1 && !ie2)
return 0;
if (!ie1 || !ie2)
return -1;
r = memcmp(ie1 + 2, ie2 + 2, min(ie1[1], ie2[1]));
if (r == 0 && ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return r;
}
static bool is_bss(struct cfg80211_bss *a,
const u8 *bssid,
const u8 *ssid, size_t ssid_len)
{
const u8 *ssidie;
if (bssid && compare_ether_addr(a->bssid, bssid))
return false;
if (!ssid)
return true;
ssidie = cfg80211_find_ie(WLAN_EID_SSID,
a->information_elements,
a->len_information_elements);
if (!ssidie)
return false;
if (ssidie[1] != ssid_len)
return false;
return memcmp(ssidie + 2, ssid, ssid_len) == 0;
}
static bool is_mesh(struct cfg80211_bss *a,
const u8 *meshid, size_t meshidlen,
const u8 *meshcfg)
{
const u8 *ie;
if (!is_zero_ether_addr(a->bssid))
return false;
ie = cfg80211_find_ie(WLAN_EID_MESH_ID,
a->information_elements,
a->len_information_elements);
if (!ie)
return false;
if (ie[1] != meshidlen)
return false;
if (memcmp(ie + 2, meshid, meshidlen))
return false;
ie = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
a->information_elements,
a->len_information_elements);
if (!ie)
return false;
if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
return false;
/*
* Ignore mesh capability (last two bytes of the IE) when
* comparing since that may differ between stations taking
* part in the same mesh.
*/
return memcmp(ie + 2, meshcfg,
sizeof(struct ieee80211_meshconf_ie) - 2) == 0;
}
static int cmp_bss(struct cfg80211_bss *a,
struct cfg80211_bss *b)
{
int r;
if (a->channel != b->channel)
return b->channel->center_freq - a->channel->center_freq;
r = memcmp(a->bssid, b->bssid, ETH_ALEN);
if (r)
return r;
if (is_zero_ether_addr(a->bssid)) {
r = cmp_ies(WLAN_EID_MESH_ID,
a->information_elements,
a->len_information_elements,
b->information_elements,
b->len_information_elements);
if (r)
return r;
return cmp_ies(WLAN_EID_MESH_CONFIG,
a->information_elements,
a->len_information_elements,
b->information_elements,
b->len_information_elements);
}
return cmp_ies(WLAN_EID_SSID,
a->information_elements,
a->len_information_elements,
b->information_elements,
b->len_information_elements);
}
struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
const u8 *ssid, size_t ssid_len,
u16 capa_mask, u16 capa_val)
{
struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
struct cfg80211_internal_bss *bss, *res = NULL;
spin_lock_bh(&dev->bss_lock);
list_for_each_entry(bss, &dev->bss_list, list) {
if ((bss->pub.capability & capa_mask) != capa_val)
continue;
if (channel && bss->pub.channel != channel)
continue;
if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
res = bss;
kref_get(&res->ref);
break;
}
}
spin_unlock_bh(&dev->bss_lock);
if (!res)
return NULL;
return &res->pub;
}
EXPORT_SYMBOL(cfg80211_get_bss);
struct cfg80211_bss *cfg80211_get_mesh(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *meshid, size_t meshidlen,
const u8 *meshcfg)
{
struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
struct cfg80211_internal_bss *bss, *res = NULL;
spin_lock_bh(&dev->bss_lock);
list_for_each_entry(bss, &dev->bss_list, list) {
if (channel && bss->pub.channel != channel)
continue;
if (is_mesh(&bss->pub, meshid, meshidlen, meshcfg)) {
res = bss;
kref_get(&res->ref);
break;
}
}
spin_unlock_bh(&dev->bss_lock);
if (!res)
return NULL;
return &res->pub;
}
EXPORT_SYMBOL(cfg80211_get_mesh);
static void rb_insert_bss(struct cfg80211_registered_device *dev,
struct cfg80211_internal_bss *bss)
{
struct rb_node **p = &dev->bss_tree.rb_node;
struct rb_node *parent = NULL;
struct cfg80211_internal_bss *tbss;
int cmp;
while (*p) {
parent = *p;
tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
cmp = cmp_bss(&bss->pub, &tbss->pub);
if (WARN_ON(!cmp)) {
/* will sort of leak this BSS */
return;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&bss->rbn, parent, p);
rb_insert_color(&bss->rbn, &dev->bss_tree);
}
static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device *dev,
struct cfg80211_internal_bss *res)
{
struct rb_node *n = dev->bss_tree.rb_node;
struct cfg80211_internal_bss *bss;
int r;
while (n) {
bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
r = cmp_bss(&res->pub, &bss->pub);
if (r == 0)
return bss;
else if (r < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return NULL;
}
static struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device *dev,
struct cfg80211_internal_bss *res)
{
struct cfg80211_internal_bss *found = NULL;
const u8 *meshid, *meshcfg;
/*
* The reference to "res" is donated to this function.
*/
if (WARN_ON(!res->pub.channel)) {
kref_put(&res->ref, bss_release);
return NULL;
}
res->ts = jiffies;
if (is_zero_ether_addr(res->pub.bssid)) {
/* must be mesh, verify */
meshid = cfg80211_find_ie(WLAN_EID_MESH_ID,
res->pub.information_elements,
res->pub.len_information_elements);
meshcfg = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
res->pub.information_elements,
res->pub.len_information_elements);
if (!meshid || !meshcfg ||
meshcfg[1] != sizeof(struct ieee80211_meshconf_ie)) {
/* bogus mesh */
kref_put(&res->ref, bss_release);
return NULL;
}
}
spin_lock_bh(&dev->bss_lock);
found = rb_find_bss(dev, res);
if (found) {
found->pub.beacon_interval = res->pub.beacon_interval;
found->pub.tsf = res->pub.tsf;
found->pub.signal = res->pub.signal;
found->pub.capability = res->pub.capability;
found->ts = res->ts;
/* Update IEs */
if (res->pub.proberesp_ies) {
size_t used = dev->wiphy.bss_priv_size + sizeof(*res);
size_t ielen = res->pub.len_proberesp_ies;
if (found->pub.proberesp_ies &&
!found->proberesp_ies_allocated &&
ksize(found) >= used + ielen) {
memcpy(found->pub.proberesp_ies,
res->pub.proberesp_ies, ielen);
found->pub.len_proberesp_ies = ielen;
} else {
u8 *ies = found->pub.proberesp_ies;
if (found->proberesp_ies_allocated)
ies = krealloc(ies, ielen, GFP_ATOMIC);
else
ies = kmalloc(ielen, GFP_ATOMIC);
if (ies) {
memcpy(ies, res->pub.proberesp_ies,
ielen);
found->proberesp_ies_allocated = true;
found->pub.proberesp_ies = ies;
found->pub.len_proberesp_ies = ielen;
}
}
/* Override possible earlier Beacon frame IEs */
found->pub.information_elements =
found->pub.proberesp_ies;
found->pub.len_information_elements =
found->pub.len_proberesp_ies;
}
if (res->pub.beacon_ies) {
size_t used = dev->wiphy.bss_priv_size + sizeof(*res);
size_t ielen = res->pub.len_beacon_ies;
if (found->pub.beacon_ies &&
!found->beacon_ies_allocated &&
ksize(found) >= used + ielen) {
memcpy(found->pub.beacon_ies,
res->pub.beacon_ies, ielen);
found->pub.len_beacon_ies = ielen;
} else {
u8 *ies = found->pub.beacon_ies;
if (found->beacon_ies_allocated)
ies = krealloc(ies, ielen, GFP_ATOMIC);
else
ies = kmalloc(ielen, GFP_ATOMIC);
if (ies) {
memcpy(ies, res->pub.beacon_ies,
ielen);
found->beacon_ies_allocated = true;
found->pub.beacon_ies = ies;
found->pub.len_beacon_ies = ielen;
}
}
}
kref_put(&res->ref, bss_release);
} else {
/* this "consumes" the reference */
list_add_tail(&res->list, &dev->bss_list);
rb_insert_bss(dev, res);
found = res;
}
dev->bss_generation++;
spin_unlock_bh(&dev->bss_lock);
kref_get(&found->ref);
return found;
}
struct cfg80211_bss*
cfg80211_inform_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
u64 timestamp, u16 capability, u16 beacon_interval,
const u8 *ie, size_t ielen,
s32 signal, gfp_t gfp)
{
struct cfg80211_internal_bss *res;
size_t privsz;
if (WARN_ON(!wiphy))
return NULL;
privsz = wiphy->bss_priv_size;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(signal < 0 || signal > 100)))
return NULL;
res = kzalloc(sizeof(*res) + privsz + ielen, gfp);
if (!res)
return NULL;
memcpy(res->pub.bssid, bssid, ETH_ALEN);
res->pub.channel = channel;
res->pub.signal = signal;
res->pub.tsf = timestamp;
res->pub.beacon_interval = beacon_interval;
res->pub.capability = capability;
/*
* Since we do not know here whether the IEs are from a Beacon or Probe
* Response frame, we need to pick one of the options and only use it
* with the driver that does not provide the full Beacon/Probe Response
* frame. Use Beacon frame pointer to avoid indicating that this should
* override the information_elements pointer should we have received an
* earlier indication of Probe Response data.
*
* The initial buffer for the IEs is allocated with the BSS entry and
* is located after the private area.
*/
res->pub.beacon_ies = (u8 *)res + sizeof(*res) + privsz;
memcpy(res->pub.beacon_ies, ie, ielen);
res->pub.len_beacon_ies = ielen;
res->pub.information_elements = res->pub.beacon_ies;
res->pub.len_information_elements = res->pub.len_beacon_ies;
kref_init(&res->ref);
res = cfg80211_bss_update(wiphy_to_dev(wiphy), res);
if (!res)
return NULL;
if (res->pub.capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
/* cfg80211_bss_update gives us a referenced result */
return &res->pub;
}
EXPORT_SYMBOL(cfg80211_inform_bss);
struct cfg80211_bss *
cfg80211_inform_bss_frame(struct wiphy *wiphy,
struct ieee80211_channel *channel,
struct ieee80211_mgmt *mgmt, size_t len,
s32 signal, gfp_t gfp)
{
struct cfg80211_internal_bss *res;
size_t ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
size_t privsz = wiphy->bss_priv_size;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(signal < 0 || signal > 100)))
return NULL;
if (WARN_ON(!mgmt || !wiphy ||
len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
return NULL;
res = kzalloc(sizeof(*res) + privsz + ielen, gfp);
if (!res)
return NULL;
memcpy(res->pub.bssid, mgmt->bssid, ETH_ALEN);
res->pub.channel = channel;
res->pub.signal = signal;
res->pub.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
res->pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
res->pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
/*
* The initial buffer for the IEs is allocated with the BSS entry and
* is located after the private area.
*/
if (ieee80211_is_probe_resp(mgmt->frame_control)) {
res->pub.proberesp_ies = (u8 *) res + sizeof(*res) + privsz;
memcpy(res->pub.proberesp_ies, mgmt->u.probe_resp.variable,
ielen);
res->pub.len_proberesp_ies = ielen;
res->pub.information_elements = res->pub.proberesp_ies;
res->pub.len_information_elements = res->pub.len_proberesp_ies;
} else {
res->pub.beacon_ies = (u8 *) res + sizeof(*res) + privsz;
memcpy(res->pub.beacon_ies, mgmt->u.beacon.variable, ielen);
res->pub.len_beacon_ies = ielen;
res->pub.information_elements = res->pub.beacon_ies;
res->pub.len_information_elements = res->pub.len_beacon_ies;
}
kref_init(&res->ref);
res = cfg80211_bss_update(wiphy_to_dev(wiphy), res);
if (!res)
return NULL;
if (res->pub.capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
/* cfg80211_bss_update gives us a referenced result */
return &res->pub;
}
EXPORT_SYMBOL(cfg80211_inform_bss_frame);
void cfg80211_put_bss(struct cfg80211_bss *pub)
{
struct cfg80211_internal_bss *bss;
if (!pub)
return;
bss = container_of(pub, struct cfg80211_internal_bss, pub);
kref_put(&bss->ref, bss_release);
}
EXPORT_SYMBOL(cfg80211_put_bss);
void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
struct cfg80211_internal_bss *bss;
if (WARN_ON(!pub))
return;
bss = container_of(pub, struct cfg80211_internal_bss, pub);
spin_lock_bh(&dev->bss_lock);
list_del(&bss->list);
dev->bss_generation++;
rb_erase(&bss->rbn, &dev->bss_tree);
spin_unlock_bh(&dev->bss_lock);
kref_put(&bss->ref, bss_release);
}
EXPORT_SYMBOL(cfg80211_unlink_bss);
#ifdef CONFIG_CFG80211_WEXT
int cfg80211_wext_siwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
struct iw_scan_req *wreq = NULL;
struct cfg80211_scan_request *creq = NULL;
int i, err, n_channels = 0;
enum ieee80211_band band;
if (!netif_running(dev))
return -ENETDOWN;
if (wrqu->data.length == sizeof(struct iw_scan_req))
wreq = (struct iw_scan_req *)extra;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req) {
err = -EBUSY;
goto out;
}
wiphy = &rdev->wiphy;
/* Determine number of channels, needed to allocate creq */
if (wreq && wreq->num_channels)
n_channels = wreq->num_channels;
else {
for (band = 0; band < IEEE80211_NUM_BANDS; band++)
if (wiphy->bands[band])
n_channels += wiphy->bands[band]->n_channels;
}
creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
n_channels * sizeof(void *),
GFP_ATOMIC);
if (!creq) {
err = -ENOMEM;
goto out;
}
creq->wiphy = wiphy;
creq->dev = dev;
/* SSIDs come after channels */
creq->ssids = (void *)&creq->channels[n_channels];
creq->n_channels = n_channels;
creq->n_ssids = 1;
/* translate "Scan on frequencies" request */
i = 0;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
/* ignore disabled channels */
if (wiphy->bands[band]->channels[j].flags &
IEEE80211_CHAN_DISABLED)
continue;
/* If we have a wireless request structure and the
* wireless request specifies frequencies, then search
* for the matching hardware channel.
*/
if (wreq && wreq->num_channels) {
int k;
int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
for (k = 0; k < wreq->num_channels; k++) {
int wext_freq = cfg80211_wext_freq(wiphy, &wreq->channel_list[k]);
if (wext_freq == wiphy_freq)
goto wext_freq_found;
}
goto wext_freq_not_found;
}
wext_freq_found:
creq->channels[i] = &wiphy->bands[band]->channels[j];
i++;
wext_freq_not_found: ;
}
}
/* No channels found? */
if (!i) {
err = -EINVAL;
goto out;
}
/* Set real number of channels specified in creq->channels[] */
creq->n_channels = i;
/* translate "Scan for SSID" request */
if (wreq) {
if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
err = -EINVAL;
goto out;
}
memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
creq->ssids[0].ssid_len = wreq->essid_len;
}
if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
creq->n_ssids = 0;
}
rdev->scan_req = creq;
err = rdev->ops->scan(wiphy, dev, creq);
if (err) {
rdev->scan_req = NULL;
/* creq will be freed below */
} else {
nl80211_send_scan_start(rdev, dev);
/* creq now owned by driver */
creq = NULL;
dev_hold(dev);
}
out:
kfree(creq);
cfg80211_unlock_rdev(rdev);
return err;
}
EXPORT_SYMBOL_GPL(cfg80211_wext_siwscan);
static void ieee80211_scan_add_ies(struct iw_request_info *info,
struct cfg80211_bss *bss,
char **current_ev, char *end_buf)
{
u8 *pos, *end, *next;
struct iw_event iwe;
if (!bss->information_elements ||
!bss->len_information_elements)
return;
/*
* If needed, fragment the IEs buffer (at IE boundaries) into short
* enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
*/
pos = bss->information_elements;
end = pos + bss->len_information_elements;
while (end - pos > IW_GENERIC_IE_MAX) {
next = pos + 2 + pos[1];
while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
next = next + 2 + next[1];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = next - pos;
*current_ev = iwe_stream_add_point(info, *current_ev,
end_buf, &iwe, pos);
pos = next;
}
if (end > pos) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = end - pos;
*current_ev = iwe_stream_add_point(info, *current_ev,
end_buf, &iwe, pos);
}
}
static inline unsigned int elapsed_jiffies_msecs(unsigned long start)
{
unsigned long end = jiffies;
if (end >= start)
return jiffies_to_msecs(end - start);
return jiffies_to_msecs(end + (MAX_JIFFY_OFFSET - start) + 1);
}
static char *
ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
struct cfg80211_internal_bss *bss, char *current_ev,
char *end_buf)
{
struct iw_event iwe;
u8 *buf, *cfg, *p;
u8 *ie = bss->pub.information_elements;
int rem = bss->pub.len_information_elements, i, sig;
bool ismesh = false;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->pub.channel->center_freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
IW_QUAL_NOISE_INVALID |
IW_QUAL_QUAL_UPDATED;
switch (wiphy->signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
sig = bss->pub.signal / 100;
iwe.u.qual.level = sig;
iwe.u.qual.updated |= IW_QUAL_DBM;
if (sig < -110) /* rather bad */
sig = -110;
else if (sig > -40) /* perfect */
sig = -40;
/* will give a range of 0 .. 70 */
iwe.u.qual.qual = sig + 110;
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
iwe.u.qual.level = bss->pub.signal;
/* will give range 0 .. 100 */
iwe.u.qual.qual = bss->pub.signal;
break;
default:
/* not reached */
break;
}
current_ev = iwe_stream_add_event(info, current_ev, end_buf,
&iwe, IW_EV_QUAL_LEN);
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, "");
while (rem >= 2) {
/* invalid data */
if (ie[1] > rem - 2)
break;
switch (ie[0]) {
case WLAN_EID_SSID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, ie + 2);
break;
case WLAN_EID_MESH_ID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, ie + 2);
break;
case WLAN_EID_MESH_CONFIG:
ismesh = true;
if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
break;
buf = kmalloc(50, GFP_ATOMIC);
if (!buf)
break;
cfg = ie + 2;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "Mesh Network Path Selection Protocol ID: "
"0x%02X", cfg[0]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Path Selection Metric ID: 0x%02X",
cfg[1]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Congestion Control Mode ID: 0x%02X",
cfg[2]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
kfree(buf);
break;
case WLAN_EID_SUPP_RATES:
case WLAN_EID_EXT_SUPP_RATES:
/* display all supported rates in readable format */
p = current_ev + iwe_stream_lcp_len(info);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < ie[1]; i++) {
iwe.u.bitrate.value =
((ie[i + 2] & 0x7f) * 500000);
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe, IW_EV_PARAM_LEN);
}
current_ev = p;
break;
}
rem -= ie[1] + 2;
ie += ie[1] + 2;
}
if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
ismesh) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (ismesh)
iwe.u.mode = IW_MODE_MESH;
else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(info, current_ev, end_buf,
&iwe, IW_EV_UINT_LEN);
}
buf = kmalloc(30, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->pub.tsf));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, buf);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, " Last beacon: %ums ago",
elapsed_jiffies_msecs(bss->ts));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, buf);
kfree(buf);
}
ieee80211_scan_add_ies(info, &bss->pub, &current_ev, end_buf);
return current_ev;
}
static int ieee80211_scan_results(struct cfg80211_registered_device *dev,
struct iw_request_info *info,
char *buf, size_t len)
{
char *current_ev = buf;
char *end_buf = buf + len;
struct cfg80211_internal_bss *bss;
spin_lock_bh(&dev->bss_lock);
cfg80211_bss_expire(dev);
list_for_each_entry(bss, &dev->bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
spin_unlock_bh(&dev->bss_lock);
return -E2BIG;
}
current_ev = ieee80211_bss(&dev->wiphy, info, bss,
current_ev, end_buf);
}
spin_unlock_bh(&dev->bss_lock);
return current_ev - buf;
}
int cfg80211_wext_giwscan(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct cfg80211_registered_device *rdev;
int res;
if (!netif_running(dev))
return -ENETDOWN;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req) {
res = -EAGAIN;
goto out;
}
res = ieee80211_scan_results(rdev, info, extra, data->length);
data->length = 0;
if (res >= 0) {
data->length = res;
res = 0;
}
out:
cfg80211_unlock_rdev(rdev);
return res;
}
EXPORT_SYMBOL_GPL(cfg80211_wext_giwscan);
#endif