mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 21:23:23 +00:00
Merge branch into tip/master: 'x86/sev'
# New commits in x86/sev: 21fc6178e920 ("x86/sev/docs: Document the SNP Reverse Map Table (RMP)") 8ae3291f773b ("x86/sev: Add full support for a segmented RMP table") 0f14af0d1d7d ("x86/sev: Treat the contiguous RMP table as a single RMP segment") ac517965a5a1 ("x86/sev: Map only the RMP table entries instead of the full RMP range") e2f3d40df82e ("x86/sev: Move the SNP probe routine out of the way") 4972808d6f4a ("x86/sev: Require the RMPREAD instruction after Zen4") 0cbc02584158 ("x86/sev: Add support for the RMPREAD instruction") 3e43c60eb3e3 ("x86/sev: Prepare for using the RMPREAD instruction to access the RMP") Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
commit
42e848120d
@ -130,8 +130,126 @@ SNP feature support.
|
||||
|
||||
More details in AMD64 APM[1] Vol 2: 15.34.10 SEV_STATUS MSR
|
||||
|
||||
Reverse Map Table (RMP)
|
||||
=======================
|
||||
|
||||
The RMP is a structure in system memory that is used to ensure a one-to-one
|
||||
mapping between system physical addresses and guest physical addresses. Each
|
||||
page of memory that is potentially assignable to guests has one entry within
|
||||
the RMP.
|
||||
|
||||
The RMP table can be either contiguous in memory or a collection of segments
|
||||
in memory.
|
||||
|
||||
Contiguous RMP
|
||||
--------------
|
||||
|
||||
Support for this form of the RMP is present when support for SEV-SNP is
|
||||
present, which can be determined using the CPUID instruction::
|
||||
|
||||
0x8000001f[eax]:
|
||||
Bit[4] indicates support for SEV-SNP
|
||||
|
||||
The location of the RMP is identified to the hardware through two MSRs::
|
||||
|
||||
0xc0010132 (RMP_BASE):
|
||||
System physical address of the first byte of the RMP
|
||||
|
||||
0xc0010133 (RMP_END):
|
||||
System physical address of the last byte of the RMP
|
||||
|
||||
Hardware requires that RMP_BASE and (RPM_END + 1) be 8KB aligned, but SEV
|
||||
firmware increases the alignment requirement to require a 1MB alignment.
|
||||
|
||||
The RMP consists of a 16KB region used for processor bookkeeping followed
|
||||
by the RMP entries, which are 16 bytes in size. The size of the RMP
|
||||
determines the range of physical memory that the hypervisor can assign to
|
||||
SEV-SNP guests. The RMP covers the system physical address from::
|
||||
|
||||
0 to ((RMP_END + 1 - RMP_BASE - 16KB) / 16B) x 4KB.
|
||||
|
||||
The current Linux support relies on BIOS to allocate/reserve the memory for
|
||||
the RMP and to set RMP_BASE and RMP_END appropriately. Linux uses the MSR
|
||||
values to locate the RMP and determine the size of the RMP. The RMP must
|
||||
cover all of system memory in order for Linux to enable SEV-SNP.
|
||||
|
||||
Segmented RMP
|
||||
-------------
|
||||
|
||||
Segmented RMP support is a new way of representing the layout of an RMP.
|
||||
Initial RMP support required the RMP table to be contiguous in memory.
|
||||
RMP accesses from a NUMA node on which the RMP doesn't reside
|
||||
can take longer than accesses from a NUMA node on which the RMP resides.
|
||||
Segmented RMP support allows the RMP entries to be located on the same
|
||||
node as the memory the RMP is covering, potentially reducing latency
|
||||
associated with accessing an RMP entry associated with the memory. Each
|
||||
RMP segment covers a specific range of system physical addresses.
|
||||
|
||||
Support for this form of the RMP can be determined using the CPUID
|
||||
instruction::
|
||||
|
||||
0x8000001f[eax]:
|
||||
Bit[23] indicates support for segmented RMP
|
||||
|
||||
If supported, segmented RMP attributes can be found using the CPUID
|
||||
instruction::
|
||||
|
||||
0x80000025[eax]:
|
||||
Bits[5:0] minimum supported RMP segment size
|
||||
Bits[11:6] maximum supported RMP segment size
|
||||
|
||||
0x80000025[ebx]:
|
||||
Bits[9:0] number of cacheable RMP segment definitions
|
||||
Bit[10] indicates if the number of cacheable RMP segments
|
||||
is a hard limit
|
||||
|
||||
To enable a segmented RMP, a new MSR is available::
|
||||
|
||||
0xc0010136 (RMP_CFG):
|
||||
Bit[0] indicates if segmented RMP is enabled
|
||||
Bits[13:8] contains the size of memory covered by an RMP
|
||||
segment (expressed as a power of 2)
|
||||
|
||||
The RMP segment size defined in the RMP_CFG MSR applies to all segments
|
||||
of the RMP. Therefore each RMP segment covers a specific range of system
|
||||
physical addresses. For example, if the RMP_CFG MSR value is 0x2401, then
|
||||
the RMP segment coverage value is 0x24 => 36, meaning the size of memory
|
||||
covered by an RMP segment is 64GB (1 << 36). So the first RMP segment
|
||||
covers physical addresses from 0 to 0xF_FFFF_FFFF, the second RMP segment
|
||||
covers physical addresses from 0x10_0000_0000 to 0x1F_FFFF_FFFF, etc.
|
||||
|
||||
When a segmented RMP is enabled, RMP_BASE points to the RMP bookkeeping
|
||||
area as it does today (16K in size). However, instead of RMP entries
|
||||
beginning immediately after the bookkeeping area, there is a 4K RMP
|
||||
segment table (RST). Each entry in the RST is 8-bytes in size and represents
|
||||
an RMP segment::
|
||||
|
||||
Bits[19:0] mapped size (in GB)
|
||||
The mapped size can be less than the defined segment size.
|
||||
A value of zero, indicates that no RMP exists for the range
|
||||
of system physical addresses associated with this segment.
|
||||
Bits[51:20] segment physical address
|
||||
This address is left shift 20-bits (or just masked when
|
||||
read) to form the physical address of the segment (1MB
|
||||
alignment).
|
||||
|
||||
The RST can hold 512 segment entries but can be limited in size to the number
|
||||
of cacheable RMP segments (CPUID 0x80000025_EBX[9:0]) if the number of cacheable
|
||||
RMP segments is a hard limit (CPUID 0x80000025_EBX[10]).
|
||||
|
||||
The current Linux support relies on BIOS to allocate/reserve the memory for
|
||||
the segmented RMP (the bookkeeping area, RST, and all segments), build the RST
|
||||
and to set RMP_BASE, RMP_END, and RMP_CFG appropriately. Linux uses the MSR
|
||||
values to locate the RMP and determine the size and location of the RMP
|
||||
segments. The RMP must cover all of system memory in order for Linux to enable
|
||||
SEV-SNP.
|
||||
|
||||
More details in the AMD64 APM Vol 2, section "15.36.3 Reverse Map Table",
|
||||
docID: 24593.
|
||||
|
||||
Secure VM Service Module (SVSM)
|
||||
===============================
|
||||
|
||||
SNP provides a feature called Virtual Machine Privilege Levels (VMPL) which
|
||||
defines four privilege levels at which guest software can run. The most
|
||||
privileged level is 0 and numerically higher numbers have lesser privileges.
|
||||
|
@ -451,6 +451,8 @@
|
||||
#define X86_FEATURE_V_TSC_AUX (19*32+ 9) /* Virtual TSC_AUX */
|
||||
#define X86_FEATURE_SME_COHERENT (19*32+10) /* AMD hardware-enforced cache coherency */
|
||||
#define X86_FEATURE_DEBUG_SWAP (19*32+14) /* "debug_swap" AMD SEV-ES full debug state swap support */
|
||||
#define X86_FEATURE_RMPREAD (19*32+21) /* RMPREAD instruction */
|
||||
#define X86_FEATURE_SEGMENTED_RMP (19*32+23) /* Segmented RMP support */
|
||||
#define X86_FEATURE_SVSM (19*32+28) /* "svsm" SVSM present */
|
||||
|
||||
/* AMD-defined Extended Feature 2 EAX, CPUID level 0x80000021 (EAX), word 20 */
|
||||
|
@ -644,6 +644,7 @@
|
||||
#define MSR_AMD64_IBS_REG_COUNT_MAX 8 /* includes MSR_AMD64_IBSBRTARGET */
|
||||
#define MSR_AMD64_SVM_AVIC_DOORBELL 0xc001011b
|
||||
#define MSR_AMD64_VM_PAGE_FLUSH 0xc001011e
|
||||
#define MSR_AMD64_VIRT_SPEC_CTRL 0xc001011f
|
||||
#define MSR_AMD64_SEV_ES_GHCB 0xc0010130
|
||||
#define MSR_AMD64_SEV 0xc0010131
|
||||
#define MSR_AMD64_SEV_ENABLED_BIT 0
|
||||
@ -682,11 +683,12 @@
|
||||
#define MSR_AMD64_SNP_SMT_PROT BIT_ULL(MSR_AMD64_SNP_SMT_PROT_BIT)
|
||||
#define MSR_AMD64_SNP_RESV_BIT 18
|
||||
#define MSR_AMD64_SNP_RESERVED_MASK GENMASK_ULL(63, MSR_AMD64_SNP_RESV_BIT)
|
||||
|
||||
#define MSR_AMD64_VIRT_SPEC_CTRL 0xc001011f
|
||||
|
||||
#define MSR_AMD64_RMP_BASE 0xc0010132
|
||||
#define MSR_AMD64_RMP_END 0xc0010133
|
||||
#define MSR_AMD64_RMP_CFG 0xc0010136
|
||||
#define MSR_AMD64_SEG_RMP_ENABLED_BIT 0
|
||||
#define MSR_AMD64_SEG_RMP_ENABLED BIT_ULL(MSR_AMD64_SEG_RMP_ENABLED_BIT)
|
||||
#define MSR_AMD64_RMP_SEGMENT_SHIFT(x) (((x) & GENMASK_ULL(13, 8)) >> 8)
|
||||
|
||||
#define MSR_SVSM_CAA 0xc001f000
|
||||
|
||||
|
@ -355,10 +355,15 @@ static void bsp_determine_snp(struct cpuinfo_x86 *c)
|
||||
/*
|
||||
* RMP table entry format is not architectural and is defined by the
|
||||
* per-processor PPR. Restrict SNP support on the known CPU models
|
||||
* for which the RMP table entry format is currently defined for.
|
||||
* for which the RMP table entry format is currently defined or for
|
||||
* processors which support the architecturally defined RMPREAD
|
||||
* instruction.
|
||||
*/
|
||||
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
|
||||
c->x86 >= 0x19 && snp_probe_rmptable_info()) {
|
||||
(cpu_feature_enabled(X86_FEATURE_ZEN3) ||
|
||||
cpu_feature_enabled(X86_FEATURE_ZEN4) ||
|
||||
cpu_feature_enabled(X86_FEATURE_RMPREAD)) &&
|
||||
snp_probe_rmptable_info()) {
|
||||
cc_platform_set(CC_ATTR_HOST_SEV_SNP);
|
||||
} else {
|
||||
setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
|
||||
|
@ -18,6 +18,7 @@
|
||||
#include <linux/cpumask.h>
|
||||
#include <linux/iommu.h>
|
||||
#include <linux/amd-iommu.h>
|
||||
#include <linux/nospec.h>
|
||||
|
||||
#include <asm/sev.h>
|
||||
#include <asm/processor.h>
|
||||
@ -31,10 +32,29 @@
|
||||
#include <asm/iommu.h>
|
||||
|
||||
/*
|
||||
* The RMP entry format is not architectural. The format is defined in PPR
|
||||
* Family 19h Model 01h, Rev B1 processor.
|
||||
* The RMP entry information as returned by the RMPREAD instruction.
|
||||
*/
|
||||
struct rmpentry {
|
||||
u64 gpa;
|
||||
u8 assigned :1,
|
||||
rsvd1 :7;
|
||||
u8 pagesize :1,
|
||||
hpage_region_status :1,
|
||||
rsvd2 :6;
|
||||
u8 immutable :1,
|
||||
rsvd3 :7;
|
||||
u8 rsvd4;
|
||||
u32 asid;
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* The raw RMP entry format is not architectural. The format is defined in PPR
|
||||
* Family 19h Model 01h, Rev B1 processor. This format represents the actual
|
||||
* entry in the RMP table memory. The bitfield definitions are used for machines
|
||||
* without the RMPREAD instruction (Zen3 and Zen4), otherwise the "hi" and "lo"
|
||||
* fields are only used for dumping the raw data.
|
||||
*/
|
||||
struct rmpentry_raw {
|
||||
union {
|
||||
struct {
|
||||
u64 assigned : 1,
|
||||
@ -58,12 +78,48 @@ struct rmpentry {
|
||||
*/
|
||||
#define RMPTABLE_CPU_BOOKKEEPING_SZ 0x4000
|
||||
|
||||
/*
|
||||
* For a non-segmented RMP table, use the maximum physical addressing as the
|
||||
* segment size in order to always arrive at index 0 in the table.
|
||||
*/
|
||||
#define RMPTABLE_NON_SEGMENTED_SHIFT 52
|
||||
|
||||
struct rmp_segment_desc {
|
||||
struct rmpentry_raw *rmp_entry;
|
||||
u64 max_index;
|
||||
u64 size;
|
||||
};
|
||||
|
||||
/*
|
||||
* Segmented RMP Table support.
|
||||
* - The segment size is used for two purposes:
|
||||
* - Identify the amount of memory covered by an RMP segment
|
||||
* - Quickly locate an RMP segment table entry for a physical address
|
||||
*
|
||||
* - The RMP segment table contains pointers to an RMP table that covers
|
||||
* a specific portion of memory. There can be up to 512 8-byte entries,
|
||||
* one pages worth.
|
||||
*/
|
||||
#define RST_ENTRY_MAPPED_SIZE(x) ((x) & GENMASK_ULL(19, 0))
|
||||
#define RST_ENTRY_SEGMENT_BASE(x) ((x) & GENMASK_ULL(51, 20))
|
||||
|
||||
#define RST_SIZE SZ_4K
|
||||
static struct rmp_segment_desc **rmp_segment_table __ro_after_init;
|
||||
static unsigned int rst_max_index __ro_after_init = 512;
|
||||
|
||||
static unsigned int rmp_segment_shift;
|
||||
static u64 rmp_segment_size;
|
||||
static u64 rmp_segment_mask;
|
||||
|
||||
#define RST_ENTRY_INDEX(x) ((x) >> rmp_segment_shift)
|
||||
#define RMP_ENTRY_INDEX(x) ((u64)(PHYS_PFN((x) & rmp_segment_mask)))
|
||||
|
||||
static u64 rmp_cfg;
|
||||
|
||||
/* Mask to apply to a PFN to get the first PFN of a 2MB page */
|
||||
#define PFN_PMD_MASK GENMASK_ULL(63, PMD_SHIFT - PAGE_SHIFT)
|
||||
|
||||
static u64 probed_rmp_base, probed_rmp_size;
|
||||
static struct rmpentry *rmptable __ro_after_init;
|
||||
static u64 rmptable_max_pfn __ro_after_init;
|
||||
|
||||
static LIST_HEAD(snp_leaked_pages_list);
|
||||
static DEFINE_SPINLOCK(snp_leaked_pages_list_lock);
|
||||
@ -116,36 +172,6 @@ static __init void snp_enable(void *arg)
|
||||
__snp_enable(smp_processor_id());
|
||||
}
|
||||
|
||||
#define RMP_ADDR_MASK GENMASK_ULL(51, 13)
|
||||
|
||||
bool snp_probe_rmptable_info(void)
|
||||
{
|
||||
u64 rmp_sz, rmp_base, rmp_end;
|
||||
|
||||
rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
|
||||
rdmsrl(MSR_AMD64_RMP_END, rmp_end);
|
||||
|
||||
if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) {
|
||||
pr_err("Memory for the RMP table has not been reserved by BIOS\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (rmp_base > rmp_end) {
|
||||
pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end);
|
||||
return false;
|
||||
}
|
||||
|
||||
rmp_sz = rmp_end - rmp_base + 1;
|
||||
|
||||
probed_rmp_base = rmp_base;
|
||||
probed_rmp_size = rmp_sz;
|
||||
|
||||
pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n",
|
||||
rmp_base, rmp_end);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void __init __snp_fixup_e820_tables(u64 pa)
|
||||
{
|
||||
if (IS_ALIGNED(pa, PMD_SIZE))
|
||||
@ -178,35 +204,176 @@ static void __init __snp_fixup_e820_tables(u64 pa)
|
||||
}
|
||||
}
|
||||
|
||||
void __init snp_fixup_e820_tables(void)
|
||||
static void __init fixup_e820_tables_for_segmented_rmp(void)
|
||||
{
|
||||
u64 pa, *rst, size, mapped_size;
|
||||
unsigned int i;
|
||||
|
||||
__snp_fixup_e820_tables(probed_rmp_base);
|
||||
|
||||
pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
|
||||
__snp_fixup_e820_tables(pa + RST_SIZE);
|
||||
|
||||
rst = early_memremap(pa, RST_SIZE);
|
||||
if (!rst)
|
||||
return;
|
||||
|
||||
for (i = 0; i < rst_max_index; i++) {
|
||||
pa = RST_ENTRY_SEGMENT_BASE(rst[i]);
|
||||
mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]);
|
||||
if (!mapped_size)
|
||||
continue;
|
||||
|
||||
__snp_fixup_e820_tables(pa);
|
||||
|
||||
/*
|
||||
* Mapped size in GB. Mapped size is allowed to exceed
|
||||
* the segment coverage size, but gets reduced to the
|
||||
* segment coverage size.
|
||||
*/
|
||||
mapped_size <<= 30;
|
||||
if (mapped_size > rmp_segment_size)
|
||||
mapped_size = rmp_segment_size;
|
||||
|
||||
/* Calculate the RMP segment size (16 bytes/page mapped) */
|
||||
size = PHYS_PFN(mapped_size) << 4;
|
||||
|
||||
__snp_fixup_e820_tables(pa + size);
|
||||
}
|
||||
|
||||
early_memunmap(rst, RST_SIZE);
|
||||
}
|
||||
|
||||
static void __init fixup_e820_tables_for_contiguous_rmp(void)
|
||||
{
|
||||
__snp_fixup_e820_tables(probed_rmp_base);
|
||||
__snp_fixup_e820_tables(probed_rmp_base + probed_rmp_size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Do the necessary preparations which are verified by the firmware as
|
||||
* described in the SNP_INIT_EX firmware command description in the SNP
|
||||
* firmware ABI spec.
|
||||
*/
|
||||
static int __init snp_rmptable_init(void)
|
||||
void __init snp_fixup_e820_tables(void)
|
||||
{
|
||||
u64 max_rmp_pfn, calc_rmp_sz, rmptable_size, rmp_end, val;
|
||||
void *rmptable_start;
|
||||
if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) {
|
||||
fixup_e820_tables_for_segmented_rmp();
|
||||
} else {
|
||||
fixup_e820_tables_for_contiguous_rmp();
|
||||
}
|
||||
}
|
||||
|
||||
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
|
||||
return 0;
|
||||
static bool __init clear_rmptable_bookkeeping(void)
|
||||
{
|
||||
void *bk;
|
||||
|
||||
if (!amd_iommu_snp_en)
|
||||
goto nosnp;
|
||||
bk = memremap(probed_rmp_base, RMPTABLE_CPU_BOOKKEEPING_SZ, MEMREMAP_WB);
|
||||
if (!bk) {
|
||||
pr_err("Failed to map RMP bookkeeping area\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
memset(bk, 0, RMPTABLE_CPU_BOOKKEEPING_SZ);
|
||||
|
||||
memunmap(bk);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool __init alloc_rmp_segment_desc(u64 segment_pa, u64 segment_size, u64 pa)
|
||||
{
|
||||
u64 rst_index, rmp_segment_size_max;
|
||||
struct rmp_segment_desc *desc;
|
||||
void *rmp_segment;
|
||||
|
||||
/* Calculate the maximum size an RMP can be (16 bytes/page mapped) */
|
||||
rmp_segment_size_max = PHYS_PFN(rmp_segment_size) << 4;
|
||||
|
||||
/* Validate the RMP segment size */
|
||||
if (segment_size > rmp_segment_size_max) {
|
||||
pr_err("Invalid RMP size 0x%llx for configured segment size 0x%llx\n",
|
||||
segment_size, rmp_segment_size_max);
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Validate the RMP segment table index */
|
||||
rst_index = RST_ENTRY_INDEX(pa);
|
||||
if (rst_index >= rst_max_index) {
|
||||
pr_err("Invalid RMP segment base address 0x%llx for configured segment size 0x%llx\n",
|
||||
pa, rmp_segment_size);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (rmp_segment_table[rst_index]) {
|
||||
pr_err("RMP segment descriptor already exists at index %llu\n", rst_index);
|
||||
return false;
|
||||
}
|
||||
|
||||
rmp_segment = memremap(segment_pa, segment_size, MEMREMAP_WB);
|
||||
if (!rmp_segment) {
|
||||
pr_err("Failed to map RMP segment addr 0x%llx size 0x%llx\n",
|
||||
segment_pa, segment_size);
|
||||
return false;
|
||||
}
|
||||
|
||||
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
||||
if (!desc) {
|
||||
memunmap(rmp_segment);
|
||||
return false;
|
||||
}
|
||||
|
||||
desc->rmp_entry = rmp_segment;
|
||||
desc->max_index = segment_size / sizeof(*desc->rmp_entry);
|
||||
desc->size = segment_size;
|
||||
|
||||
rmp_segment_table[rst_index] = desc;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void __init free_rmp_segment_table(void)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < rst_max_index; i++) {
|
||||
struct rmp_segment_desc *desc;
|
||||
|
||||
desc = rmp_segment_table[i];
|
||||
if (!desc)
|
||||
continue;
|
||||
|
||||
memunmap(desc->rmp_entry);
|
||||
|
||||
kfree(desc);
|
||||
}
|
||||
|
||||
free_page((unsigned long)rmp_segment_table);
|
||||
|
||||
rmp_segment_table = NULL;
|
||||
}
|
||||
|
||||
/* Allocate the table used to index into the RMP segments */
|
||||
static bool __init alloc_rmp_segment_table(void)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
page = alloc_page(__GFP_ZERO);
|
||||
if (!page)
|
||||
return false;
|
||||
|
||||
rmp_segment_table = page_address(page);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool __init setup_contiguous_rmptable(void)
|
||||
{
|
||||
u64 max_rmp_pfn, calc_rmp_sz, rmptable_segment, rmptable_size, rmp_end;
|
||||
|
||||
if (!probed_rmp_size)
|
||||
goto nosnp;
|
||||
return false;
|
||||
|
||||
rmp_end = probed_rmp_base + probed_rmp_size - 1;
|
||||
|
||||
/*
|
||||
* Calculate the amount the memory that must be reserved by the BIOS to
|
||||
* Calculate the amount of memory that must be reserved by the BIOS to
|
||||
* address the whole RAM, including the bookkeeping area. The RMP itself
|
||||
* must also be covered.
|
||||
*/
|
||||
@ -218,15 +385,140 @@ static int __init snp_rmptable_init(void)
|
||||
if (calc_rmp_sz > probed_rmp_size) {
|
||||
pr_err("Memory reserved for the RMP table does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
|
||||
calc_rmp_sz, probed_rmp_size);
|
||||
goto nosnp;
|
||||
return false;
|
||||
}
|
||||
|
||||
rmptable_start = memremap(probed_rmp_base, probed_rmp_size, MEMREMAP_WB);
|
||||
if (!rmptable_start) {
|
||||
pr_err("Failed to map RMP table\n");
|
||||
goto nosnp;
|
||||
if (!alloc_rmp_segment_table())
|
||||
return false;
|
||||
|
||||
/* Map only the RMP entries */
|
||||
rmptable_segment = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
|
||||
if (!alloc_rmp_segment_desc(rmptable_segment, rmptable_size, 0)) {
|
||||
free_rmp_segment_table();
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool __init setup_segmented_rmptable(void)
|
||||
{
|
||||
u64 rst_pa, *rst, pa, ram_pa_end, ram_pa_max;
|
||||
unsigned int i, max_index;
|
||||
|
||||
if (!probed_rmp_base)
|
||||
return false;
|
||||
|
||||
if (!alloc_rmp_segment_table())
|
||||
return false;
|
||||
|
||||
rst_pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
rst = memremap(rst_pa, RST_SIZE, MEMREMAP_WB);
|
||||
if (!rst) {
|
||||
pr_err("Failed to map RMP segment table addr 0x%llx\n", rst_pa);
|
||||
goto e_free;
|
||||
}
|
||||
|
||||
pr_info("Segmented RMP using %lluGB segments\n", rmp_segment_size >> 30);
|
||||
|
||||
ram_pa_max = max_pfn << PAGE_SHIFT;
|
||||
|
||||
max_index = 0;
|
||||
ram_pa_end = 0;
|
||||
for (i = 0; i < rst_max_index; i++) {
|
||||
u64 rmp_segment, rmp_size, mapped_size;
|
||||
|
||||
mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]);
|
||||
if (!mapped_size)
|
||||
continue;
|
||||
|
||||
max_index = i;
|
||||
|
||||
/*
|
||||
* Mapped size in GB. Mapped size is allowed to exceed the
|
||||
* segment coverage size, but gets reduced to the segment
|
||||
* coverage size.
|
||||
*/
|
||||
mapped_size <<= 30;
|
||||
if (mapped_size > rmp_segment_size) {
|
||||
pr_info("RMP segment %u mapped size (0x%llx) reduced to 0x%llx\n",
|
||||
i, mapped_size, rmp_segment_size);
|
||||
mapped_size = rmp_segment_size;
|
||||
}
|
||||
|
||||
rmp_segment = RST_ENTRY_SEGMENT_BASE(rst[i]);
|
||||
|
||||
/* Calculate the RMP segment size (16 bytes/page mapped) */
|
||||
rmp_size = PHYS_PFN(mapped_size) << 4;
|
||||
|
||||
pa = (u64)i << rmp_segment_shift;
|
||||
|
||||
/*
|
||||
* Some segments may be for MMIO mapped above system RAM. These
|
||||
* segments are used for Trusted I/O.
|
||||
*/
|
||||
if (pa < ram_pa_max)
|
||||
ram_pa_end = pa + mapped_size;
|
||||
|
||||
if (!alloc_rmp_segment_desc(rmp_segment, rmp_size, pa))
|
||||
goto e_unmap;
|
||||
|
||||
pr_info("RMP segment %u physical address [0x%llx - 0x%llx] covering [0x%llx - 0x%llx]\n",
|
||||
i, rmp_segment, rmp_segment + rmp_size - 1, pa, pa + mapped_size - 1);
|
||||
}
|
||||
|
||||
if (ram_pa_max > ram_pa_end) {
|
||||
pr_err("Segmented RMP does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
|
||||
ram_pa_max, ram_pa_end);
|
||||
goto e_unmap;
|
||||
}
|
||||
|
||||
/* Adjust the maximum index based on the found segments */
|
||||
rst_max_index = max_index + 1;
|
||||
|
||||
memunmap(rst);
|
||||
|
||||
return true;
|
||||
|
||||
e_unmap:
|
||||
memunmap(rst);
|
||||
|
||||
e_free:
|
||||
free_rmp_segment_table();
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool __init setup_rmptable(void)
|
||||
{
|
||||
if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) {
|
||||
return setup_segmented_rmptable();
|
||||
} else {
|
||||
return setup_contiguous_rmptable();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Do the necessary preparations which are verified by the firmware as
|
||||
* described in the SNP_INIT_EX firmware command description in the SNP
|
||||
* firmware ABI spec.
|
||||
*/
|
||||
static int __init snp_rmptable_init(void)
|
||||
{
|
||||
unsigned int i;
|
||||
u64 val;
|
||||
|
||||
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
|
||||
return 0;
|
||||
|
||||
if (!amd_iommu_snp_en)
|
||||
goto nosnp;
|
||||
|
||||
if (!setup_rmptable())
|
||||
goto nosnp;
|
||||
|
||||
/*
|
||||
* Check if SEV-SNP is already enabled, this can happen in case of
|
||||
* kexec boot.
|
||||
@ -235,7 +527,22 @@ static int __init snp_rmptable_init(void)
|
||||
if (val & MSR_AMD64_SYSCFG_SNP_EN)
|
||||
goto skip_enable;
|
||||
|
||||
memset(rmptable_start, 0, probed_rmp_size);
|
||||
/* Zero out the RMP bookkeeping area */
|
||||
if (!clear_rmptable_bookkeeping()) {
|
||||
free_rmp_segment_table();
|
||||
goto nosnp;
|
||||
}
|
||||
|
||||
/* Zero out the RMP entries */
|
||||
for (i = 0; i < rst_max_index; i++) {
|
||||
struct rmp_segment_desc *desc;
|
||||
|
||||
desc = rmp_segment_table[i];
|
||||
if (!desc)
|
||||
continue;
|
||||
|
||||
memset(desc->rmp_entry, 0, desc->size);
|
||||
}
|
||||
|
||||
/* Flush the caches to ensure that data is written before SNP is enabled. */
|
||||
wbinvd_on_all_cpus();
|
||||
@ -246,12 +553,6 @@ static int __init snp_rmptable_init(void)
|
||||
on_each_cpu(snp_enable, NULL, 1);
|
||||
|
||||
skip_enable:
|
||||
rmptable_start += RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ;
|
||||
|
||||
rmptable = (struct rmpentry *)rmptable_start;
|
||||
rmptable_max_pfn = rmptable_size / sizeof(struct rmpentry) - 1;
|
||||
|
||||
cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rmptable_init:online", __snp_enable, NULL);
|
||||
|
||||
/*
|
||||
@ -272,48 +573,212 @@ nosnp:
|
||||
*/
|
||||
device_initcall(snp_rmptable_init);
|
||||
|
||||
static struct rmpentry *get_rmpentry(u64 pfn)
|
||||
static void set_rmp_segment_info(unsigned int segment_shift)
|
||||
{
|
||||
if (WARN_ON_ONCE(pfn > rmptable_max_pfn))
|
||||
return ERR_PTR(-EFAULT);
|
||||
|
||||
return &rmptable[pfn];
|
||||
rmp_segment_shift = segment_shift;
|
||||
rmp_segment_size = 1ULL << rmp_segment_shift;
|
||||
rmp_segment_mask = rmp_segment_size - 1;
|
||||
}
|
||||
|
||||
static struct rmpentry *__snp_lookup_rmpentry(u64 pfn, int *level)
|
||||
{
|
||||
struct rmpentry *large_entry, *entry;
|
||||
#define RMP_ADDR_MASK GENMASK_ULL(51, 13)
|
||||
|
||||
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
|
||||
static bool probe_contiguous_rmptable_info(void)
|
||||
{
|
||||
u64 rmp_sz, rmp_base, rmp_end;
|
||||
|
||||
rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
|
||||
rdmsrl(MSR_AMD64_RMP_END, rmp_end);
|
||||
|
||||
if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) {
|
||||
pr_err("Memory for the RMP table has not been reserved by BIOS\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (rmp_base > rmp_end) {
|
||||
pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end);
|
||||
return false;
|
||||
}
|
||||
|
||||
rmp_sz = rmp_end - rmp_base + 1;
|
||||
|
||||
/* Treat the contiguous RMP table as a single segment */
|
||||
rst_max_index = 1;
|
||||
|
||||
set_rmp_segment_info(RMPTABLE_NON_SEGMENTED_SHIFT);
|
||||
|
||||
probed_rmp_base = rmp_base;
|
||||
probed_rmp_size = rmp_sz;
|
||||
|
||||
pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n",
|
||||
rmp_base, rmp_end);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool probe_segmented_rmptable_info(void)
|
||||
{
|
||||
unsigned int eax, ebx, segment_shift, segment_shift_min, segment_shift_max;
|
||||
u64 rmp_base, rmp_end;
|
||||
|
||||
rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
|
||||
if (!(rmp_base & RMP_ADDR_MASK)) {
|
||||
pr_err("Memory for the RMP table has not been reserved by BIOS\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
rdmsrl(MSR_AMD64_RMP_END, rmp_end);
|
||||
WARN_ONCE(rmp_end & RMP_ADDR_MASK,
|
||||
"Segmented RMP enabled but RMP_END MSR is non-zero\n");
|
||||
|
||||
/* Obtain the min and max supported RMP segment size */
|
||||
eax = cpuid_eax(0x80000025);
|
||||
segment_shift_min = eax & GENMASK(5, 0);
|
||||
segment_shift_max = (eax & GENMASK(11, 6)) >> 6;
|
||||
|
||||
/* Verify the segment size is within the supported limits */
|
||||
segment_shift = MSR_AMD64_RMP_SEGMENT_SHIFT(rmp_cfg);
|
||||
if (segment_shift > segment_shift_max || segment_shift < segment_shift_min) {
|
||||
pr_err("RMP segment size (%u) is not within advertised bounds (min=%u, max=%u)\n",
|
||||
segment_shift, segment_shift_min, segment_shift_max);
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Override the max supported RST index if a hardware limit exists */
|
||||
ebx = cpuid_ebx(0x80000025);
|
||||
if (ebx & BIT(10))
|
||||
rst_max_index = ebx & GENMASK(9, 0);
|
||||
|
||||
set_rmp_segment_info(segment_shift);
|
||||
|
||||
probed_rmp_base = rmp_base;
|
||||
probed_rmp_size = 0;
|
||||
|
||||
pr_info("Segmented RMP base table physical range [0x%016llx - 0x%016llx]\n",
|
||||
rmp_base, rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ + RST_SIZE);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool snp_probe_rmptable_info(void)
|
||||
{
|
||||
if (cpu_feature_enabled(X86_FEATURE_SEGMENTED_RMP))
|
||||
rdmsrl(MSR_AMD64_RMP_CFG, rmp_cfg);
|
||||
|
||||
if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED)
|
||||
return probe_segmented_rmptable_info();
|
||||
else
|
||||
return probe_contiguous_rmptable_info();
|
||||
}
|
||||
|
||||
/*
|
||||
* About the array_index_nospec() usage below:
|
||||
*
|
||||
* This function can get called by exported functions like
|
||||
* snp_lookup_rmpentry(), which is used by the KVM #PF handler, among
|
||||
* others, and since the @pfn passed in cannot always be trusted,
|
||||
* speculation should be stopped as a protective measure.
|
||||
*/
|
||||
static struct rmpentry_raw *get_raw_rmpentry(u64 pfn)
|
||||
{
|
||||
u64 paddr, rst_index, segment_index;
|
||||
struct rmp_segment_desc *desc;
|
||||
|
||||
if (!rmp_segment_table)
|
||||
return ERR_PTR(-ENODEV);
|
||||
|
||||
entry = get_rmpentry(pfn);
|
||||
if (IS_ERR(entry))
|
||||
return entry;
|
||||
paddr = pfn << PAGE_SHIFT;
|
||||
|
||||
rst_index = RST_ENTRY_INDEX(paddr);
|
||||
if (unlikely(rst_index >= rst_max_index))
|
||||
return ERR_PTR(-EFAULT);
|
||||
|
||||
rst_index = array_index_nospec(rst_index, rst_max_index);
|
||||
|
||||
desc = rmp_segment_table[rst_index];
|
||||
if (unlikely(!desc))
|
||||
return ERR_PTR(-EFAULT);
|
||||
|
||||
segment_index = RMP_ENTRY_INDEX(paddr);
|
||||
if (unlikely(segment_index >= desc->max_index))
|
||||
return ERR_PTR(-EFAULT);
|
||||
|
||||
segment_index = array_index_nospec(segment_index, desc->max_index);
|
||||
|
||||
return desc->rmp_entry + segment_index;
|
||||
}
|
||||
|
||||
static int get_rmpentry(u64 pfn, struct rmpentry *e)
|
||||
{
|
||||
struct rmpentry_raw *e_raw;
|
||||
|
||||
if (cpu_feature_enabled(X86_FEATURE_RMPREAD)) {
|
||||
int ret;
|
||||
|
||||
/* Binutils version 2.44 supports the RMPREAD mnemonic. */
|
||||
asm volatile(".byte 0xf2, 0x0f, 0x01, 0xfd"
|
||||
: "=a" (ret)
|
||||
: "a" (pfn << PAGE_SHIFT), "c" (e)
|
||||
: "memory", "cc");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
e_raw = get_raw_rmpentry(pfn);
|
||||
if (IS_ERR(e_raw))
|
||||
return PTR_ERR(e_raw);
|
||||
|
||||
/*
|
||||
* Map the raw RMP table entry onto the RMPREAD output format.
|
||||
* The 2MB region status indicator (hpage_region_status field) is not
|
||||
* calculated, since the overhead could be significant and the field
|
||||
* is not used.
|
||||
*/
|
||||
memset(e, 0, sizeof(*e));
|
||||
e->gpa = e_raw->gpa << PAGE_SHIFT;
|
||||
e->asid = e_raw->asid;
|
||||
e->assigned = e_raw->assigned;
|
||||
e->pagesize = e_raw->pagesize;
|
||||
e->immutable = e_raw->immutable;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __snp_lookup_rmpentry(u64 pfn, struct rmpentry *e, int *level)
|
||||
{
|
||||
struct rmpentry e_large;
|
||||
int ret;
|
||||
|
||||
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
|
||||
return -ENODEV;
|
||||
|
||||
ret = get_rmpentry(pfn, e);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* Find the authoritative RMP entry for a PFN. This can be either a 4K
|
||||
* RMP entry or a special large RMP entry that is authoritative for a
|
||||
* whole 2M area.
|
||||
*/
|
||||
large_entry = get_rmpentry(pfn & PFN_PMD_MASK);
|
||||
if (IS_ERR(large_entry))
|
||||
return large_entry;
|
||||
ret = get_rmpentry(pfn & PFN_PMD_MASK, &e_large);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
*level = RMP_TO_PG_LEVEL(large_entry->pagesize);
|
||||
*level = RMP_TO_PG_LEVEL(e_large.pagesize);
|
||||
|
||||
return entry;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int snp_lookup_rmpentry(u64 pfn, bool *assigned, int *level)
|
||||
{
|
||||
struct rmpentry *e;
|
||||
struct rmpentry e;
|
||||
int ret;
|
||||
|
||||
e = __snp_lookup_rmpentry(pfn, level);
|
||||
if (IS_ERR(e))
|
||||
return PTR_ERR(e);
|
||||
ret = __snp_lookup_rmpentry(pfn, &e, level);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
*assigned = !!e->assigned;
|
||||
*assigned = !!e.assigned;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(snp_lookup_rmpentry);
|
||||
@ -326,20 +791,28 @@ EXPORT_SYMBOL_GPL(snp_lookup_rmpentry);
|
||||
*/
|
||||
static void dump_rmpentry(u64 pfn)
|
||||
{
|
||||
struct rmpentry_raw *e_raw;
|
||||
u64 pfn_i, pfn_end;
|
||||
struct rmpentry *e;
|
||||
int level;
|
||||
struct rmpentry e;
|
||||
int level, ret;
|
||||
|
||||
e = __snp_lookup_rmpentry(pfn, &level);
|
||||
if (IS_ERR(e)) {
|
||||
pr_err("Failed to read RMP entry for PFN 0x%llx, error %ld\n",
|
||||
pfn, PTR_ERR(e));
|
||||
ret = __snp_lookup_rmpentry(pfn, &e, &level);
|
||||
if (ret) {
|
||||
pr_err("Failed to read RMP entry for PFN 0x%llx, error %d\n",
|
||||
pfn, ret);
|
||||
return;
|
||||
}
|
||||
|
||||
if (e->assigned) {
|
||||
if (e.assigned) {
|
||||
e_raw = get_raw_rmpentry(pfn);
|
||||
if (IS_ERR(e_raw)) {
|
||||
pr_err("Failed to read RMP contents for PFN 0x%llx, error %ld\n",
|
||||
pfn, PTR_ERR(e_raw));
|
||||
return;
|
||||
}
|
||||
|
||||
pr_info("PFN 0x%llx, RMP entry: [0x%016llx - 0x%016llx]\n",
|
||||
pfn, e->lo, e->hi);
|
||||
pfn, e_raw->lo, e_raw->hi);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -358,16 +831,16 @@ static void dump_rmpentry(u64 pfn)
|
||||
pfn, pfn_i, pfn_end);
|
||||
|
||||
while (pfn_i < pfn_end) {
|
||||
e = __snp_lookup_rmpentry(pfn_i, &level);
|
||||
if (IS_ERR(e)) {
|
||||
pr_err("Error %ld reading RMP entry for PFN 0x%llx\n",
|
||||
PTR_ERR(e), pfn_i);
|
||||
e_raw = get_raw_rmpentry(pfn_i);
|
||||
if (IS_ERR(e_raw)) {
|
||||
pr_err("Error %ld reading RMP contents for PFN 0x%llx\n",
|
||||
PTR_ERR(e_raw), pfn_i);
|
||||
pfn_i++;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (e->lo || e->hi)
|
||||
pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e->lo, e->hi);
|
||||
if (e_raw->lo || e_raw->hi)
|
||||
pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e_raw->lo, e_raw->hi);
|
||||
pfn_i++;
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user