linux-next/mm/page_io.c

136 lines
3.3 KiB
C
Raw Permalink Normal View History

/*
* linux/mm/page_io.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95,
* Asynchronous swapping added 30.12.95. Stephen Tweedie
* Removed race in async swapping. 14.4.1996. Bruno Haible
* Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
* Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
*/
#include <linux/mm.h>
#include <linux/kernel_stat.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/swapops.h>
#include <linux/writeback.h>
#include <asm/pgtable.h>
static struct bio *get_swap_bio(gfp_t gfp_flags,
struct page *page, bio_end_io_t end_io)
{
struct bio *bio;
bio = bio_alloc(gfp_flags, 1);
if (bio) {
bio->bi_sector = map_swap_page(page, &bio->bi_bdev);
bio->bi_sector <<= PAGE_SHIFT - 9;
bio->bi_io_vec[0].bv_page = page;
bio->bi_io_vec[0].bv_len = PAGE_SIZE;
bio->bi_io_vec[0].bv_offset = 0;
bio->bi_vcnt = 1;
bio->bi_idx = 0;
bio->bi_size = PAGE_SIZE;
bio->bi_end_io = end_io;
}
return bio;
}
static void end_swap_bio_write(struct bio *bio, int err)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct page *page = bio->bi_io_vec[0].bv_page;
if (!uptodate) {
SetPageError(page);
/*
* We failed to write the page out to swap-space.
* Re-dirty the page in order to avoid it being reclaimed.
* Also print a dire warning that things will go BAD (tm)
* very quickly.
*
* Also clear PG_reclaim to avoid rotate_reclaimable_page()
*/
set_page_dirty(page);
printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
imajor(bio->bi_bdev->bd_inode),
iminor(bio->bi_bdev->bd_inode),
(unsigned long long)bio->bi_sector);
ClearPageReclaim(page);
}
end_page_writeback(page);
bio_put(bio);
}
void end_swap_bio_read(struct bio *bio, int err)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct page *page = bio->bi_io_vec[0].bv_page;
if (!uptodate) {
SetPageError(page);
ClearPageUptodate(page);
printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
imajor(bio->bi_bdev->bd_inode),
iminor(bio->bi_bdev->bd_inode),
(unsigned long long)bio->bi_sector);
} else {
SetPageUptodate(page);
}
unlock_page(page);
bio_put(bio);
}
/*
* We may have stale swap cache pages in memory: notice
* them here and get rid of the unnecessary final write.
*/
int swap_writepage(struct page *page, struct writeback_control *wbc)
{
struct bio *bio;
int ret = 0, rw = WRITE;
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 14:39:36 -08:00
if (try_to_free_swap(page)) {
unlock_page(page);
goto out;
}
bio = get_swap_bio(GFP_NOIO, page, end_swap_bio_write);
if (bio == NULL) {
set_page_dirty(page);
unlock_page(page);
ret = -ENOMEM;
goto out;
}
if (wbc->sync_mode == WB_SYNC_ALL)
rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 01:55:45 -07:00
count_vm_event(PSWPOUT);
set_page_writeback(page);
unlock_page(page);
submit_bio(rw, bio);
out:
return ret;
}
int swap_readpage(struct page *page)
{
struct bio *bio;
int ret = 0;
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(PageUptodate(page));
bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
if (bio == NULL) {
unlock_page(page);
ret = -ENOMEM;
goto out;
}
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 01:55:45 -07:00
count_vm_event(PSWPIN);
submit_bio(READ, bio);
out:
return ret;
}