mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-01 10:42:11 +00:00
RAS: Add a Corrected Errors Collector
Introduce a simple data structure for collecting correctable errors along with accessors. More detailed description in the code itself. The error decoding is done with the decoding chain now and mce_first_notifier() gets to see the error first and the CEC decides whether to log it and then the rest of the chain doesn't hear about it - basically the main reason for the CE collector - or to continue running the notifiers. When the CEC hits the action threshold, it will try to soft-offine the page containing the ECC and then the whole decoding chain gets to see the error. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170327093304.10683-5-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
e64edfcce9
commit
011d826111
@ -3172,6 +3172,12 @@
|
||||
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
|
||||
See Documentation/blockdev/ramdisk.txt.
|
||||
|
||||
ras=option[,option,...] [KNL] RAS-specific options
|
||||
|
||||
cec_disable [X86]
|
||||
Disable the Correctable Errors Collector,
|
||||
see CONFIG_RAS_CEC help text.
|
||||
|
||||
rcu_nocbs= [KNL]
|
||||
The argument is a cpu list, as described above.
|
||||
|
||||
|
@ -191,10 +191,11 @@ extern struct mca_config mca_cfg;
|
||||
extern struct mca_msr_regs msr_ops;
|
||||
|
||||
enum mce_notifier_prios {
|
||||
MCE_PRIO_SRAO = INT_MAX,
|
||||
MCE_PRIO_EXTLOG = INT_MAX - 1,
|
||||
MCE_PRIO_NFIT = INT_MAX - 2,
|
||||
MCE_PRIO_EDAC = INT_MAX - 3,
|
||||
MCE_PRIO_FIRST = INT_MAX,
|
||||
MCE_PRIO_SRAO = INT_MAX - 1,
|
||||
MCE_PRIO_EXTLOG = INT_MAX - 2,
|
||||
MCE_PRIO_NFIT = INT_MAX - 3,
|
||||
MCE_PRIO_EDAC = INT_MAX - 4,
|
||||
MCE_PRIO_LOWEST = 0,
|
||||
};
|
||||
|
||||
|
@ -35,6 +35,7 @@
|
||||
#include <linux/poll.h>
|
||||
#include <linux/nmi.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/ras.h>
|
||||
#include <linux/smp.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
@ -160,47 +161,8 @@ static struct mce_log_buffer mcelog_buf = {
|
||||
|
||||
void mce_log(struct mce *m)
|
||||
{
|
||||
unsigned next, entry;
|
||||
|
||||
/* Emit the trace record: */
|
||||
trace_mce_record(m);
|
||||
|
||||
if (!mce_gen_pool_add(m))
|
||||
irq_work_queue(&mce_irq_work);
|
||||
|
||||
wmb();
|
||||
for (;;) {
|
||||
entry = mce_log_get_idx_check(mcelog_buf.next);
|
||||
for (;;) {
|
||||
|
||||
/*
|
||||
* When the buffer fills up discard new entries.
|
||||
* Assume that the earlier errors are the more
|
||||
* interesting ones:
|
||||
*/
|
||||
if (entry >= MCE_LOG_LEN) {
|
||||
set_bit(MCE_OVERFLOW,
|
||||
(unsigned long *)&mcelog_buf.flags);
|
||||
return;
|
||||
}
|
||||
/* Old left over entry. Skip: */
|
||||
if (mcelog_buf.entry[entry].finished) {
|
||||
entry++;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
smp_rmb();
|
||||
next = entry + 1;
|
||||
if (cmpxchg(&mcelog_buf.next, entry, next) == entry)
|
||||
break;
|
||||
}
|
||||
memcpy(mcelog_buf.entry + entry, m, sizeof(struct mce));
|
||||
wmb();
|
||||
mcelog_buf.entry[entry].finished = 1;
|
||||
wmb();
|
||||
|
||||
set_bit(0, &mce_need_notify);
|
||||
}
|
||||
|
||||
void mce_inject_log(struct mce *m)
|
||||
@ -213,6 +175,12 @@ EXPORT_SYMBOL_GPL(mce_inject_log);
|
||||
|
||||
static struct notifier_block mce_srao_nb;
|
||||
|
||||
/*
|
||||
* We run the default notifier if we have only the SRAO, the first and the
|
||||
* default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
|
||||
* notifiers registered on the chain.
|
||||
*/
|
||||
#define NUM_DEFAULT_NOTIFIERS 3
|
||||
static atomic_t num_notifiers;
|
||||
|
||||
void mce_register_decode_chain(struct notifier_block *nb)
|
||||
@ -522,7 +490,6 @@ static void mce_schedule_work(void)
|
||||
|
||||
static void mce_irq_work_cb(struct irq_work *entry)
|
||||
{
|
||||
mce_notify_irq();
|
||||
mce_schedule_work();
|
||||
}
|
||||
|
||||
@ -565,6 +532,111 @@ static int mce_usable_address(struct mce *m)
|
||||
return 1;
|
||||
}
|
||||
|
||||
static bool memory_error(struct mce *m)
|
||||
{
|
||||
struct cpuinfo_x86 *c = &boot_cpu_data;
|
||||
|
||||
if (c->x86_vendor == X86_VENDOR_AMD) {
|
||||
/* ErrCodeExt[20:16] */
|
||||
u8 xec = (m->status >> 16) & 0x1f;
|
||||
|
||||
return (xec == 0x0 || xec == 0x8);
|
||||
} else if (c->x86_vendor == X86_VENDOR_INTEL) {
|
||||
/*
|
||||
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
|
||||
*
|
||||
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
|
||||
* indicating a memory error. Bit 8 is used for indicating a
|
||||
* cache hierarchy error. The combination of bit 2 and bit 3
|
||||
* is used for indicating a `generic' cache hierarchy error
|
||||
* But we can't just blindly check the above bits, because if
|
||||
* bit 11 is set, then it is a bus/interconnect error - and
|
||||
* either way the above bits just gives more detail on what
|
||||
* bus/interconnect error happened. Note that bit 12 can be
|
||||
* ignored, as it's the "filter" bit.
|
||||
*/
|
||||
return (m->status & 0xef80) == BIT(7) ||
|
||||
(m->status & 0xef00) == BIT(8) ||
|
||||
(m->status & 0xeffc) == 0xc;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool cec_add_mce(struct mce *m)
|
||||
{
|
||||
if (!m)
|
||||
return false;
|
||||
|
||||
/* We eat only correctable DRAM errors with usable addresses. */
|
||||
if (memory_error(m) &&
|
||||
!(m->status & MCI_STATUS_UC) &&
|
||||
mce_usable_address(m))
|
||||
if (!cec_add_elem(m->addr >> PAGE_SHIFT))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct mce *m = (struct mce *)data;
|
||||
unsigned int next, entry;
|
||||
|
||||
if (!m)
|
||||
return NOTIFY_DONE;
|
||||
|
||||
if (cec_add_mce(m))
|
||||
return NOTIFY_STOP;
|
||||
|
||||
/* Emit the trace record: */
|
||||
trace_mce_record(m);
|
||||
|
||||
wmb();
|
||||
for (;;) {
|
||||
entry = mce_log_get_idx_check(mcelog_buf.next);
|
||||
for (;;) {
|
||||
|
||||
/*
|
||||
* When the buffer fills up discard new entries.
|
||||
* Assume that the earlier errors are the more
|
||||
* interesting ones:
|
||||
*/
|
||||
if (entry >= MCE_LOG_LEN) {
|
||||
set_bit(MCE_OVERFLOW,
|
||||
(unsigned long *)&mcelog_buf.flags);
|
||||
return NOTIFY_DONE;
|
||||
}
|
||||
/* Old left over entry. Skip: */
|
||||
if (mcelog_buf.entry[entry].finished) {
|
||||
entry++;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
smp_rmb();
|
||||
next = entry + 1;
|
||||
if (cmpxchg(&mcelog_buf.next, entry, next) == entry)
|
||||
break;
|
||||
}
|
||||
memcpy(mcelog_buf.entry + entry, m, sizeof(struct mce));
|
||||
wmb();
|
||||
mcelog_buf.entry[entry].finished = 1;
|
||||
wmb();
|
||||
|
||||
set_bit(0, &mce_need_notify);
|
||||
|
||||
mce_notify_irq();
|
||||
|
||||
return NOTIFY_DONE;
|
||||
}
|
||||
|
||||
static struct notifier_block first_nb = {
|
||||
.notifier_call = mce_first_notifier,
|
||||
.priority = MCE_PRIO_FIRST,
|
||||
};
|
||||
|
||||
static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
@ -594,11 +666,7 @@ static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
|
||||
if (!m)
|
||||
return NOTIFY_DONE;
|
||||
|
||||
/*
|
||||
* Run the default notifier if we have only the SRAO
|
||||
* notifier and us registered.
|
||||
*/
|
||||
if (atomic_read(&num_notifiers) > 2)
|
||||
if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
|
||||
return NOTIFY_DONE;
|
||||
|
||||
/* Don't print when mcelog is running */
|
||||
@ -655,37 +723,6 @@ static void mce_read_aux(struct mce *m, int i)
|
||||
}
|
||||
}
|
||||
|
||||
static bool memory_error(struct mce *m)
|
||||
{
|
||||
struct cpuinfo_x86 *c = &boot_cpu_data;
|
||||
|
||||
if (c->x86_vendor == X86_VENDOR_AMD) {
|
||||
/* ErrCodeExt[20:16] */
|
||||
u8 xec = (m->status >> 16) & 0x1f;
|
||||
|
||||
return (xec == 0x0 || xec == 0x8);
|
||||
} else if (c->x86_vendor == X86_VENDOR_INTEL) {
|
||||
/*
|
||||
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
|
||||
*
|
||||
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
|
||||
* indicating a memory error. Bit 8 is used for indicating a
|
||||
* cache hierarchy error. The combination of bit 2 and bit 3
|
||||
* is used for indicating a `generic' cache hierarchy error
|
||||
* But we can't just blindly check the above bits, because if
|
||||
* bit 11 is set, then it is a bus/interconnect error - and
|
||||
* either way the above bits just gives more detail on what
|
||||
* bus/interconnect error happened. Note that bit 12 can be
|
||||
* ignored, as it's the "filter" bit.
|
||||
*/
|
||||
return (m->status & 0xef80) == BIT(7) ||
|
||||
(m->status & 0xef00) == BIT(8) ||
|
||||
(m->status & 0xeffc) == 0xc;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
DEFINE_PER_CPU(unsigned, mce_poll_count);
|
||||
|
||||
/*
|
||||
@ -2167,6 +2204,7 @@ __setup("mce", mcheck_enable);
|
||||
int __init mcheck_init(void)
|
||||
{
|
||||
mcheck_intel_therm_init();
|
||||
mce_register_decode_chain(&first_nb);
|
||||
mce_register_decode_chain(&mce_srao_nb);
|
||||
mce_register_decode_chain(&mce_default_nb);
|
||||
mcheck_vendor_init_severity();
|
||||
@ -2716,6 +2754,7 @@ static int __init mcheck_late_init(void)
|
||||
static_branch_inc(&mcsafe_key);
|
||||
|
||||
mcheck_debugfs_init();
|
||||
cec_init();
|
||||
|
||||
/*
|
||||
* Flush out everything that has been logged during early boot, now that
|
||||
|
@ -7,3 +7,17 @@ config MCE_AMD_INJ
|
||||
aspects of the MCE handling code.
|
||||
|
||||
WARNING: Do not even assume this interface is staying stable!
|
||||
|
||||
config RAS_CEC
|
||||
bool "Correctable Errors Collector"
|
||||
depends on X86_MCE && MEMORY_FAILURE && DEBUG_FS
|
||||
---help---
|
||||
This is a small cache which collects correctable memory errors per 4K
|
||||
page PFN and counts their repeated occurrence. Once the counter for a
|
||||
PFN overflows, we try to soft-offline that page as we take it to mean
|
||||
that it has reached a relatively high error count and would probably
|
||||
be best if we don't use it anymore.
|
||||
|
||||
Bear in mind that this is absolutely useless if your platform doesn't
|
||||
have ECC DIMMs and doesn't have DRAM ECC checking enabled in the BIOS.
|
||||
|
||||
|
@ -1 +1,2 @@
|
||||
obj-$(CONFIG_RAS) += ras.o debugfs.o
|
||||
obj-$(CONFIG_RAS) += ras.o debugfs.o
|
||||
obj-$(CONFIG_RAS_CEC) += cec.o
|
||||
|
532
drivers/ras/cec.c
Normal file
532
drivers/ras/cec.c
Normal file
@ -0,0 +1,532 @@
|
||||
#include <linux/mm.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/kernel.h>
|
||||
|
||||
#include <asm/mce.h>
|
||||
|
||||
#include "debugfs.h"
|
||||
|
||||
/*
|
||||
* RAS Correctable Errors Collector
|
||||
*
|
||||
* This is a simple gadget which collects correctable errors and counts their
|
||||
* occurrence per physical page address.
|
||||
*
|
||||
* We've opted for possibly the simplest data structure to collect those - an
|
||||
* array of the size of a memory page. It stores 512 u64's with the following
|
||||
* structure:
|
||||
*
|
||||
* [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
|
||||
*
|
||||
* The generation in the two highest order bits is two bits which are set to 11b
|
||||
* on every insertion. During the course of each entry's existence, the
|
||||
* generation field gets decremented during spring cleaning to 10b, then 01b and
|
||||
* then 00b.
|
||||
*
|
||||
* This way we're employing the natural numeric ordering to make sure that newly
|
||||
* inserted/touched elements have higher 12-bit counts (which we've manufactured)
|
||||
* and thus iterating over the array initially won't kick out those elements
|
||||
* which were inserted last.
|
||||
*
|
||||
* Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
|
||||
* elements entered into the array, during which, we're decaying all elements.
|
||||
* If, after decay, an element gets inserted again, its generation is set to 11b
|
||||
* to make sure it has higher numerical count than other, older elements and
|
||||
* thus emulate an an LRU-like behavior when deleting elements to free up space
|
||||
* in the page.
|
||||
*
|
||||
* When an element reaches it's max count of count_threshold, we try to poison
|
||||
* it by assuming that errors triggered count_threshold times in a single page
|
||||
* are excessive and that page shouldn't be used anymore. count_threshold is
|
||||
* initialized to COUNT_MASK which is the maximum.
|
||||
*
|
||||
* That error event entry causes cec_add_elem() to return !0 value and thus
|
||||
* signal to its callers to log the error.
|
||||
*
|
||||
* To the question why we've chosen a page and moving elements around with
|
||||
* memmove(), it is because it is a very simple structure to handle and max data
|
||||
* movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
|
||||
* We wanted to avoid the pointer traversal of more complex structures like a
|
||||
* linked list or some sort of a balancing search tree.
|
||||
*
|
||||
* Deleting an element takes O(n) but since it is only a single page, it should
|
||||
* be fast enough and it shouldn't happen all too often depending on error
|
||||
* patterns.
|
||||
*/
|
||||
|
||||
#undef pr_fmt
|
||||
#define pr_fmt(fmt) "RAS: " fmt
|
||||
|
||||
/*
|
||||
* We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
|
||||
* elements have stayed in the array without having been accessed again.
|
||||
*/
|
||||
#define DECAY_BITS 2
|
||||
#define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
|
||||
#define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
|
||||
|
||||
/*
|
||||
* Threshold amount of inserted elements after which we start spring
|
||||
* cleaning.
|
||||
*/
|
||||
#define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
|
||||
|
||||
/* Bits which count the number of errors happened in this 4K page. */
|
||||
#define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
|
||||
#define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
|
||||
#define FULL_COUNT_MASK (PAGE_SIZE - 1)
|
||||
|
||||
/*
|
||||
* u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
|
||||
*/
|
||||
|
||||
#define PFN(e) ((e) >> PAGE_SHIFT)
|
||||
#define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
|
||||
#define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
|
||||
#define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
|
||||
|
||||
static struct ce_array {
|
||||
u64 *array; /* container page */
|
||||
unsigned int n; /* number of elements in the array */
|
||||
|
||||
unsigned int decay_count; /*
|
||||
* number of element insertions/increments
|
||||
* since the last spring cleaning.
|
||||
*/
|
||||
|
||||
u64 pfns_poisoned; /*
|
||||
* number of PFNs which got poisoned.
|
||||
*/
|
||||
|
||||
u64 ces_entered; /*
|
||||
* The number of correctable errors
|
||||
* entered into the collector.
|
||||
*/
|
||||
|
||||
u64 decays_done; /*
|
||||
* Times we did spring cleaning.
|
||||
*/
|
||||
|
||||
union {
|
||||
struct {
|
||||
__u32 disabled : 1, /* cmdline disabled */
|
||||
__resv : 31;
|
||||
};
|
||||
__u32 flags;
|
||||
};
|
||||
} ce_arr;
|
||||
|
||||
static DEFINE_MUTEX(ce_mutex);
|
||||
static u64 dfs_pfn;
|
||||
|
||||
/* Amount of errors after which we offline */
|
||||
static unsigned int count_threshold = COUNT_MASK;
|
||||
|
||||
/*
|
||||
* The timer "decays" element count each timer_interval which is 24hrs by
|
||||
* default.
|
||||
*/
|
||||
|
||||
#define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
|
||||
#define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */
|
||||
#define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
|
||||
static struct timer_list cec_timer;
|
||||
static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
|
||||
|
||||
/*
|
||||
* Decrement decay value. We're using DECAY_BITS bits to denote decay of an
|
||||
* element in the array. On insertion and any access, it gets reset to max.
|
||||
*/
|
||||
static void do_spring_cleaning(struct ce_array *ca)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ca->n; i++) {
|
||||
u8 decay = DECAY(ca->array[i]);
|
||||
|
||||
if (!decay)
|
||||
continue;
|
||||
|
||||
decay--;
|
||||
|
||||
ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
|
||||
ca->array[i] |= (decay << COUNT_BITS);
|
||||
}
|
||||
ca->decay_count = 0;
|
||||
ca->decays_done++;
|
||||
}
|
||||
|
||||
/*
|
||||
* @interval in seconds
|
||||
*/
|
||||
static void cec_mod_timer(struct timer_list *t, unsigned long interval)
|
||||
{
|
||||
unsigned long iv;
|
||||
|
||||
iv = interval * HZ + jiffies;
|
||||
|
||||
mod_timer(t, round_jiffies(iv));
|
||||
}
|
||||
|
||||
static void cec_timer_fn(unsigned long data)
|
||||
{
|
||||
struct ce_array *ca = (struct ce_array *)data;
|
||||
|
||||
do_spring_cleaning(ca);
|
||||
|
||||
cec_mod_timer(&cec_timer, timer_interval);
|
||||
}
|
||||
|
||||
/*
|
||||
* @to: index of the smallest element which is >= then @pfn.
|
||||
*
|
||||
* Return the index of the pfn if found, otherwise negative value.
|
||||
*/
|
||||
static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
|
||||
{
|
||||
u64 this_pfn;
|
||||
int min = 0, max = ca->n;
|
||||
|
||||
while (min < max) {
|
||||
int tmp = (max + min) >> 1;
|
||||
|
||||
this_pfn = PFN(ca->array[tmp]);
|
||||
|
||||
if (this_pfn < pfn)
|
||||
min = tmp + 1;
|
||||
else if (this_pfn > pfn)
|
||||
max = tmp;
|
||||
else {
|
||||
min = tmp;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (to)
|
||||
*to = min;
|
||||
|
||||
this_pfn = PFN(ca->array[min]);
|
||||
|
||||
if (this_pfn == pfn)
|
||||
return min;
|
||||
|
||||
return -ENOKEY;
|
||||
}
|
||||
|
||||
static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
|
||||
{
|
||||
WARN_ON(!to);
|
||||
|
||||
if (!ca->n) {
|
||||
*to = 0;
|
||||
return -ENOKEY;
|
||||
}
|
||||
return __find_elem(ca, pfn, to);
|
||||
}
|
||||
|
||||
static void del_elem(struct ce_array *ca, int idx)
|
||||
{
|
||||
/* Save us a function call when deleting the last element. */
|
||||
if (ca->n - (idx + 1))
|
||||
memmove((void *)&ca->array[idx],
|
||||
(void *)&ca->array[idx + 1],
|
||||
(ca->n - (idx + 1)) * sizeof(u64));
|
||||
|
||||
ca->n--;
|
||||
}
|
||||
|
||||
static u64 del_lru_elem_unlocked(struct ce_array *ca)
|
||||
{
|
||||
unsigned int min = FULL_COUNT_MASK;
|
||||
int i, min_idx = 0;
|
||||
|
||||
for (i = 0; i < ca->n; i++) {
|
||||
unsigned int this = FULL_COUNT(ca->array[i]);
|
||||
|
||||
if (min > this) {
|
||||
min = this;
|
||||
min_idx = i;
|
||||
}
|
||||
}
|
||||
|
||||
del_elem(ca, min_idx);
|
||||
|
||||
return PFN(ca->array[min_idx]);
|
||||
}
|
||||
|
||||
/*
|
||||
* We return the 0th pfn in the error case under the assumption that it cannot
|
||||
* be poisoned and excessive CEs in there are a serious deal anyway.
|
||||
*/
|
||||
static u64 __maybe_unused del_lru_elem(void)
|
||||
{
|
||||
struct ce_array *ca = &ce_arr;
|
||||
u64 pfn;
|
||||
|
||||
if (!ca->n)
|
||||
return 0;
|
||||
|
||||
mutex_lock(&ce_mutex);
|
||||
pfn = del_lru_elem_unlocked(ca);
|
||||
mutex_unlock(&ce_mutex);
|
||||
|
||||
return pfn;
|
||||
}
|
||||
|
||||
|
||||
int cec_add_elem(u64 pfn)
|
||||
{
|
||||
struct ce_array *ca = &ce_arr;
|
||||
unsigned int to;
|
||||
int count, ret = 0;
|
||||
|
||||
/*
|
||||
* We can be called very early on the identify_cpu() path where we are
|
||||
* not initialized yet. We ignore the error for simplicity.
|
||||
*/
|
||||
if (!ce_arr.array || ce_arr.disabled)
|
||||
return -ENODEV;
|
||||
|
||||
ca->ces_entered++;
|
||||
|
||||
mutex_lock(&ce_mutex);
|
||||
|
||||
if (ca->n == MAX_ELEMS)
|
||||
WARN_ON(!del_lru_elem_unlocked(ca));
|
||||
|
||||
ret = find_elem(ca, pfn, &to);
|
||||
if (ret < 0) {
|
||||
/*
|
||||
* Shift range [to-end] to make room for one more element.
|
||||
*/
|
||||
memmove((void *)&ca->array[to + 1],
|
||||
(void *)&ca->array[to],
|
||||
(ca->n - to) * sizeof(u64));
|
||||
|
||||
ca->array[to] = (pfn << PAGE_SHIFT) |
|
||||
(DECAY_MASK << COUNT_BITS) | 1;
|
||||
|
||||
ca->n++;
|
||||
|
||||
ret = 0;
|
||||
|
||||
goto decay;
|
||||
}
|
||||
|
||||
count = COUNT(ca->array[to]);
|
||||
|
||||
if (count < count_threshold) {
|
||||
ca->array[to] |= (DECAY_MASK << COUNT_BITS);
|
||||
ca->array[to]++;
|
||||
|
||||
ret = 0;
|
||||
} else {
|
||||
u64 pfn = ca->array[to] >> PAGE_SHIFT;
|
||||
|
||||
if (!pfn_valid(pfn)) {
|
||||
pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
|
||||
} else {
|
||||
/* We have reached max count for this page, soft-offline it. */
|
||||
pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
|
||||
memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
|
||||
ca->pfns_poisoned++;
|
||||
}
|
||||
|
||||
del_elem(ca, to);
|
||||
|
||||
/*
|
||||
* Return a >0 value to denote that we've reached the offlining
|
||||
* threshold.
|
||||
*/
|
||||
ret = 1;
|
||||
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
decay:
|
||||
ca->decay_count++;
|
||||
|
||||
if (ca->decay_count >= CLEAN_ELEMS)
|
||||
do_spring_cleaning(ca);
|
||||
|
||||
unlock:
|
||||
mutex_unlock(&ce_mutex);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int u64_get(void *data, u64 *val)
|
||||
{
|
||||
*val = *(u64 *)data;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pfn_set(void *data, u64 val)
|
||||
{
|
||||
*(u64 *)data = val;
|
||||
|
||||
return cec_add_elem(val);
|
||||
}
|
||||
|
||||
DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
|
||||
|
||||
static int decay_interval_set(void *data, u64 val)
|
||||
{
|
||||
*(u64 *)data = val;
|
||||
|
||||
if (val < CEC_TIMER_MIN_INTERVAL)
|
||||
return -EINVAL;
|
||||
|
||||
if (val > CEC_TIMER_MAX_INTERVAL)
|
||||
return -EINVAL;
|
||||
|
||||
timer_interval = val;
|
||||
|
||||
cec_mod_timer(&cec_timer, timer_interval);
|
||||
return 0;
|
||||
}
|
||||
DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
|
||||
|
||||
static int count_threshold_set(void *data, u64 val)
|
||||
{
|
||||
*(u64 *)data = val;
|
||||
|
||||
if (val > COUNT_MASK)
|
||||
val = COUNT_MASK;
|
||||
|
||||
count_threshold = val;
|
||||
|
||||
return 0;
|
||||
}
|
||||
DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
|
||||
|
||||
static int array_dump(struct seq_file *m, void *v)
|
||||
{
|
||||
struct ce_array *ca = &ce_arr;
|
||||
u64 prev = 0;
|
||||
int i;
|
||||
|
||||
mutex_lock(&ce_mutex);
|
||||
|
||||
seq_printf(m, "{ n: %d\n", ca->n);
|
||||
for (i = 0; i < ca->n; i++) {
|
||||
u64 this = PFN(ca->array[i]);
|
||||
|
||||
seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
|
||||
|
||||
WARN_ON(prev > this);
|
||||
|
||||
prev = this;
|
||||
}
|
||||
|
||||
seq_printf(m, "}\n");
|
||||
|
||||
seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
|
||||
ca->ces_entered, ca->pfns_poisoned);
|
||||
|
||||
seq_printf(m, "Flags: 0x%x\n", ca->flags);
|
||||
|
||||
seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
|
||||
seq_printf(m, "Decays: %lld\n", ca->decays_done);
|
||||
|
||||
seq_printf(m, "Action threshold: %d\n", count_threshold);
|
||||
|
||||
mutex_unlock(&ce_mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int array_open(struct inode *inode, struct file *filp)
|
||||
{
|
||||
return single_open(filp, array_dump, NULL);
|
||||
}
|
||||
|
||||
static const struct file_operations array_ops = {
|
||||
.owner = THIS_MODULE,
|
||||
.open = array_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
static int __init create_debugfs_nodes(void)
|
||||
{
|
||||
struct dentry *d, *pfn, *decay, *count, *array;
|
||||
|
||||
d = debugfs_create_dir("cec", ras_debugfs_dir);
|
||||
if (!d) {
|
||||
pr_warn("Error creating cec debugfs node!\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
|
||||
if (!pfn) {
|
||||
pr_warn("Error creating pfn debugfs node!\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
|
||||
if (!array) {
|
||||
pr_warn("Error creating array debugfs node!\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
|
||||
&timer_interval, &decay_interval_ops);
|
||||
if (!decay) {
|
||||
pr_warn("Error creating decay_interval debugfs node!\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
|
||||
&count_threshold, &count_threshold_ops);
|
||||
if (!decay) {
|
||||
pr_warn("Error creating count_threshold debugfs node!\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
|
||||
err:
|
||||
debugfs_remove_recursive(d);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void __init cec_init(void)
|
||||
{
|
||||
if (ce_arr.disabled)
|
||||
return;
|
||||
|
||||
ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!ce_arr.array) {
|
||||
pr_err("Error allocating CE array page!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (create_debugfs_nodes())
|
||||
return;
|
||||
|
||||
setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
|
||||
cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
|
||||
|
||||
pr_info("Correctable Errors collector initialized.\n");
|
||||
}
|
||||
|
||||
int __init parse_cec_param(char *str)
|
||||
{
|
||||
if (!str)
|
||||
return 0;
|
||||
|
||||
if (*str == '=')
|
||||
str++;
|
||||
|
||||
if (!strncmp(str, "cec_disable", 7))
|
||||
ce_arr.disabled = 1;
|
||||
else
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
#include <linux/debugfs.h>
|
||||
|
||||
static struct dentry *ras_debugfs_dir;
|
||||
struct dentry *ras_debugfs_dir;
|
||||
|
||||
static atomic_t trace_count = ATOMIC_INIT(0);
|
||||
|
||||
|
8
drivers/ras/debugfs.h
Normal file
8
drivers/ras/debugfs.h
Normal file
@ -0,0 +1,8 @@
|
||||
#ifndef __RAS_DEBUGFS_H__
|
||||
#define __RAS_DEBUGFS_H__
|
||||
|
||||
#include <linux/debugfs.h>
|
||||
|
||||
extern struct dentry *ras_debugfs_dir;
|
||||
|
||||
#endif /* __RAS_DEBUGFS_H__ */
|
@ -27,3 +27,14 @@ subsys_initcall(ras_init);
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(extlog_mem_event);
|
||||
#endif
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(mc_event);
|
||||
|
||||
|
||||
int __init parse_ras_param(char *str)
|
||||
{
|
||||
#ifdef CONFIG_RAS_CEC
|
||||
parse_cec_param(str);
|
||||
#endif
|
||||
|
||||
return 1;
|
||||
}
|
||||
__setup("ras", parse_ras_param);
|
||||
|
@ -1,14 +1,25 @@
|
||||
#ifndef __RAS_H__
|
||||
#define __RAS_H__
|
||||
|
||||
#include <asm/errno.h>
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
int ras_userspace_consumers(void);
|
||||
void ras_debugfs_init(void);
|
||||
int ras_add_daemon_trace(void);
|
||||
#else
|
||||
static inline int ras_userspace_consumers(void) { return 0; }
|
||||
static inline void ras_debugfs_init(void) { return; }
|
||||
static inline void ras_debugfs_init(void) { }
|
||||
static inline int ras_add_daemon_trace(void) { return 0; }
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_RAS_CEC
|
||||
void __init cec_init(void);
|
||||
int __init parse_cec_param(char *str);
|
||||
int cec_add_elem(u64 pfn);
|
||||
#else
|
||||
static inline void __init cec_init(void) { }
|
||||
static inline int cec_add_elem(u64 pfn) { return -ENODEV; }
|
||||
#endif
|
||||
|
||||
#endif /* __RAS_H__ */
|
||||
|
Loading…
Reference in New Issue
Block a user