mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 21:23:23 +00:00
Second round of fixes for KVM/ARM for 3.19.
Fixes memory corruption issues on APM platforms and swapping issues on DMA-coherent systems. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJUyrVCAAoJEEtpOizt6ddy/rgH/1gFfX3zGryDYwbFz2BbnMk8 zJeQfeaOD4TF/6k8UZctrJatoqPgMCmVMAbT7uuZ+zwOYPYDGijGeJOYKS6IcIcj Lhl0QjbwBUaC58jZhhKGStZTKV2w9L7JK3RFStw+cE2HAAKcZQSVdfnM7ZoyyaRC qbFqPXLppSSZXD1R+/F17+mM8bogRmdS4we0o7J1KCT6hWbnK1CJkScxXLapbl5Y tKZSMM+k+L7wvgDnuzepTY+rFna3LSLQXNli0nPX9ByRFR4nMjeJKwm68kOaTU1r y1naOS3F6kl7S0OiCzyzekM4U330MAVmTyvlT9GHAHCVyjzavGQuuBFHdcdnvvc= =rJUG -----END PGP SIGNATURE----- Merge tag 'kvm-arm-fixes-3.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master Second round of fixes for KVM/ARM for 3.19. Fixes memory corruption issues on APM platforms and swapping issues on DMA-coherent systems.
This commit is contained in:
commit
02512b2bd6
@ -38,6 +38,16 @@ static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
|
||||
vcpu->arch.hcr = HCR_GUEST_MASK;
|
||||
}
|
||||
|
||||
static inline unsigned long vcpu_get_hcr(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return vcpu->arch.hcr;
|
||||
}
|
||||
|
||||
static inline void vcpu_set_hcr(struct kvm_vcpu *vcpu, unsigned long hcr)
|
||||
{
|
||||
vcpu->arch.hcr = hcr;
|
||||
}
|
||||
|
||||
static inline bool vcpu_mode_is_32bit(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return 1;
|
||||
|
@ -125,9 +125,6 @@ struct kvm_vcpu_arch {
|
||||
* Anything that is not used directly from assembly code goes
|
||||
* here.
|
||||
*/
|
||||
/* dcache set/way operation pending */
|
||||
int last_pcpu;
|
||||
cpumask_t require_dcache_flush;
|
||||
|
||||
/* Don't run the guest on this vcpu */
|
||||
bool pause;
|
||||
|
@ -44,6 +44,7 @@
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
#include <linux/highmem.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/pgalloc.h>
|
||||
|
||||
@ -161,13 +162,10 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
|
||||
return (vcpu->arch.cp15[c1_SCTLR] & 0b101) == 0b101;
|
||||
}
|
||||
|
||||
static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
|
||||
unsigned long size,
|
||||
bool ipa_uncached)
|
||||
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
|
||||
unsigned long size,
|
||||
bool ipa_uncached)
|
||||
{
|
||||
if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
|
||||
kvm_flush_dcache_to_poc((void *)hva, size);
|
||||
|
||||
/*
|
||||
* If we are going to insert an instruction page and the icache is
|
||||
* either VIPT or PIPT, there is a potential problem where the host
|
||||
@ -179,18 +177,77 @@ static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
|
||||
*
|
||||
* VIVT caches are tagged using both the ASID and the VMID and doesn't
|
||||
* need any kind of flushing (DDI 0406C.b - Page B3-1392).
|
||||
*
|
||||
* We need to do this through a kernel mapping (using the
|
||||
* user-space mapping has proved to be the wrong
|
||||
* solution). For that, we need to kmap one page at a time,
|
||||
* and iterate over the range.
|
||||
*/
|
||||
if (icache_is_pipt()) {
|
||||
__cpuc_coherent_user_range(hva, hva + size);
|
||||
} else if (!icache_is_vivt_asid_tagged()) {
|
||||
|
||||
bool need_flush = !vcpu_has_cache_enabled(vcpu) || ipa_uncached;
|
||||
|
||||
VM_BUG_ON(size & PAGE_MASK);
|
||||
|
||||
if (!need_flush && !icache_is_pipt())
|
||||
goto vipt_cache;
|
||||
|
||||
while (size) {
|
||||
void *va = kmap_atomic_pfn(pfn);
|
||||
|
||||
if (need_flush)
|
||||
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
|
||||
|
||||
if (icache_is_pipt())
|
||||
__cpuc_coherent_user_range((unsigned long)va,
|
||||
(unsigned long)va + PAGE_SIZE);
|
||||
|
||||
size -= PAGE_SIZE;
|
||||
pfn++;
|
||||
|
||||
kunmap_atomic(va);
|
||||
}
|
||||
|
||||
vipt_cache:
|
||||
if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
|
||||
/* any kind of VIPT cache */
|
||||
__flush_icache_all();
|
||||
}
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pte(pte_t pte)
|
||||
{
|
||||
void *va = kmap_atomic(pte_page(pte));
|
||||
|
||||
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
|
||||
|
||||
kunmap_atomic(va);
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
|
||||
{
|
||||
unsigned long size = PMD_SIZE;
|
||||
pfn_t pfn = pmd_pfn(pmd);
|
||||
|
||||
while (size) {
|
||||
void *va = kmap_atomic_pfn(pfn);
|
||||
|
||||
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
|
||||
|
||||
pfn++;
|
||||
size -= PAGE_SIZE;
|
||||
|
||||
kunmap_atomic(va);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pud(pud_t pud)
|
||||
{
|
||||
}
|
||||
|
||||
#define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
|
||||
|
||||
void stage2_flush_vm(struct kvm *kvm);
|
||||
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
|
||||
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
|
||||
|
||||
#endif /* !__ASSEMBLY__ */
|
||||
|
||||
|
@ -281,15 +281,6 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
||||
vcpu->cpu = cpu;
|
||||
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
|
||||
|
||||
/*
|
||||
* Check whether this vcpu requires the cache to be flushed on
|
||||
* this physical CPU. This is a consequence of doing dcache
|
||||
* operations by set/way on this vcpu. We do it here to be in
|
||||
* a non-preemptible section.
|
||||
*/
|
||||
if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
|
||||
flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
|
||||
|
||||
kvm_arm_set_running_vcpu(vcpu);
|
||||
}
|
||||
|
||||
@ -541,7 +532,6 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
||||
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
|
||||
|
||||
vcpu->mode = OUTSIDE_GUEST_MODE;
|
||||
vcpu->arch.last_pcpu = smp_processor_id();
|
||||
kvm_guest_exit();
|
||||
trace_kvm_exit(*vcpu_pc(vcpu));
|
||||
/*
|
||||
|
@ -189,82 +189,40 @@ static bool access_l2ectlr(struct kvm_vcpu *vcpu,
|
||||
return true;
|
||||
}
|
||||
|
||||
/* See note at ARM ARM B1.14.4 */
|
||||
/*
|
||||
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
||||
*/
|
||||
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r)
|
||||
{
|
||||
unsigned long val;
|
||||
int cpu;
|
||||
|
||||
if (!p->is_write)
|
||||
return read_from_write_only(vcpu, p);
|
||||
|
||||
cpu = get_cpu();
|
||||
|
||||
cpumask_setall(&vcpu->arch.require_dcache_flush);
|
||||
cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
|
||||
|
||||
/* If we were already preempted, take the long way around */
|
||||
if (cpu != vcpu->arch.last_pcpu) {
|
||||
flush_cache_all();
|
||||
goto done;
|
||||
}
|
||||
|
||||
val = *vcpu_reg(vcpu, p->Rt1);
|
||||
|
||||
switch (p->CRm) {
|
||||
case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
|
||||
case 14: /* DCCISW */
|
||||
asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
|
||||
break;
|
||||
|
||||
case 10: /* DCCSW */
|
||||
asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
|
||||
break;
|
||||
}
|
||||
|
||||
done:
|
||||
put_cpu();
|
||||
|
||||
kvm_set_way_flush(vcpu);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
||||
* is set.
|
||||
* is set. If the guest enables the MMU, we stop trapping the VM
|
||||
* sys_regs and leave it in complete control of the caches.
|
||||
*
|
||||
* Used by the cpu-specific code.
|
||||
*/
|
||||
static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r)
|
||||
bool access_vm_reg(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r)
|
||||
{
|
||||
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
||||
|
||||
BUG_ON(!p->is_write);
|
||||
|
||||
vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
|
||||
if (p->is_64bit)
|
||||
vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* SCTLR accessor. Only called as long as HCR_TVM is set. If the
|
||||
* guest enables the MMU, we stop trapping the VM sys_regs and leave
|
||||
* it in complete control of the caches.
|
||||
*
|
||||
* Used by the cpu-specific code.
|
||||
*/
|
||||
bool access_sctlr(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r)
|
||||
{
|
||||
access_vm_reg(vcpu, p, r);
|
||||
|
||||
if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
|
||||
vcpu->arch.hcr &= ~HCR_TVM;
|
||||
stage2_flush_vm(vcpu->kvm);
|
||||
}
|
||||
|
||||
kvm_toggle_cache(vcpu, was_enabled);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -153,8 +153,8 @@ static inline int cmp_reg(const struct coproc_reg *i1,
|
||||
#define is64 .is_64 = true
|
||||
#define is32 .is_64 = false
|
||||
|
||||
bool access_sctlr(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r);
|
||||
bool access_vm_reg(struct kvm_vcpu *vcpu,
|
||||
const struct coproc_params *p,
|
||||
const struct coproc_reg *r);
|
||||
|
||||
#endif /* __ARM_KVM_COPROC_LOCAL_H__ */
|
||||
|
@ -34,7 +34,7 @@
|
||||
static const struct coproc_reg a15_regs[] = {
|
||||
/* SCTLR: swapped by interrupt.S. */
|
||||
{ CRn( 1), CRm( 0), Op1( 0), Op2( 0), is32,
|
||||
access_sctlr, reset_val, c1_SCTLR, 0x00C50078 },
|
||||
access_vm_reg, reset_val, c1_SCTLR, 0x00C50078 },
|
||||
};
|
||||
|
||||
static struct kvm_coproc_target_table a15_target_table = {
|
||||
|
@ -37,7 +37,7 @@
|
||||
static const struct coproc_reg a7_regs[] = {
|
||||
/* SCTLR: swapped by interrupt.S. */
|
||||
{ CRn( 1), CRm( 0), Op1( 0), Op2( 0), is32,
|
||||
access_sctlr, reset_val, c1_SCTLR, 0x00C50878 },
|
||||
access_vm_reg, reset_val, c1_SCTLR, 0x00C50878 },
|
||||
};
|
||||
|
||||
static struct kvm_coproc_target_table a7_target_table = {
|
||||
|
@ -58,6 +58,26 @@ static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
|
||||
}
|
||||
|
||||
/*
|
||||
* D-Cache management functions. They take the page table entries by
|
||||
* value, as they are flushing the cache using the kernel mapping (or
|
||||
* kmap on 32bit).
|
||||
*/
|
||||
static void kvm_flush_dcache_pte(pte_t pte)
|
||||
{
|
||||
__kvm_flush_dcache_pte(pte);
|
||||
}
|
||||
|
||||
static void kvm_flush_dcache_pmd(pmd_t pmd)
|
||||
{
|
||||
__kvm_flush_dcache_pmd(pmd);
|
||||
}
|
||||
|
||||
static void kvm_flush_dcache_pud(pud_t pud)
|
||||
{
|
||||
__kvm_flush_dcache_pud(pud);
|
||||
}
|
||||
|
||||
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
||||
int min, int max)
|
||||
{
|
||||
@ -119,6 +139,26 @@ static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
|
||||
put_page(virt_to_page(pmd));
|
||||
}
|
||||
|
||||
/*
|
||||
* Unmapping vs dcache management:
|
||||
*
|
||||
* If a guest maps certain memory pages as uncached, all writes will
|
||||
* bypass the data cache and go directly to RAM. However, the CPUs
|
||||
* can still speculate reads (not writes) and fill cache lines with
|
||||
* data.
|
||||
*
|
||||
* Those cache lines will be *clean* cache lines though, so a
|
||||
* clean+invalidate operation is equivalent to an invalidate
|
||||
* operation, because no cache lines are marked dirty.
|
||||
*
|
||||
* Those clean cache lines could be filled prior to an uncached write
|
||||
* by the guest, and the cache coherent IO subsystem would therefore
|
||||
* end up writing old data to disk.
|
||||
*
|
||||
* This is why right after unmapping a page/section and invalidating
|
||||
* the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
|
||||
* the IO subsystem will never hit in the cache.
|
||||
*/
|
||||
static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
@ -128,9 +168,16 @@ static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
start_pte = pte = pte_offset_kernel(pmd, addr);
|
||||
do {
|
||||
if (!pte_none(*pte)) {
|
||||
pte_t old_pte = *pte;
|
||||
|
||||
kvm_set_pte(pte, __pte(0));
|
||||
put_page(virt_to_page(pte));
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
|
||||
/* No need to invalidate the cache for device mappings */
|
||||
if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
|
||||
kvm_flush_dcache_pte(old_pte);
|
||||
|
||||
put_page(virt_to_page(pte));
|
||||
}
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
|
||||
@ -149,8 +196,13 @@ static void unmap_pmds(struct kvm *kvm, pud_t *pud,
|
||||
next = kvm_pmd_addr_end(addr, end);
|
||||
if (!pmd_none(*pmd)) {
|
||||
if (kvm_pmd_huge(*pmd)) {
|
||||
pmd_t old_pmd = *pmd;
|
||||
|
||||
pmd_clear(pmd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
|
||||
kvm_flush_dcache_pmd(old_pmd);
|
||||
|
||||
put_page(virt_to_page(pmd));
|
||||
} else {
|
||||
unmap_ptes(kvm, pmd, addr, next);
|
||||
@ -173,8 +225,13 @@ static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
|
||||
next = kvm_pud_addr_end(addr, end);
|
||||
if (!pud_none(*pud)) {
|
||||
if (pud_huge(*pud)) {
|
||||
pud_t old_pud = *pud;
|
||||
|
||||
pud_clear(pud);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
|
||||
kvm_flush_dcache_pud(old_pud);
|
||||
|
||||
put_page(virt_to_page(pud));
|
||||
} else {
|
||||
unmap_pmds(kvm, pud, addr, next);
|
||||
@ -209,10 +266,9 @@ static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
|
||||
pte = pte_offset_kernel(pmd, addr);
|
||||
do {
|
||||
if (!pte_none(*pte)) {
|
||||
hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
|
||||
kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
|
||||
}
|
||||
if (!pte_none(*pte) &&
|
||||
(pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
|
||||
kvm_flush_dcache_pte(*pte);
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
}
|
||||
|
||||
@ -226,12 +282,10 @@ static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
|
||||
do {
|
||||
next = kvm_pmd_addr_end(addr, end);
|
||||
if (!pmd_none(*pmd)) {
|
||||
if (kvm_pmd_huge(*pmd)) {
|
||||
hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
|
||||
kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
|
||||
} else {
|
||||
if (kvm_pmd_huge(*pmd))
|
||||
kvm_flush_dcache_pmd(*pmd);
|
||||
else
|
||||
stage2_flush_ptes(kvm, pmd, addr, next);
|
||||
}
|
||||
}
|
||||
} while (pmd++, addr = next, addr != end);
|
||||
}
|
||||
@ -246,12 +300,10 @@ static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
|
||||
do {
|
||||
next = kvm_pud_addr_end(addr, end);
|
||||
if (!pud_none(*pud)) {
|
||||
if (pud_huge(*pud)) {
|
||||
hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
|
||||
kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
|
||||
} else {
|
||||
if (pud_huge(*pud))
|
||||
kvm_flush_dcache_pud(*pud);
|
||||
else
|
||||
stage2_flush_pmds(kvm, pud, addr, next);
|
||||
}
|
||||
}
|
||||
} while (pud++, addr = next, addr != end);
|
||||
}
|
||||
@ -278,7 +330,7 @@ static void stage2_flush_memslot(struct kvm *kvm,
|
||||
* Go through the stage 2 page tables and invalidate any cache lines
|
||||
* backing memory already mapped to the VM.
|
||||
*/
|
||||
void stage2_flush_vm(struct kvm *kvm)
|
||||
static void stage2_flush_vm(struct kvm *kvm)
|
||||
{
|
||||
struct kvm_memslots *slots;
|
||||
struct kvm_memory_slot *memslot;
|
||||
@ -905,6 +957,12 @@ static bool kvm_is_device_pfn(unsigned long pfn)
|
||||
return !pfn_valid(pfn);
|
||||
}
|
||||
|
||||
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
|
||||
unsigned long size, bool uncached)
|
||||
{
|
||||
__coherent_cache_guest_page(vcpu, pfn, size, uncached);
|
||||
}
|
||||
|
||||
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
struct kvm_memory_slot *memslot, unsigned long hva,
|
||||
unsigned long fault_status)
|
||||
@ -994,8 +1052,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
kvm_set_s2pmd_writable(&new_pmd);
|
||||
kvm_set_pfn_dirty(pfn);
|
||||
}
|
||||
coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE,
|
||||
fault_ipa_uncached);
|
||||
coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
|
||||
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
|
||||
} else {
|
||||
pte_t new_pte = pfn_pte(pfn, mem_type);
|
||||
@ -1003,8 +1060,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
kvm_set_s2pte_writable(&new_pte);
|
||||
kvm_set_pfn_dirty(pfn);
|
||||
}
|
||||
coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
|
||||
fault_ipa_uncached);
|
||||
coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
|
||||
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
|
||||
pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE));
|
||||
}
|
||||
@ -1411,3 +1467,71 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
||||
unmap_stage2_range(kvm, gpa, size);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
||||
*
|
||||
* Main problems:
|
||||
* - S/W ops are local to a CPU (not broadcast)
|
||||
* - We have line migration behind our back (speculation)
|
||||
* - System caches don't support S/W at all (damn!)
|
||||
*
|
||||
* In the face of the above, the best we can do is to try and convert
|
||||
* S/W ops to VA ops. Because the guest is not allowed to infer the
|
||||
* S/W to PA mapping, it can only use S/W to nuke the whole cache,
|
||||
* which is a rather good thing for us.
|
||||
*
|
||||
* Also, it is only used when turning caches on/off ("The expected
|
||||
* usage of the cache maintenance instructions that operate by set/way
|
||||
* is associated with the cache maintenance instructions associated
|
||||
* with the powerdown and powerup of caches, if this is required by
|
||||
* the implementation.").
|
||||
*
|
||||
* We use the following policy:
|
||||
*
|
||||
* - If we trap a S/W operation, we enable VM trapping to detect
|
||||
* caches being turned on/off, and do a full clean.
|
||||
*
|
||||
* - We flush the caches on both caches being turned on and off.
|
||||
*
|
||||
* - Once the caches are enabled, we stop trapping VM ops.
|
||||
*/
|
||||
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
unsigned long hcr = vcpu_get_hcr(vcpu);
|
||||
|
||||
/*
|
||||
* If this is the first time we do a S/W operation
|
||||
* (i.e. HCR_TVM not set) flush the whole memory, and set the
|
||||
* VM trapping.
|
||||
*
|
||||
* Otherwise, rely on the VM trapping to wait for the MMU +
|
||||
* Caches to be turned off. At that point, we'll be able to
|
||||
* clean the caches again.
|
||||
*/
|
||||
if (!(hcr & HCR_TVM)) {
|
||||
trace_kvm_set_way_flush(*vcpu_pc(vcpu),
|
||||
vcpu_has_cache_enabled(vcpu));
|
||||
stage2_flush_vm(vcpu->kvm);
|
||||
vcpu_set_hcr(vcpu, hcr | HCR_TVM);
|
||||
}
|
||||
}
|
||||
|
||||
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
|
||||
{
|
||||
bool now_enabled = vcpu_has_cache_enabled(vcpu);
|
||||
|
||||
/*
|
||||
* If switching the MMU+caches on, need to invalidate the caches.
|
||||
* If switching it off, need to clean the caches.
|
||||
* Clean + invalidate does the trick always.
|
||||
*/
|
||||
if (now_enabled != was_enabled)
|
||||
stage2_flush_vm(vcpu->kvm);
|
||||
|
||||
/* Caches are now on, stop trapping VM ops (until a S/W op) */
|
||||
if (now_enabled)
|
||||
vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
|
||||
|
||||
trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
|
||||
}
|
||||
|
@ -223,6 +223,45 @@ TRACE_EVENT(kvm_hvc,
|
||||
__entry->vcpu_pc, __entry->r0, __entry->imm)
|
||||
);
|
||||
|
||||
TRACE_EVENT(kvm_set_way_flush,
|
||||
TP_PROTO(unsigned long vcpu_pc, bool cache),
|
||||
TP_ARGS(vcpu_pc, cache),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field( unsigned long, vcpu_pc )
|
||||
__field( bool, cache )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->vcpu_pc = vcpu_pc;
|
||||
__entry->cache = cache;
|
||||
),
|
||||
|
||||
TP_printk("S/W flush at 0x%016lx (cache %s)",
|
||||
__entry->vcpu_pc, __entry->cache ? "on" : "off")
|
||||
);
|
||||
|
||||
TRACE_EVENT(kvm_toggle_cache,
|
||||
TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
|
||||
TP_ARGS(vcpu_pc, was, now),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field( unsigned long, vcpu_pc )
|
||||
__field( bool, was )
|
||||
__field( bool, now )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->vcpu_pc = vcpu_pc;
|
||||
__entry->was = was;
|
||||
__entry->now = now;
|
||||
),
|
||||
|
||||
TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
|
||||
__entry->vcpu_pc, __entry->was ? "on" : "off",
|
||||
__entry->now ? "on" : "off")
|
||||
);
|
||||
|
||||
#endif /* _TRACE_KVM_H */
|
||||
|
||||
#undef TRACE_INCLUDE_PATH
|
||||
|
@ -45,6 +45,16 @@ static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
|
||||
vcpu->arch.hcr_el2 &= ~HCR_RW;
|
||||
}
|
||||
|
||||
static inline unsigned long vcpu_get_hcr(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return vcpu->arch.hcr_el2;
|
||||
}
|
||||
|
||||
static inline void vcpu_set_hcr(struct kvm_vcpu *vcpu, unsigned long hcr)
|
||||
{
|
||||
vcpu->arch.hcr_el2 = hcr;
|
||||
}
|
||||
|
||||
static inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->regs.pc;
|
||||
|
@ -116,9 +116,6 @@ struct kvm_vcpu_arch {
|
||||
* Anything that is not used directly from assembly code goes
|
||||
* here.
|
||||
*/
|
||||
/* dcache set/way operation pending */
|
||||
int last_pcpu;
|
||||
cpumask_t require_dcache_flush;
|
||||
|
||||
/* Don't run the guest */
|
||||
bool pause;
|
||||
|
@ -243,24 +243,46 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
|
||||
return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
|
||||
}
|
||||
|
||||
static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
|
||||
unsigned long size,
|
||||
bool ipa_uncached)
|
||||
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
|
||||
unsigned long size,
|
||||
bool ipa_uncached)
|
||||
{
|
||||
void *va = page_address(pfn_to_page(pfn));
|
||||
|
||||
if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
|
||||
kvm_flush_dcache_to_poc((void *)hva, size);
|
||||
kvm_flush_dcache_to_poc(va, size);
|
||||
|
||||
if (!icache_is_aliasing()) { /* PIPT */
|
||||
flush_icache_range(hva, hva + size);
|
||||
flush_icache_range((unsigned long)va,
|
||||
(unsigned long)va + size);
|
||||
} else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
|
||||
/* any kind of VIPT cache */
|
||||
__flush_icache_all();
|
||||
}
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pte(pte_t pte)
|
||||
{
|
||||
struct page *page = pte_page(pte);
|
||||
kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
|
||||
{
|
||||
struct page *page = pmd_page(pmd);
|
||||
kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
|
||||
}
|
||||
|
||||
static inline void __kvm_flush_dcache_pud(pud_t pud)
|
||||
{
|
||||
struct page *page = pud_page(pud);
|
||||
kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
|
||||
}
|
||||
|
||||
#define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
|
||||
|
||||
void stage2_flush_vm(struct kvm *kvm);
|
||||
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
|
||||
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* __ARM64_KVM_MMU_H__ */
|
||||
|
@ -69,68 +69,31 @@ static u32 get_ccsidr(u32 csselr)
|
||||
return ccsidr;
|
||||
}
|
||||
|
||||
static void do_dc_cisw(u32 val)
|
||||
{
|
||||
asm volatile("dc cisw, %x0" : : "r" (val));
|
||||
dsb(ish);
|
||||
}
|
||||
|
||||
static void do_dc_csw(u32 val)
|
||||
{
|
||||
asm volatile("dc csw, %x0" : : "r" (val));
|
||||
dsb(ish);
|
||||
}
|
||||
|
||||
/* See note at ARM ARM B1.14.4 */
|
||||
/*
|
||||
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
||||
*/
|
||||
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
||||
const struct sys_reg_params *p,
|
||||
const struct sys_reg_desc *r)
|
||||
{
|
||||
unsigned long val;
|
||||
int cpu;
|
||||
|
||||
if (!p->is_write)
|
||||
return read_from_write_only(vcpu, p);
|
||||
|
||||
cpu = get_cpu();
|
||||
|
||||
cpumask_setall(&vcpu->arch.require_dcache_flush);
|
||||
cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
|
||||
|
||||
/* If we were already preempted, take the long way around */
|
||||
if (cpu != vcpu->arch.last_pcpu) {
|
||||
flush_cache_all();
|
||||
goto done;
|
||||
}
|
||||
|
||||
val = *vcpu_reg(vcpu, p->Rt);
|
||||
|
||||
switch (p->CRm) {
|
||||
case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
|
||||
case 14: /* DCCISW */
|
||||
do_dc_cisw(val);
|
||||
break;
|
||||
|
||||
case 10: /* DCCSW */
|
||||
do_dc_csw(val);
|
||||
break;
|
||||
}
|
||||
|
||||
done:
|
||||
put_cpu();
|
||||
|
||||
kvm_set_way_flush(vcpu);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
||||
* is set.
|
||||
* is set. If the guest enables the MMU, we stop trapping the VM
|
||||
* sys_regs and leave it in complete control of the caches.
|
||||
*/
|
||||
static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
||||
const struct sys_reg_params *p,
|
||||
const struct sys_reg_desc *r)
|
||||
{
|
||||
unsigned long val;
|
||||
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
||||
|
||||
BUG_ON(!p->is_write);
|
||||
|
||||
@ -143,25 +106,7 @@ static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
||||
vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
|
||||
* guest enables the MMU, we stop trapping the VM sys_regs and leave
|
||||
* it in complete control of the caches.
|
||||
*/
|
||||
static bool access_sctlr(struct kvm_vcpu *vcpu,
|
||||
const struct sys_reg_params *p,
|
||||
const struct sys_reg_desc *r)
|
||||
{
|
||||
access_vm_reg(vcpu, p, r);
|
||||
|
||||
if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
|
||||
vcpu->arch.hcr_el2 &= ~HCR_TVM;
|
||||
stage2_flush_vm(vcpu->kvm);
|
||||
}
|
||||
|
||||
kvm_toggle_cache(vcpu, was_enabled);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -377,7 +322,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
|
||||
NULL, reset_mpidr, MPIDR_EL1 },
|
||||
/* SCTLR_EL1 */
|
||||
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
|
||||
access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
|
||||
access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
|
||||
/* CPACR_EL1 */
|
||||
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
|
||||
NULL, reset_val, CPACR_EL1, 0 },
|
||||
@ -657,7 +602,7 @@ static const struct sys_reg_desc cp14_64_regs[] = {
|
||||
* register).
|
||||
*/
|
||||
static const struct sys_reg_desc cp15_regs[] = {
|
||||
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
|
||||
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
|
||||
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
|
||||
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
|
||||
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
|
||||
|
Loading…
x
Reference in New Issue
Block a user