- In the series "treewide: Refactor heap related implementation",

Kuan-Wei Chiu has significantly reworked the min_heap library code and
   has taught bcachefs to use the new more generic implementation.
 
 - Yury Norov's series "Cleanup cpumask.h inclusion in core headers"
   reworks the cpumask and nodemask headers to make things generally more
   rational.
 
 - Kuan-Wei Chiu has sent along some maintenance work against our sorting
   library code in the series "lib/sort: Optimizations and cleanups".
 
 - More library maintainance work from Christophe Jaillet in the series
   "Remove usage of the deprecated ida_simple_xx() API".
 
 - Ryusuke Konishi continues with the nilfs2 fixes and clanups in the
   series "nilfs2: eliminate the call to inode_attach_wb()".
 
 - Kuan-Ying Lee has some fixes to the gdb scripts in the series "Fix GDB
   command error".
 
 - Plus the usual shower of singleton patches all over the place.  Please
   see the relevant changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2GvwAKCRDdBJ7gKXxA
 jlf/AP48xP5ilIHbtpAKm2z+MvGuTxJQ5VSC0UXFacuCbc93lAEA+Yo+vOVRmh6j
 fQF2nVKyKLYfSz7yqmCyAaHWohIYLgg=
 =Stxz
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2024-07-21-15-07' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull non-MM updates from Andrew Morton:

 - In the series "treewide: Refactor heap related implementation",
   Kuan-Wei Chiu has significantly reworked the min_heap library code
   and has taught bcachefs to use the new more generic implementation.

 - Yury Norov's series "Cleanup cpumask.h inclusion in core headers"
   reworks the cpumask and nodemask headers to make things generally
   more rational.

 - Kuan-Wei Chiu has sent along some maintenance work against our
   sorting library code in the series "lib/sort: Optimizations and
   cleanups".

 - More library maintainance work from Christophe Jaillet in the series
   "Remove usage of the deprecated ida_simple_xx() API".

 - Ryusuke Konishi continues with the nilfs2 fixes and clanups in the
   series "nilfs2: eliminate the call to inode_attach_wb()".

 - Kuan-Ying Lee has some fixes to the gdb scripts in the series "Fix
   GDB command error".

 - Plus the usual shower of singleton patches all over the place. Please
   see the relevant changelogs for details.

* tag 'mm-nonmm-stable-2024-07-21-15-07' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (98 commits)
  ia64: scrub ia64 from poison.h
  watchdog/perf: properly initialize the turbo mode timestamp and rearm counter
  tsacct: replace strncpy() with strscpy()
  lib/bch.c: use swap() to improve code
  test_bpf: convert comma to semicolon
  init/modpost: conditionally check section mismatch to __meminit*
  init: remove unused __MEMINIT* macros
  nilfs2: Constify struct kobj_type
  nilfs2: avoid undefined behavior in nilfs_cnt32_ge macro
  math: rational: add missing MODULE_DESCRIPTION() macro
  lib/zlib: add missing MODULE_DESCRIPTION() macro
  fs: ufs: add MODULE_DESCRIPTION()
  lib/rbtree.c: fix the example typo
  ocfs2: add bounds checking to ocfs2_check_dir_entry()
  fs: add kernel-doc comments to ocfs2_prepare_orphan_dir()
  coredump: simplify zap_process()
  selftests/fpu: add missing MODULE_DESCRIPTION() macro
  compiler.h: simplify data_race() macro
  build-id: require program headers to be right after ELF header
  resource: add missing MODULE_DESCRIPTION()
  ...
This commit is contained in:
Linus Torvalds 2024-07-21 17:56:22 -07:00
commit 527eff227d
156 changed files with 1417 additions and 843 deletions

View File

@ -3801,8 +3801,10 @@ F: include/linux/bitmap-str.h
F: include/linux/bitmap.h F: include/linux/bitmap.h
F: include/linux/bits.h F: include/linux/bits.h
F: include/linux/cpumask.h F: include/linux/cpumask.h
F: include/linux/cpumask_types.h
F: include/linux/find.h F: include/linux/find.h
F: include/linux/nodemask.h F: include/linux/nodemask.h
F: include/linux/nodemask_types.h
F: include/vdso/bits.h F: include/vdso/bits.h
F: lib/bitmap-str.c F: lib/bitmap-str.c
F: lib/bitmap.c F: lib/bitmap.c

View File

@ -123,8 +123,6 @@ SECTIONS
*/ */
*(.sfpr); *(.sfpr);
*(.text.asan.* .text.tsan.*) *(.text.asan.* .text.tsan.*)
MEM_KEEP(init.text)
MEM_KEEP(exit.text)
} :text } :text
. = ALIGN(PAGE_SIZE); . = ALIGN(PAGE_SIZE);

View File

@ -656,17 +656,16 @@ static int occ_probe(struct platform_device *pdev)
rc = of_property_read_u32(dev->of_node, "reg", &reg); rc = of_property_read_u32(dev->of_node, "reg", &reg);
if (!rc) { if (!rc) {
/* make sure we don't have a duplicate from dts */ /* make sure we don't have a duplicate from dts */
occ->idx = ida_simple_get(&occ_ida, reg, reg + 1, occ->idx = ida_alloc_range(&occ_ida, reg, reg,
GFP_KERNEL); GFP_KERNEL);
if (occ->idx < 0) if (occ->idx < 0)
occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, occ->idx = ida_alloc_min(&occ_ida, 1,
GFP_KERNEL); GFP_KERNEL);
} else { } else {
occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL);
GFP_KERNEL);
} }
} else { } else {
occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, GFP_KERNEL); occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL);
} }
platform_set_drvdata(pdev, occ); platform_set_drvdata(pdev, occ);
@ -680,7 +679,7 @@ static int occ_probe(struct platform_device *pdev)
rc = misc_register(&occ->mdev); rc = misc_register(&occ->mdev);
if (rc) { if (rc) {
dev_err(dev, "failed to register miscdevice: %d\n", rc); dev_err(dev, "failed to register miscdevice: %d\n", rc);
ida_simple_remove(&occ_ida, occ->idx); ida_free(&occ_ida, occ->idx);
kvfree(occ->buffer); kvfree(occ->buffer);
return rc; return rc;
} }
@ -719,7 +718,7 @@ static int occ_remove(struct platform_device *pdev)
else else
device_for_each_child(&pdev->dev, NULL, occ_unregister_of_child); device_for_each_child(&pdev->dev, NULL, occ_unregister_of_child);
ida_simple_remove(&occ_ida, occ->idx); ida_free(&occ_ida, occ->idx);
return 0; return 0;
} }

View File

@ -340,7 +340,7 @@ static int eb_create(struct i915_execbuffer *eb)
* Without a 1:1 association between relocation handles and * Without a 1:1 association between relocation handles and
* the execobject[] index, we instead create a hashtable. * the execobject[] index, we instead create a hashtable.
* We size it dynamically based on available memory, starting * We size it dynamically based on available memory, starting
* first with 1:1 assocative hash and scaling back until * first with 1:1 associative hash and scaling back until
* the allocation succeeds. * the allocation succeeds.
* *
* Later on we use a positive lut_size to indicate we are * Later on we use a positive lut_size to indicate we are

View File

@ -164,40 +164,68 @@ static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
* prio is worth 1/8th of what INITIAL_PRIO is worth. * prio is worth 1/8th of what INITIAL_PRIO is worth.
*/ */
#define bucket_prio(b) \ static inline unsigned int new_bucket_prio(struct cache *ca, struct bucket *b)
({ \ {
unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;
\
(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
})
#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) return (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);
#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) }
static inline bool new_bucket_max_cmp(const void *l, const void *r, void *args)
{
struct bucket **lhs = (struct bucket **)l;
struct bucket **rhs = (struct bucket **)r;
struct cache *ca = args;
return new_bucket_prio(ca, *lhs) > new_bucket_prio(ca, *rhs);
}
static inline bool new_bucket_min_cmp(const void *l, const void *r, void *args)
{
struct bucket **lhs = (struct bucket **)l;
struct bucket **rhs = (struct bucket **)r;
struct cache *ca = args;
return new_bucket_prio(ca, *lhs) < new_bucket_prio(ca, *rhs);
}
static inline void new_bucket_swap(void *l, void *r, void __always_unused *args)
{
struct bucket **lhs = l, **rhs = r;
swap(*lhs, *rhs);
}
static void invalidate_buckets_lru(struct cache *ca) static void invalidate_buckets_lru(struct cache *ca)
{ {
struct bucket *b; struct bucket *b;
ssize_t i; const struct min_heap_callbacks bucket_max_cmp_callback = {
.less = new_bucket_max_cmp,
.swp = new_bucket_swap,
};
const struct min_heap_callbacks bucket_min_cmp_callback = {
.less = new_bucket_min_cmp,
.swp = new_bucket_swap,
};
ca->heap.used = 0; ca->heap.nr = 0;
for_each_bucket(b, ca) { for_each_bucket(b, ca) {
if (!bch_can_invalidate_bucket(ca, b)) if (!bch_can_invalidate_bucket(ca, b))
continue; continue;
if (!heap_full(&ca->heap)) if (!min_heap_full(&ca->heap))
heap_add(&ca->heap, b, bucket_max_cmp); min_heap_push(&ca->heap, &b, &bucket_max_cmp_callback, ca);
else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { else if (!new_bucket_max_cmp(&b, min_heap_peek(&ca->heap), ca)) {
ca->heap.data[0] = b; ca->heap.data[0] = b;
heap_sift(&ca->heap, 0, bucket_max_cmp); min_heap_sift_down(&ca->heap, 0, &bucket_max_cmp_callback, ca);
} }
} }
for (i = ca->heap.used / 2 - 1; i >= 0; --i) min_heapify_all(&ca->heap, &bucket_min_cmp_callback, ca);
heap_sift(&ca->heap, i, bucket_min_cmp);
while (!fifo_full(&ca->free_inc)) { while (!fifo_full(&ca->free_inc)) {
if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { if (!ca->heap.nr) {
/* /*
* We don't want to be calling invalidate_buckets() * We don't want to be calling invalidate_buckets()
* multiple times when it can't do anything * multiple times when it can't do anything
@ -206,6 +234,8 @@ static void invalidate_buckets_lru(struct cache *ca)
wake_up_gc(ca->set); wake_up_gc(ca->set);
return; return;
} }
b = min_heap_peek(&ca->heap)[0];
min_heap_pop(&ca->heap, &bucket_min_cmp_callback, ca);
bch_invalidate_one_bucket(ca, b); bch_invalidate_one_bucket(ca, b);
} }

View File

@ -458,7 +458,7 @@ struct cache {
/* Allocation stuff: */ /* Allocation stuff: */
struct bucket *buckets; struct bucket *buckets;
DECLARE_HEAP(struct bucket *, heap); DEFINE_MIN_HEAP(struct bucket *, cache_heap) heap;
/* /*
* If nonzero, we know we aren't going to find any buckets to invalidate * If nonzero, we know we aren't going to find any buckets to invalidate

View File

@ -54,9 +54,11 @@ void bch_dump_bucket(struct btree_keys *b)
int __bch_count_data(struct btree_keys *b) int __bch_count_data(struct btree_keys *b)
{ {
unsigned int ret = 0; unsigned int ret = 0;
struct btree_iter_stack iter; struct btree_iter iter;
struct bkey *k; struct bkey *k;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
if (b->ops->is_extents) if (b->ops->is_extents)
for_each_key(b, k, &iter) for_each_key(b, k, &iter)
ret += KEY_SIZE(k); ret += KEY_SIZE(k);
@ -67,9 +69,11 @@ void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
{ {
va_list args; va_list args;
struct bkey *k, *p = NULL; struct bkey *k, *p = NULL;
struct btree_iter_stack iter; struct btree_iter iter;
const char *err; const char *err;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
for_each_key(b, k, &iter) { for_each_key(b, k, &iter) {
if (b->ops->is_extents) { if (b->ops->is_extents) {
err = "Keys out of order"; err = "Keys out of order";
@ -110,9 +114,9 @@ void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
static void bch_btree_iter_next_check(struct btree_iter *iter) static void bch_btree_iter_next_check(struct btree_iter *iter)
{ {
struct bkey *k = iter->data->k, *next = bkey_next(k); struct bkey *k = iter->heap.data->k, *next = bkey_next(k);
if (next < iter->data->end && if (next < iter->heap.data->end &&
bkey_cmp(k, iter->b->ops->is_extents ? bkey_cmp(k, iter->b->ops->is_extents ?
&START_KEY(next) : next) > 0) { &START_KEY(next) : next) > 0) {
bch_dump_bucket(iter->b); bch_dump_bucket(iter->b);
@ -879,12 +883,14 @@ unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
unsigned int status = BTREE_INSERT_STATUS_NO_INSERT; unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
struct bset *i = bset_tree_last(b)->data; struct bset *i = bset_tree_last(b)->data;
struct bkey *m, *prev = NULL; struct bkey *m, *prev = NULL;
struct btree_iter_stack iter; struct btree_iter iter;
struct bkey preceding_key_on_stack = ZERO_KEY; struct bkey preceding_key_on_stack = ZERO_KEY;
struct bkey *preceding_key_p = &preceding_key_on_stack; struct bkey *preceding_key_p = &preceding_key_on_stack;
BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
min_heap_init(&iter.heap, NULL, MAX_BSETS);
/* /*
* If k has preceding key, preceding_key_p will be set to address * If k has preceding key, preceding_key_p will be set to address
* of k's preceding key; otherwise preceding_key_p will be set * of k's preceding key; otherwise preceding_key_p will be set
@ -895,9 +901,9 @@ unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
else else
preceding_key(k, &preceding_key_p); preceding_key(k, &preceding_key_p);
m = bch_btree_iter_stack_init(b, &iter, preceding_key_p); m = bch_btree_iter_init(b, &iter, preceding_key_p);
if (b->ops->insert_fixup(b, k, &iter.iter, replace_key)) if (b->ops->insert_fixup(b, k, &iter, replace_key))
return status; return status;
status = BTREE_INSERT_STATUS_INSERT; status = BTREE_INSERT_STATUS_INSERT;
@ -1077,79 +1083,102 @@ struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
/* Btree iterator */ /* Btree iterator */
typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, typedef bool (new_btree_iter_cmp_fn)(const void *, const void *, void *);
struct btree_iter_set);
static inline bool btree_iter_cmp(struct btree_iter_set l, static inline bool new_btree_iter_cmp(const void *l, const void *r, void __always_unused *args)
struct btree_iter_set r)
{ {
return bkey_cmp(l.k, r.k) > 0; const struct btree_iter_set *_l = l;
const struct btree_iter_set *_r = r;
return bkey_cmp(_l->k, _r->k) <= 0;
}
static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args)
{
struct btree_iter_set *_iter1 = iter1;
struct btree_iter_set *_iter2 = iter2;
swap(*_iter1, *_iter2);
} }
static inline bool btree_iter_end(struct btree_iter *iter) static inline bool btree_iter_end(struct btree_iter *iter)
{ {
return !iter->used; return !iter->heap.nr;
} }
void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
struct bkey *end) struct bkey *end)
{ {
const struct min_heap_callbacks callbacks = {
.less = new_btree_iter_cmp,
.swp = new_btree_iter_swap,
};
if (k != end) if (k != end)
BUG_ON(!heap_add(iter, BUG_ON(!min_heap_push(&iter->heap,
((struct btree_iter_set) { k, end }), &((struct btree_iter_set) { k, end }),
btree_iter_cmp)); &callbacks,
NULL));
} }
static struct bkey *__bch_btree_iter_stack_init(struct btree_keys *b, static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
struct btree_iter_stack *iter, struct btree_iter *iter,
struct bkey *search, struct bkey *search,
struct bset_tree *start) struct bset_tree *start)
{ {
struct bkey *ret = NULL; struct bkey *ret = NULL;
iter->iter.size = ARRAY_SIZE(iter->stack_data); iter->heap.size = ARRAY_SIZE(iter->heap.preallocated);
iter->iter.used = 0; iter->heap.nr = 0;
#ifdef CONFIG_BCACHE_DEBUG #ifdef CONFIG_BCACHE_DEBUG
iter->iter.b = b; iter->b = b;
#endif #endif
for (; start <= bset_tree_last(b); start++) { for (; start <= bset_tree_last(b); start++) {
ret = bch_bset_search(b, start, search); ret = bch_bset_search(b, start, search);
bch_btree_iter_push(&iter->iter, ret, bset_bkey_last(start->data)); bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
} }
return ret; return ret;
} }
struct bkey *bch_btree_iter_stack_init(struct btree_keys *b, struct bkey *bch_btree_iter_init(struct btree_keys *b,
struct btree_iter_stack *iter, struct btree_iter *iter,
struct bkey *search) struct bkey *search)
{ {
return __bch_btree_iter_stack_init(b, iter, search, b->set); return __bch_btree_iter_init(b, iter, search, b->set);
} }
static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
btree_iter_cmp_fn *cmp) new_btree_iter_cmp_fn *cmp)
{ {
struct btree_iter_set b __maybe_unused; struct btree_iter_set b __maybe_unused;
struct bkey *ret = NULL; struct bkey *ret = NULL;
const struct min_heap_callbacks callbacks = {
.less = cmp,
.swp = new_btree_iter_swap,
};
if (!btree_iter_end(iter)) { if (!btree_iter_end(iter)) {
bch_btree_iter_next_check(iter); bch_btree_iter_next_check(iter);
ret = iter->data->k; ret = iter->heap.data->k;
iter->data->k = bkey_next(iter->data->k); iter->heap.data->k = bkey_next(iter->heap.data->k);
if (iter->data->k > iter->data->end) { if (iter->heap.data->k > iter->heap.data->end) {
WARN_ONCE(1, "bset was corrupt!\n"); WARN_ONCE(1, "bset was corrupt!\n");
iter->data->k = iter->data->end; iter->heap.data->k = iter->heap.data->end;
} }
if (iter->data->k == iter->data->end) if (iter->heap.data->k == iter->heap.data->end) {
heap_pop(iter, b, cmp); if (iter->heap.nr) {
b = min_heap_peek(&iter->heap)[0];
min_heap_pop(&iter->heap, &callbacks, NULL);
}
}
else else
heap_sift(iter, 0, cmp); min_heap_sift_down(&iter->heap, 0, &callbacks, NULL);
} }
return ret; return ret;
@ -1157,7 +1186,7 @@ static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
struct bkey *bch_btree_iter_next(struct btree_iter *iter) struct bkey *bch_btree_iter_next(struct btree_iter *iter)
{ {
return __bch_btree_iter_next(iter, btree_iter_cmp); return __bch_btree_iter_next(iter, new_btree_iter_cmp);
} }
@ -1195,16 +1224,18 @@ static void btree_mergesort(struct btree_keys *b, struct bset *out,
struct btree_iter *iter, struct btree_iter *iter,
bool fixup, bool remove_stale) bool fixup, bool remove_stale)
{ {
int i;
struct bkey *k, *last = NULL; struct bkey *k, *last = NULL;
BKEY_PADDED(k) tmp; BKEY_PADDED(k) tmp;
bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
? bch_ptr_bad ? bch_ptr_bad
: bch_ptr_invalid; : bch_ptr_invalid;
const struct min_heap_callbacks callbacks = {
.less = b->ops->sort_cmp,
.swp = new_btree_iter_swap,
};
/* Heapify the iterator, using our comparison function */ /* Heapify the iterator, using our comparison function */
for (i = iter->used / 2 - 1; i >= 0; --i) min_heapify_all(&iter->heap, &callbacks, NULL);
heap_sift(iter, i, b->ops->sort_cmp);
while (!btree_iter_end(iter)) { while (!btree_iter_end(iter)) {
if (b->ops->sort_fixup && fixup) if (b->ops->sort_fixup && fixup)
@ -1293,10 +1324,11 @@ void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
struct bset_sort_state *state) struct bset_sort_state *state)
{ {
size_t order = b->page_order, keys = 0; size_t order = b->page_order, keys = 0;
struct btree_iter_stack iter; struct btree_iter iter;
int oldsize = bch_count_data(b); int oldsize = bch_count_data(b);
__bch_btree_iter_stack_init(b, &iter, NULL, &b->set[start]); min_heap_init(&iter.heap, NULL, MAX_BSETS);
__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
if (start) { if (start) {
unsigned int i; unsigned int i;
@ -1307,7 +1339,7 @@ void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
order = get_order(__set_bytes(b->set->data, keys)); order = get_order(__set_bytes(b->set->data, keys));
} }
__btree_sort(b, &iter.iter, start, order, false, state); __btree_sort(b, &iter, start, order, false, state);
EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
} }
@ -1323,11 +1355,13 @@ void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
struct bset_sort_state *state) struct bset_sort_state *state)
{ {
uint64_t start_time = local_clock(); uint64_t start_time = local_clock();
struct btree_iter_stack iter; struct btree_iter iter;
bch_btree_iter_stack_init(b, &iter, NULL); min_heap_init(&iter.heap, NULL, MAX_BSETS);
btree_mergesort(b, new->set->data, &iter.iter, false, true); bch_btree_iter_init(b, &iter, NULL);
btree_mergesort(b, new->set->data, &iter, false, true);
bch_time_stats_update(&state->time, start_time); bch_time_stats_update(&state->time, start_time);

View File

@ -187,8 +187,9 @@ struct bset_tree {
}; };
struct btree_keys_ops { struct btree_keys_ops {
bool (*sort_cmp)(struct btree_iter_set l, bool (*sort_cmp)(const void *l,
struct btree_iter_set r); const void *r,
void *args);
struct bkey *(*sort_fixup)(struct btree_iter *iter, struct bkey *(*sort_fixup)(struct btree_iter *iter,
struct bkey *tmp); struct bkey *tmp);
bool (*insert_fixup)(struct btree_keys *b, bool (*insert_fixup)(struct btree_keys *b,
@ -312,23 +313,17 @@ enum {
BTREE_INSERT_STATUS_FRONT_MERGE, BTREE_INSERT_STATUS_FRONT_MERGE,
}; };
struct btree_iter_set {
struct bkey *k, *end;
};
/* Btree key iteration */ /* Btree key iteration */
struct btree_iter { struct btree_iter {
size_t size, used;
#ifdef CONFIG_BCACHE_DEBUG #ifdef CONFIG_BCACHE_DEBUG
struct btree_keys *b; struct btree_keys *b;
#endif #endif
struct btree_iter_set { MIN_HEAP_PREALLOCATED(struct btree_iter_set, btree_iter_heap, MAX_BSETS) heap;
struct bkey *k, *end;
} data[];
};
/* Fixed-size btree_iter that can be allocated on the stack */
struct btree_iter_stack {
struct btree_iter iter;
struct btree_iter_set stack_data[MAX_BSETS];
}; };
typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k); typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
@ -340,9 +335,9 @@ struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
struct bkey *end); struct bkey *end);
struct bkey *bch_btree_iter_stack_init(struct btree_keys *b, struct bkey *bch_btree_iter_init(struct btree_keys *b,
struct btree_iter_stack *iter, struct btree_iter *iter,
struct bkey *search); struct bkey *search);
struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
const struct bkey *search); const struct bkey *search);
@ -357,14 +352,13 @@ static inline struct bkey *bch_bset_search(struct btree_keys *b,
return search ? __bch_bset_search(b, t, search) : t->data->start; return search ? __bch_bset_search(b, t, search) : t->data->start;
} }
#define for_each_key_filter(b, k, stack_iter, filter) \ #define for_each_key_filter(b, k, iter, filter) \
for (bch_btree_iter_stack_init((b), (stack_iter), NULL); \ for (bch_btree_iter_init((b), (iter), NULL); \
((k) = bch_btree_iter_next_filter(&((stack_iter)->iter), (b), \ ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
filter));)
#define for_each_key(b, k, stack_iter) \ #define for_each_key(b, k, iter) \
for (bch_btree_iter_stack_init((b), (stack_iter), NULL); \ for (bch_btree_iter_init((b), (iter), NULL); \
((k) = bch_btree_iter_next(&((stack_iter)->iter)));) ((k) = bch_btree_iter_next(iter));)
/* Sorting */ /* Sorting */

View File

@ -149,19 +149,19 @@ void bch_btree_node_read_done(struct btree *b)
{ {
const char *err = "bad btree header"; const char *err = "bad btree header";
struct bset *i = btree_bset_first(b); struct bset *i = btree_bset_first(b);
struct btree_iter *iter; struct btree_iter iter;
/* /*
* c->fill_iter can allocate an iterator with more memory space * c->fill_iter can allocate an iterator with more memory space
* than static MAX_BSETS. * than static MAX_BSETS.
* See the comment arount cache_set->fill_iter. * See the comment arount cache_set->fill_iter.
*/ */
iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); iter.heap.data = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; iter.heap.size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
iter->used = 0; iter.heap.nr = 0;
#ifdef CONFIG_BCACHE_DEBUG #ifdef CONFIG_BCACHE_DEBUG
iter->b = &b->keys; iter.b = &b->keys;
#endif #endif
if (!i->seq) if (!i->seq)
@ -199,7 +199,7 @@ void bch_btree_node_read_done(struct btree *b)
if (i != b->keys.set[0].data && !i->keys) if (i != b->keys.set[0].data && !i->keys)
goto err; goto err;
bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); bch_btree_iter_push(&iter, i->start, bset_bkey_last(i));
b->written += set_blocks(i, block_bytes(b->c->cache)); b->written += set_blocks(i, block_bytes(b->c->cache));
} }
@ -211,7 +211,7 @@ void bch_btree_node_read_done(struct btree *b)
if (i->seq == b->keys.set[0].data->seq) if (i->seq == b->keys.set[0].data->seq)
goto err; goto err;
bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); bch_btree_sort_and_fix_extents(&b->keys, &iter, &b->c->sort);
i = b->keys.set[0].data; i = b->keys.set[0].data;
err = "short btree key"; err = "short btree key";
@ -223,7 +223,7 @@ void bch_btree_node_read_done(struct btree *b)
bch_bset_init_next(&b->keys, write_block(b), bch_bset_init_next(&b->keys, write_block(b),
bset_magic(&b->c->cache->sb)); bset_magic(&b->c->cache->sb));
out: out:
mempool_free(iter, &b->c->fill_iter); mempool_free(iter.heap.data, &b->c->fill_iter);
return; return;
err: err:
set_btree_node_io_error(b); set_btree_node_io_error(b);
@ -1309,9 +1309,11 @@ static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
uint8_t stale = 0; uint8_t stale = 0;
unsigned int keys = 0, good_keys = 0; unsigned int keys = 0, good_keys = 0;
struct bkey *k; struct bkey *k;
struct btree_iter_stack iter; struct btree_iter iter;
struct bset_tree *t; struct bset_tree *t;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
gc->nodes++; gc->nodes++;
for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
@ -1570,9 +1572,11 @@ static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
static unsigned int btree_gc_count_keys(struct btree *b) static unsigned int btree_gc_count_keys(struct btree *b)
{ {
struct bkey *k; struct bkey *k;
struct btree_iter_stack iter; struct btree_iter iter;
unsigned int ret = 0; unsigned int ret = 0;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
ret += bkey_u64s(k); ret += bkey_u64s(k);
@ -1611,18 +1615,18 @@ static int btree_gc_recurse(struct btree *b, struct btree_op *op,
int ret = 0; int ret = 0;
bool should_rewrite; bool should_rewrite;
struct bkey *k; struct bkey *k;
struct btree_iter_stack iter; struct btree_iter iter;
struct gc_merge_info r[GC_MERGE_NODES]; struct gc_merge_info r[GC_MERGE_NODES];
struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done); min_heap_init(&iter.heap, NULL, MAX_BSETS);
bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
for (i = r; i < r + ARRAY_SIZE(r); i++) for (i = r; i < r + ARRAY_SIZE(r); i++)
i->b = ERR_PTR(-EINTR); i->b = ERR_PTR(-EINTR);
while (1) { while (1) {
k = bch_btree_iter_next_filter(&iter.iter, &b->keys, k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
bch_ptr_bad);
if (k) { if (k) {
r->b = bch_btree_node_get(b->c, op, k, b->level - 1, r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
true, b); true, b);
@ -1917,7 +1921,9 @@ static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
{ {
int ret = 0; int ret = 0;
struct bkey *k, *p = NULL; struct bkey *k, *p = NULL;
struct btree_iter_stack iter; struct btree_iter iter;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
bch_initial_mark_key(b->c, b->level, k); bch_initial_mark_key(b->c, b->level, k);
@ -1925,10 +1931,10 @@ static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
bch_initial_mark_key(b->c, b->level + 1, &b->key); bch_initial_mark_key(b->c, b->level + 1, &b->key);
if (b->level) { if (b->level) {
bch_btree_iter_stack_init(&b->keys, &iter, NULL); bch_btree_iter_init(&b->keys, &iter, NULL);
do { do {
k = bch_btree_iter_next_filter(&iter.iter, &b->keys, k = bch_btree_iter_next_filter(&iter, &b->keys,
bch_ptr_bad); bch_ptr_bad);
if (k) { if (k) {
btree_node_prefetch(b, k); btree_node_prefetch(b, k);
@ -1956,7 +1962,7 @@ static int bch_btree_check_thread(void *arg)
struct btree_check_info *info = arg; struct btree_check_info *info = arg;
struct btree_check_state *check_state = info->state; struct btree_check_state *check_state = info->state;
struct cache_set *c = check_state->c; struct cache_set *c = check_state->c;
struct btree_iter_stack iter; struct btree_iter iter;
struct bkey *k, *p; struct bkey *k, *p;
int cur_idx, prev_idx, skip_nr; int cur_idx, prev_idx, skip_nr;
@ -1964,9 +1970,11 @@ static int bch_btree_check_thread(void *arg)
cur_idx = prev_idx = 0; cur_idx = prev_idx = 0;
ret = 0; ret = 0;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
/* root node keys are checked before thread created */ /* root node keys are checked before thread created */
bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); bch_btree_iter_init(&c->root->keys, &iter, NULL);
k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
BUG_ON(!k); BUG_ON(!k);
p = k; p = k;
@ -1984,7 +1992,7 @@ static int bch_btree_check_thread(void *arg)
skip_nr = cur_idx - prev_idx; skip_nr = cur_idx - prev_idx;
while (skip_nr) { while (skip_nr) {
k = bch_btree_iter_next_filter(&iter.iter, k = bch_btree_iter_next_filter(&iter,
&c->root->keys, &c->root->keys,
bch_ptr_bad); bch_ptr_bad);
if (k) if (k)
@ -2057,9 +2065,11 @@ int bch_btree_check(struct cache_set *c)
int ret = 0; int ret = 0;
int i; int i;
struct bkey *k = NULL; struct bkey *k = NULL;
struct btree_iter_stack iter; struct btree_iter iter;
struct btree_check_state check_state; struct btree_check_state check_state;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
/* check and mark root node keys */ /* check and mark root node keys */
for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
bch_initial_mark_key(c, c->root->level, k); bch_initial_mark_key(c, c->root->level, k);
@ -2553,11 +2563,12 @@ static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
if (b->level) { if (b->level) {
struct bkey *k; struct bkey *k;
struct btree_iter_stack iter; struct btree_iter iter;
bch_btree_iter_stack_init(&b->keys, &iter, from); min_heap_init(&iter.heap, NULL, MAX_BSETS);
bch_btree_iter_init(&b->keys, &iter, from);
while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
bch_ptr_bad))) { bch_ptr_bad))) {
ret = bcache_btree(map_nodes_recurse, k, b, ret = bcache_btree(map_nodes_recurse, k, b,
op, from, fn, flags); op, from, fn, flags);
@ -2586,12 +2597,12 @@ int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
{ {
int ret = MAP_CONTINUE; int ret = MAP_CONTINUE;
struct bkey *k; struct bkey *k;
struct btree_iter_stack iter; struct btree_iter iter;
bch_btree_iter_stack_init(&b->keys, &iter, from); min_heap_init(&iter.heap, NULL, MAX_BSETS);
bch_btree_iter_init(&b->keys, &iter, from);
while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
bch_ptr_bad))) {
ret = !b->level ret = !b->level
? fn(op, b, k) ? fn(op, b, k)
: bcache_btree(map_keys_recurse, k, : bcache_btree(map_keys_recurse, k,

View File

@ -33,15 +33,16 @@ static void sort_key_next(struct btree_iter *iter,
i->k = bkey_next(i->k); i->k = bkey_next(i->k);
if (i->k == i->end) if (i->k == i->end)
*i = iter->data[--iter->used]; *i = iter->heap.data[--iter->heap.nr];
} }
static bool bch_key_sort_cmp(struct btree_iter_set l, static bool new_bch_key_sort_cmp(const void *l, const void *r, void *args)
struct btree_iter_set r)
{ {
int64_t c = bkey_cmp(l.k, r.k); struct btree_iter_set *_l = (struct btree_iter_set *)l;
struct btree_iter_set *_r = (struct btree_iter_set *)r;
int64_t c = bkey_cmp(_l->k, _r->k);
return c ? c > 0 : l.k < r.k; return !(c ? c > 0 : _l->k < _r->k);
} }
static bool __ptr_invalid(struct cache_set *c, const struct bkey *k) static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
@ -238,7 +239,7 @@ static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
} }
const struct btree_keys_ops bch_btree_keys_ops = { const struct btree_keys_ops bch_btree_keys_ops = {
.sort_cmp = bch_key_sort_cmp, .sort_cmp = new_bch_key_sort_cmp,
.insert_fixup = bch_btree_ptr_insert_fixup, .insert_fixup = bch_btree_ptr_insert_fixup,
.key_invalid = bch_btree_ptr_invalid, .key_invalid = bch_btree_ptr_invalid,
.key_bad = bch_btree_ptr_bad, .key_bad = bch_btree_ptr_bad,
@ -255,22 +256,36 @@ const struct btree_keys_ops bch_btree_keys_ops = {
* Necessary for btree_sort_fixup() - if there are multiple keys that compare * Necessary for btree_sort_fixup() - if there are multiple keys that compare
* equal in different sets, we have to process them newest to oldest. * equal in different sets, we have to process them newest to oldest.
*/ */
static bool bch_extent_sort_cmp(struct btree_iter_set l,
struct btree_iter_set r)
{
int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
return c ? c > 0 : l.k < r.k; static bool new_bch_extent_sort_cmp(const void *l, const void *r, void __always_unused *args)
{
struct btree_iter_set *_l = (struct btree_iter_set *)l;
struct btree_iter_set *_r = (struct btree_iter_set *)r;
int64_t c = bkey_cmp(&START_KEY(_l->k), &START_KEY(_r->k));
return !(c ? c > 0 : _l->k < _r->k);
}
static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args)
{
struct btree_iter_set *_iter1 = iter1;
struct btree_iter_set *_iter2 = iter2;
swap(*_iter1, *_iter2);
} }
static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter, static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
struct bkey *tmp) struct bkey *tmp)
{ {
while (iter->used > 1) { const struct min_heap_callbacks callbacks = {
struct btree_iter_set *top = iter->data, *i = top + 1; .less = new_bch_extent_sort_cmp,
.swp = new_btree_iter_swap,
};
while (iter->heap.nr > 1) {
struct btree_iter_set *top = iter->heap.data, *i = top + 1;
if (iter->used > 2 && if (iter->heap.nr > 2 &&
bch_extent_sort_cmp(i[0], i[1])) !new_bch_extent_sort_cmp(&i[0], &i[1], NULL))
i++; i++;
if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
@ -278,7 +293,7 @@ static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
if (!KEY_SIZE(i->k)) { if (!KEY_SIZE(i->k)) {
sort_key_next(iter, i); sort_key_next(iter, i);
heap_sift(iter, i - top, bch_extent_sort_cmp); min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL);
continue; continue;
} }
@ -288,7 +303,7 @@ static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
else else
bch_cut_front(top->k, i->k); bch_cut_front(top->k, i->k);
heap_sift(iter, i - top, bch_extent_sort_cmp); min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL);
} else { } else {
/* can't happen because of comparison func */ /* can't happen because of comparison func */
BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
@ -298,7 +313,7 @@ static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
bch_cut_back(&START_KEY(i->k), tmp); bch_cut_back(&START_KEY(i->k), tmp);
bch_cut_front(i->k, top->k); bch_cut_front(i->k, top->k);
heap_sift(iter, 0, bch_extent_sort_cmp); min_heap_sift_down(&iter->heap, 0, &callbacks, NULL);
return tmp; return tmp;
} else { } else {
@ -618,7 +633,7 @@ static bool bch_extent_merge(struct btree_keys *bk,
} }
const struct btree_keys_ops bch_extent_keys_ops = { const struct btree_keys_ops bch_extent_keys_ops = {
.sort_cmp = bch_extent_sort_cmp, .sort_cmp = new_bch_extent_sort_cmp,
.sort_fixup = bch_extent_sort_fixup, .sort_fixup = bch_extent_sort_fixup,
.insert_fixup = bch_extent_insert_fixup, .insert_fixup = bch_extent_insert_fixup,
.key_invalid = bch_extent_invalid, .key_invalid = bch_extent_invalid,

View File

@ -182,16 +182,27 @@ err: if (!IS_ERR_OR_NULL(w->private))
closure_sync(&cl); closure_sync(&cl);
} }
static bool bucket_cmp(struct bucket *l, struct bucket *r) static bool new_bucket_cmp(const void *l, const void *r, void __always_unused *args)
{ {
return GC_SECTORS_USED(l) < GC_SECTORS_USED(r); struct bucket **_l = (struct bucket **)l;
struct bucket **_r = (struct bucket **)r;
return GC_SECTORS_USED(*_l) >= GC_SECTORS_USED(*_r);
}
static void new_bucket_swap(void *l, void *r, void __always_unused *args)
{
struct bucket **_l = l;
struct bucket **_r = r;
swap(*_l, *_r);
} }
static unsigned int bucket_heap_top(struct cache *ca) static unsigned int bucket_heap_top(struct cache *ca)
{ {
struct bucket *b; struct bucket *b;
return (b = heap_peek(&ca->heap)) ? GC_SECTORS_USED(b) : 0; return (b = min_heap_peek(&ca->heap)[0]) ? GC_SECTORS_USED(b) : 0;
} }
void bch_moving_gc(struct cache_set *c) void bch_moving_gc(struct cache_set *c)
@ -199,6 +210,10 @@ void bch_moving_gc(struct cache_set *c)
struct cache *ca = c->cache; struct cache *ca = c->cache;
struct bucket *b; struct bucket *b;
unsigned long sectors_to_move, reserve_sectors; unsigned long sectors_to_move, reserve_sectors;
const struct min_heap_callbacks callbacks = {
.less = new_bucket_cmp,
.swp = new_bucket_swap,
};
if (!c->copy_gc_enabled) if (!c->copy_gc_enabled)
return; return;
@ -209,7 +224,7 @@ void bch_moving_gc(struct cache_set *c)
reserve_sectors = ca->sb.bucket_size * reserve_sectors = ca->sb.bucket_size *
fifo_used(&ca->free[RESERVE_MOVINGGC]); fifo_used(&ca->free[RESERVE_MOVINGGC]);
ca->heap.used = 0; ca->heap.nr = 0;
for_each_bucket(b, ca) { for_each_bucket(b, ca) {
if (GC_MARK(b) == GC_MARK_METADATA || if (GC_MARK(b) == GC_MARK_METADATA ||
@ -218,25 +233,31 @@ void bch_moving_gc(struct cache_set *c)
atomic_read(&b->pin)) atomic_read(&b->pin))
continue; continue;
if (!heap_full(&ca->heap)) { if (!min_heap_full(&ca->heap)) {
sectors_to_move += GC_SECTORS_USED(b); sectors_to_move += GC_SECTORS_USED(b);
heap_add(&ca->heap, b, bucket_cmp); min_heap_push(&ca->heap, &b, &callbacks, NULL);
} else if (bucket_cmp(b, heap_peek(&ca->heap))) { } else if (!new_bucket_cmp(&b, min_heap_peek(&ca->heap), ca)) {
sectors_to_move -= bucket_heap_top(ca); sectors_to_move -= bucket_heap_top(ca);
sectors_to_move += GC_SECTORS_USED(b); sectors_to_move += GC_SECTORS_USED(b);
ca->heap.data[0] = b; ca->heap.data[0] = b;
heap_sift(&ca->heap, 0, bucket_cmp); min_heap_sift_down(&ca->heap, 0, &callbacks, NULL);
} }
} }
while (sectors_to_move > reserve_sectors) { while (sectors_to_move > reserve_sectors) {
heap_pop(&ca->heap, b, bucket_cmp); if (ca->heap.nr) {
b = min_heap_peek(&ca->heap)[0];
min_heap_pop(&ca->heap, &callbacks, NULL);
}
sectors_to_move -= GC_SECTORS_USED(b); sectors_to_move -= GC_SECTORS_USED(b);
} }
while (heap_pop(&ca->heap, b, bucket_cmp)) while (ca->heap.nr) {
b = min_heap_peek(&ca->heap)[0];
min_heap_pop(&ca->heap, &callbacks, NULL);
SET_GC_MOVE(b, 1); SET_GC_MOVE(b, 1);
}
mutex_unlock(&c->bucket_lock); mutex_unlock(&c->bucket_lock);

View File

@ -1907,8 +1907,7 @@ struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
INIT_LIST_HEAD(&c->btree_cache_freed); INIT_LIST_HEAD(&c->btree_cache_freed);
INIT_LIST_HEAD(&c->data_buckets); INIT_LIST_HEAD(&c->data_buckets);
iter_size = sizeof(struct btree_iter) + iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
sizeof(struct btree_iter_set); sizeof(struct btree_iter_set);
c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);

View File

@ -660,7 +660,9 @@ static unsigned int bch_root_usage(struct cache_set *c)
unsigned int bytes = 0; unsigned int bytes = 0;
struct bkey *k; struct bkey *k;
struct btree *b; struct btree *b;
struct btree_iter_stack iter; struct btree_iter iter;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
goto lock_root; goto lock_root;

View File

@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0 // SPDX-License-Identifier: GPL-2.0
/* /*
* random utiility code, for bcache but in theory not specific to bcache * random utility code, for bcache but in theory not specific to bcache
* *
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc. * Copyright 2012 Google, Inc.

View File

@ -9,6 +9,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/sched/clock.h> #include <linux/sched/clock.h>
#include <linux/llist.h> #include <linux/llist.h>
#include <linux/min_heap.h>
#include <linux/ratelimit.h> #include <linux/ratelimit.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
@ -30,16 +31,10 @@ struct closure;
#endif #endif
#define DECLARE_HEAP(type, name) \
struct { \
size_t size, used; \
type *data; \
} name
#define init_heap(heap, _size, gfp) \ #define init_heap(heap, _size, gfp) \
({ \ ({ \
size_t _bytes; \ size_t _bytes; \
(heap)->used = 0; \ (heap)->nr = 0; \
(heap)->size = (_size); \ (heap)->size = (_size); \
_bytes = (heap)->size * sizeof(*(heap)->data); \ _bytes = (heap)->size * sizeof(*(heap)->data); \
(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
@ -52,64 +47,6 @@ do { \
(heap)->data = NULL; \ (heap)->data = NULL; \
} while (0) } while (0)
#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
#define heap_sift(h, i, cmp) \
do { \
size_t _r, _j = i; \
\
for (; _j * 2 + 1 < (h)->used; _j = _r) { \
_r = _j * 2 + 1; \
if (_r + 1 < (h)->used && \
cmp((h)->data[_r], (h)->data[_r + 1])) \
_r++; \
\
if (cmp((h)->data[_r], (h)->data[_j])) \
break; \
heap_swap(h, _r, _j); \
} \
} while (0)
#define heap_sift_down(h, i, cmp) \
do { \
while (i) { \
size_t p = (i - 1) / 2; \
if (cmp((h)->data[i], (h)->data[p])) \
break; \
heap_swap(h, i, p); \
i = p; \
} \
} while (0)
#define heap_add(h, d, cmp) \
({ \
bool _r = !heap_full(h); \
if (_r) { \
size_t _i = (h)->used++; \
(h)->data[_i] = d; \
\
heap_sift_down(h, _i, cmp); \
heap_sift(h, _i, cmp); \
} \
_r; \
})
#define heap_pop(h, d, cmp) \
({ \
bool _r = (h)->used; \
if (_r) { \
(d) = (h)->data[0]; \
(h)->used--; \
heap_swap(h, 0, (h)->used); \
heap_sift(h, 0, cmp); \
} \
_r; \
})
#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
#define heap_full(h) ((h)->used == (h)->size)
#define DECLARE_FIFO(type, name) \ #define DECLARE_FIFO(type, name) \
struct { \ struct { \
size_t front, back, size, mask; \ size_t front, back, size, mask; \

View File

@ -908,15 +908,16 @@ static int bch_dirty_init_thread(void *arg)
struct dirty_init_thrd_info *info = arg; struct dirty_init_thrd_info *info = arg;
struct bch_dirty_init_state *state = info->state; struct bch_dirty_init_state *state = info->state;
struct cache_set *c = state->c; struct cache_set *c = state->c;
struct btree_iter_stack iter; struct btree_iter iter;
struct bkey *k, *p; struct bkey *k, *p;
int cur_idx, prev_idx, skip_nr; int cur_idx, prev_idx, skip_nr;
k = p = NULL; k = p = NULL;
prev_idx = 0; prev_idx = 0;
bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); min_heap_init(&iter.heap, NULL, MAX_BSETS);
k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); bch_btree_iter_init(&c->root->keys, &iter, NULL);
k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
BUG_ON(!k); BUG_ON(!k);
p = k; p = k;
@ -930,7 +931,7 @@ static int bch_dirty_init_thread(void *arg)
skip_nr = cur_idx - prev_idx; skip_nr = cur_idx - prev_idx;
while (skip_nr) { while (skip_nr) {
k = bch_btree_iter_next_filter(&iter.iter, k = bch_btree_iter_next_filter(&iter,
&c->root->keys, &c->root->keys,
bch_ptr_bad); bch_ptr_bad);
if (k) if (k)
@ -979,11 +980,13 @@ void bch_sectors_dirty_init(struct bcache_device *d)
int i; int i;
struct btree *b = NULL; struct btree *b = NULL;
struct bkey *k = NULL; struct bkey *k = NULL;
struct btree_iter_stack iter; struct btree_iter iter;
struct sectors_dirty_init op; struct sectors_dirty_init op;
struct cache_set *c = d->c; struct cache_set *c = d->c;
struct bch_dirty_init_state state; struct bch_dirty_init_state state;
min_heap_init(&iter.heap, NULL, MAX_BSETS);
retry_lock: retry_lock:
b = c->root; b = c->root;
rw_lock(0, b, b->level); rw_lock(0, b, b->level);

View File

@ -51,6 +51,8 @@ struct recovery_point {
bool increment_applied; bool increment_applied;
}; };
DEFINE_MIN_HEAP(struct numbered_block_mapping, replay_heap);
struct repair_completion { struct repair_completion {
/* The completion header */ /* The completion header */
struct vdo_completion completion; struct vdo_completion completion;
@ -97,7 +99,7 @@ struct repair_completion {
* order, then original journal order. This permits efficient iteration over the journal * order, then original journal order. This permits efficient iteration over the journal
* entries in order. * entries in order.
*/ */
struct min_heap replay_heap; struct replay_heap replay_heap;
/* Fields tracking progress through the journal entries. */ /* Fields tracking progress through the journal entries. */
struct numbered_block_mapping *current_entry; struct numbered_block_mapping *current_entry;
struct numbered_block_mapping *current_unfetched_entry; struct numbered_block_mapping *current_unfetched_entry;
@ -135,7 +137,7 @@ struct repair_completion {
* to sort by slot while still ensuring we replay all entries with the same slot in the exact order * to sort by slot while still ensuring we replay all entries with the same slot in the exact order
* as they appeared in the journal. * as they appeared in the journal.
*/ */
static bool mapping_is_less_than(const void *item1, const void *item2) static bool mapping_is_less_than(const void *item1, const void *item2, void __always_unused *args)
{ {
const struct numbered_block_mapping *mapping1 = const struct numbered_block_mapping *mapping1 =
(const struct numbered_block_mapping *) item1; (const struct numbered_block_mapping *) item1;
@ -154,7 +156,7 @@ static bool mapping_is_less_than(const void *item1, const void *item2)
return 0; return 0;
} }
static void swap_mappings(void *item1, void *item2) static void swap_mappings(void *item1, void *item2, void __always_unused *args)
{ {
struct numbered_block_mapping *mapping1 = item1; struct numbered_block_mapping *mapping1 = item1;
struct numbered_block_mapping *mapping2 = item2; struct numbered_block_mapping *mapping2 = item2;
@ -163,14 +165,13 @@ static void swap_mappings(void *item1, void *item2)
} }
static const struct min_heap_callbacks repair_min_heap = { static const struct min_heap_callbacks repair_min_heap = {
.elem_size = sizeof(struct numbered_block_mapping),
.less = mapping_is_less_than, .less = mapping_is_less_than,
.swp = swap_mappings, .swp = swap_mappings,
}; };
static struct numbered_block_mapping *sort_next_heap_element(struct repair_completion *repair) static struct numbered_block_mapping *sort_next_heap_element(struct repair_completion *repair)
{ {
struct min_heap *heap = &repair->replay_heap; struct replay_heap *heap = &repair->replay_heap;
struct numbered_block_mapping *last; struct numbered_block_mapping *last;
if (heap->nr == 0) if (heap->nr == 0)
@ -181,8 +182,8 @@ static struct numbered_block_mapping *sort_next_heap_element(struct repair_compl
* restore the heap invariant, and return a pointer to the popped element. * restore the heap invariant, and return a pointer to the popped element.
*/ */
last = &repair->entries[--heap->nr]; last = &repair->entries[--heap->nr];
swap_mappings(heap->data, last); swap_mappings(heap->data, last, NULL);
min_heapify(heap, 0, &repair_min_heap); min_heap_sift_down(heap, 0, &repair_min_heap, NULL);
return last; return last;
} }
@ -1116,12 +1117,12 @@ static void recover_block_map(struct vdo_completion *completion)
* Organize the journal entries into a binary heap so we can iterate over them in sorted * Organize the journal entries into a binary heap so we can iterate over them in sorted
* order incrementally, avoiding an expensive sort call. * order incrementally, avoiding an expensive sort call.
*/ */
repair->replay_heap = (struct min_heap) { repair->replay_heap = (struct replay_heap) {
.data = repair->entries, .data = repair->entries,
.nr = repair->block_map_entry_count, .nr = repair->block_map_entry_count,
.size = repair->block_map_entry_count, .size = repair->block_map_entry_count,
}; };
min_heapify_all(&repair->replay_heap, &repair_min_heap); min_heapify_all(&repair->replay_heap, &repair_min_heap, NULL);
vdo_log_info("Replaying %zu recovery entries into block map", vdo_log_info("Replaying %zu recovery entries into block map",
repair->block_map_entry_count); repair->block_map_entry_count);

View File

@ -3288,7 +3288,8 @@ int vdo_release_block_reference(struct block_allocator *allocator,
* Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements
* before larger ones. * before larger ones.
*/ */
static bool slab_status_is_less_than(const void *item1, const void *item2) static bool slab_status_is_less_than(const void *item1, const void *item2,
void __always_unused *args)
{ {
const struct slab_status *info1 = item1; const struct slab_status *info1 = item1;
const struct slab_status *info2 = item2; const struct slab_status *info2 = item2;
@ -3300,7 +3301,7 @@ static bool slab_status_is_less_than(const void *item1, const void *item2)
return info1->slab_number < info2->slab_number; return info1->slab_number < info2->slab_number;
} }
static void swap_slab_statuses(void *item1, void *item2) static void swap_slab_statuses(void *item1, void *item2, void __always_unused *args)
{ {
struct slab_status *info1 = item1; struct slab_status *info1 = item1;
struct slab_status *info2 = item2; struct slab_status *info2 = item2;
@ -3309,7 +3310,6 @@ static void swap_slab_statuses(void *item1, void *item2)
} }
static const struct min_heap_callbacks slab_status_min_heap = { static const struct min_heap_callbacks slab_status_min_heap = {
.elem_size = sizeof(struct slab_status),
.less = slab_status_is_less_than, .less = slab_status_is_less_than,
.swp = swap_slab_statuses, .swp = swap_slab_statuses,
}; };
@ -3509,7 +3509,7 @@ static int get_slab_statuses(struct block_allocator *allocator,
static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator) static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator)
{ {
struct slab_status current_slab_status; struct slab_status current_slab_status;
struct min_heap heap; DEFINE_MIN_HEAP(struct slab_status, heap) heap;
int result; int result;
struct slab_status *slab_statuses; struct slab_status *slab_statuses;
struct slab_depot *depot = allocator->depot; struct slab_depot *depot = allocator->depot;
@ -3521,12 +3521,12 @@ static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator
return result; return result;
/* Sort the slabs by cleanliness, then by emptiness hint. */ /* Sort the slabs by cleanliness, then by emptiness hint. */
heap = (struct min_heap) { heap = (struct heap) {
.data = slab_statuses, .data = slab_statuses,
.nr = allocator->slab_count, .nr = allocator->slab_count,
.size = allocator->slab_count, .size = allocator->slab_count,
}; };
min_heapify_all(&heap, &slab_status_min_heap); min_heapify_all(&heap, &slab_status_min_heap, NULL);
while (heap.nr > 0) { while (heap.nr > 0) {
bool high_priority; bool high_priority;
@ -3534,7 +3534,7 @@ static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator
struct slab_journal *journal; struct slab_journal *journal;
current_slab_status = slab_statuses[0]; current_slab_status = slab_statuses[0];
min_heap_pop(&heap, &slab_status_min_heap); min_heap_pop(&heap, &slab_status_min_heap, NULL);
slab = depot->slabs[current_slab_status.slab_number]; slab = depot->slabs[current_slab_status.slab_number];
if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) || if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) ||

View File

@ -1286,7 +1286,7 @@ int most_register_interface(struct most_interface *iface)
!iface->poison_channel || (iface->num_channels > MAX_CHANNELS)) !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
return -EINVAL; return -EINVAL;
id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL); id = ida_alloc(&mdev_id, GFP_KERNEL);
if (id < 0) { if (id < 0) {
dev_err(iface->dev, "Failed to allocate device ID\n"); dev_err(iface->dev, "Failed to allocate device ID\n");
return id; return id;
@ -1294,7 +1294,7 @@ int most_register_interface(struct most_interface *iface)
iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL); iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
if (!iface->p) { if (!iface->p) {
ida_simple_remove(&mdev_id, id); ida_free(&mdev_id, id);
return -ENOMEM; return -ENOMEM;
} }
@ -1308,7 +1308,7 @@ int most_register_interface(struct most_interface *iface)
dev_err(iface->dev, "Failed to register interface device\n"); dev_err(iface->dev, "Failed to register interface device\n");
kfree(iface->p); kfree(iface->p);
put_device(iface->dev); put_device(iface->dev);
ida_simple_remove(&mdev_id, id); ida_free(&mdev_id, id);
return -ENOMEM; return -ENOMEM;
} }
@ -1366,7 +1366,7 @@ int most_register_interface(struct most_interface *iface)
} }
kfree(iface->p); kfree(iface->p);
device_unregister(iface->dev); device_unregister(iface->dev);
ida_simple_remove(&mdev_id, id); ida_free(&mdev_id, id);
return -ENOMEM; return -ENOMEM;
} }
EXPORT_SYMBOL_GPL(most_register_interface); EXPORT_SYMBOL_GPL(most_register_interface);
@ -1397,7 +1397,7 @@ void most_deregister_interface(struct most_interface *iface)
device_unregister(&c->dev); device_unregister(&c->dev);
} }
ida_simple_remove(&mdev_id, iface->p->dev_id); ida_free(&mdev_id, iface->p->dev_id);
kfree(iface->p); kfree(iface->p);
device_unregister(iface->dev); device_unregister(iface->dev);
} }

View File

@ -100,7 +100,7 @@ static void destroy_cdev(struct comp_channel *c)
static void destroy_channel(struct comp_channel *c) static void destroy_channel(struct comp_channel *c)
{ {
ida_simple_remove(&comp.minor_id, MINOR(c->devno)); ida_free(&comp.minor_id, MINOR(c->devno));
kfifo_free(&c->fifo); kfifo_free(&c->fifo);
kfree(c); kfree(c);
} }
@ -425,7 +425,7 @@ static int comp_probe(struct most_interface *iface, int channel_id,
if (c) if (c)
return -EEXIST; return -EEXIST;
current_minor = ida_simple_get(&comp.minor_id, 0, 0, GFP_KERNEL); current_minor = ida_alloc(&comp.minor_id, GFP_KERNEL);
if (current_minor < 0) if (current_minor < 0)
return current_minor; return current_minor;
@ -472,7 +472,7 @@ static int comp_probe(struct most_interface *iface, int channel_id,
err_free_c: err_free_c:
kfree(c); kfree(c);
err_remove_ida: err_remove_ida:
ida_simple_remove(&comp.minor_id, current_minor); ida_free(&comp.minor_id, current_minor);
return retval; return retval;
} }

View File

@ -229,7 +229,7 @@ struct acx_rx_msdu_lifetime {
* === ========== * === ==========
* 31:12 Reserved - Always equal to 0. * 31:12 Reserved - Always equal to 0.
* 11 Association - When set, the WiLink receives all association * 11 Association - When set, the WiLink receives all association
* related frames (association request/response, reassocation * related frames (association request/response, reassociation
* request/response, and disassociation). When clear, these frames * request/response, and disassociation). When clear, these frames
* are discarded. * are discarded.
* 10 Auth/De auth - When set, the WiLink receives all authentication * 10 Auth/De auth - When set, the WiLink receives all authentication

View File

@ -2286,7 +2286,7 @@ static bool qedf_process_completions(struct qedf_fastpath *fp)
* on. * on.
*/ */
if (!io_req) if (!io_req)
/* If there is not io_req assocated with this CQE /* If there is not io_req associated with this CQE
* just queue it on CPU 0 * just queue it on CPU 0
*/ */
cpu = 0; cpu = 0;

View File

@ -979,7 +979,7 @@ unsigned int OnAssocReq(struct adapter *padapter, union recv_frame *precv_frame)
left = pkt_len - (sizeof(struct ieee80211_hdr_3addr) + ie_offset); left = pkt_len - (sizeof(struct ieee80211_hdr_3addr) + ie_offset);
pos = pframe + (sizeof(struct ieee80211_hdr_3addr) + ie_offset); pos = pframe + (sizeof(struct ieee80211_hdr_3addr) + ie_offset);
/* check if this stat has been successfully authenticated/assocated */ /* check if this stat has been successfully authenticated/associated */
if (!((pstat->state) & WIFI_FW_AUTH_SUCCESS)) { if (!((pstat->state) & WIFI_FW_AUTH_SUCCESS)) {
if (!((pstat->state) & WIFI_FW_ASSOC_SUCCESS)) { if (!((pstat->state) & WIFI_FW_ASSOC_SUCCESS)) {
status = WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA; status = WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA;

View File

@ -452,7 +452,7 @@ void LPS_Enter(struct adapter *padapter, const char *msg)
if (hal_btcoex_IsBtControlLps(padapter)) if (hal_btcoex_IsBtControlLps(padapter))
return; return;
/* Skip lps enter request if number of assocated adapters is not 1 */ /* Skip lps enter request if number of associated adapters is not 1 */
if (check_fwstate(&(dvobj->padapters->mlmepriv), WIFI_ASOC_STATE)) if (check_fwstate(&(dvobj->padapters->mlmepriv), WIFI_ASOC_STATE))
n_assoc_iface++; n_assoc_iface++;
if (n_assoc_iface != 1) if (n_assoc_iface != 1)

View File

@ -6,15 +6,29 @@
#include <linux/kthread.h> #include <linux/kthread.h>
#include <linux/preempt.h> #include <linux/preempt.h>
static inline long io_timer_cmp(io_timer_heap *h, static inline bool io_timer_cmp(const void *l, const void *r, void __always_unused *args)
struct io_timer *l,
struct io_timer *r)
{ {
return l->expire - r->expire; struct io_timer **_l = (struct io_timer **)l;
struct io_timer **_r = (struct io_timer **)r;
return (*_l)->expire < (*_r)->expire;
}
static inline void io_timer_swp(void *l, void *r, void __always_unused *args)
{
struct io_timer **_l = (struct io_timer **)l;
struct io_timer **_r = (struct io_timer **)r;
swap(*_l, *_r);
} }
void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer) void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer)
{ {
const struct min_heap_callbacks callbacks = {
.less = io_timer_cmp,
.swp = io_timer_swp,
};
spin_lock(&clock->timer_lock); spin_lock(&clock->timer_lock);
if (time_after_eq64((u64) atomic64_read(&clock->now), timer->expire)) { if (time_after_eq64((u64) atomic64_read(&clock->now), timer->expire)) {
@ -23,22 +37,27 @@ void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer)
return; return;
} }
for (size_t i = 0; i < clock->timers.used; i++) for (size_t i = 0; i < clock->timers.nr; i++)
if (clock->timers.data[i] == timer) if (clock->timers.data[i] == timer)
goto out; goto out;
BUG_ON(!heap_add(&clock->timers, timer, io_timer_cmp, NULL)); BUG_ON(!min_heap_push(&clock->timers, &timer, &callbacks, NULL));
out: out:
spin_unlock(&clock->timer_lock); spin_unlock(&clock->timer_lock);
} }
void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer) void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer)
{ {
const struct min_heap_callbacks callbacks = {
.less = io_timer_cmp,
.swp = io_timer_swp,
};
spin_lock(&clock->timer_lock); spin_lock(&clock->timer_lock);
for (size_t i = 0; i < clock->timers.used; i++) for (size_t i = 0; i < clock->timers.nr; i++)
if (clock->timers.data[i] == timer) { if (clock->timers.data[i] == timer) {
heap_del(&clock->timers, i, io_timer_cmp, NULL); min_heap_del(&clock->timers, i, &callbacks, NULL);
break; break;
} }
@ -123,10 +142,17 @@ void bch2_kthread_io_clock_wait(struct io_clock *clock,
static struct io_timer *get_expired_timer(struct io_clock *clock, u64 now) static struct io_timer *get_expired_timer(struct io_clock *clock, u64 now)
{ {
struct io_timer *ret = NULL; struct io_timer *ret = NULL;
const struct min_heap_callbacks callbacks = {
.less = io_timer_cmp,
.swp = io_timer_swp,
};
if (clock->timers.nr &&
time_after_eq64(now, clock->timers.data[0]->expire)) {
ret = *min_heap_peek(&clock->timers);
min_heap_pop(&clock->timers, &callbacks, NULL);
}
if (clock->timers.used &&
time_after_eq64(now, clock->timers.data[0]->expire))
heap_pop(&clock->timers, ret, io_timer_cmp, NULL);
return ret; return ret;
} }
@ -150,7 +176,7 @@ void bch2_io_timers_to_text(struct printbuf *out, struct io_clock *clock)
printbuf_tabstop_push(out, 40); printbuf_tabstop_push(out, 40);
prt_printf(out, "current time:\t%llu\n", now); prt_printf(out, "current time:\t%llu\n", now);
for (unsigned i = 0; i < clock->timers.used; i++) for (unsigned i = 0; i < clock->timers.nr; i++)
prt_printf(out, "%ps %ps:\t%llu\n", prt_printf(out, "%ps %ps:\t%llu\n",
clock->timers.data[i]->fn, clock->timers.data[i]->fn,
clock->timers.data[i]->fn2, clock->timers.data[i]->fn2,

View File

@ -24,7 +24,7 @@ struct io_timer {
/* Amount to buffer up on a percpu counter */ /* Amount to buffer up on a percpu counter */
#define IO_CLOCK_PCPU_SECTORS 128 #define IO_CLOCK_PCPU_SECTORS 128
typedef HEAP(struct io_timer *) io_timer_heap; typedef DEFINE_MIN_HEAP(struct io_timer *, io_timer_heap) io_timer_heap;
struct io_clock { struct io_clock {
atomic64_t now; atomic64_t now;

View File

@ -901,8 +901,8 @@ static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp)
mutex_lock(&c->ec_stripes_heap_lock); mutex_lock(&c->ec_stripes_heap_lock);
if (n.size > h->size) { if (n.size > h->size) {
memcpy(n.data, h->data, h->used * sizeof(h->data[0])); memcpy(n.data, h->data, h->nr * sizeof(h->data[0]));
n.used = h->used; n.nr = h->nr;
swap(*h, n); swap(*h, n);
} }
mutex_unlock(&c->ec_stripes_heap_lock); mutex_unlock(&c->ec_stripes_heap_lock);
@ -993,7 +993,7 @@ static u64 stripe_idx_to_delete(struct bch_fs *c)
lockdep_assert_held(&c->ec_stripes_heap_lock); lockdep_assert_held(&c->ec_stripes_heap_lock);
if (h->used && if (h->nr &&
h->data[0].blocks_nonempty == 0 && h->data[0].blocks_nonempty == 0 &&
!bch2_stripe_is_open(c, h->data[0].idx)) !bch2_stripe_is_open(c, h->data[0].idx))
return h->data[0].idx; return h->data[0].idx;
@ -1001,14 +1001,6 @@ static u64 stripe_idx_to_delete(struct bch_fs *c)
return 0; return 0;
} }
static inline int ec_stripes_heap_cmp(ec_stripes_heap *h,
struct ec_stripe_heap_entry l,
struct ec_stripe_heap_entry r)
{
return ((l.blocks_nonempty > r.blocks_nonempty) -
(l.blocks_nonempty < r.blocks_nonempty));
}
static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h, static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h,
size_t i) size_t i)
{ {
@ -1017,39 +1009,71 @@ static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h,
genradix_ptr(&c->stripes, h->data[i].idx)->heap_idx = i; genradix_ptr(&c->stripes, h->data[i].idx)->heap_idx = i;
} }
static inline bool ec_stripes_heap_cmp(const void *l, const void *r, void __always_unused *args)
{
struct ec_stripe_heap_entry *_l = (struct ec_stripe_heap_entry *)l;
struct ec_stripe_heap_entry *_r = (struct ec_stripe_heap_entry *)r;
return ((_l->blocks_nonempty > _r->blocks_nonempty) <
(_l->blocks_nonempty < _r->blocks_nonempty));
}
static inline void ec_stripes_heap_swap(void *l, void *r, void *h)
{
struct ec_stripe_heap_entry *_l = (struct ec_stripe_heap_entry *)l;
struct ec_stripe_heap_entry *_r = (struct ec_stripe_heap_entry *)r;
ec_stripes_heap *_h = (ec_stripes_heap *)h;
size_t i = _l - _h->data;
size_t j = _r - _h->data;
swap(*_l, *_r);
ec_stripes_heap_set_backpointer(_h, i);
ec_stripes_heap_set_backpointer(_h, j);
}
static void heap_verify_backpointer(struct bch_fs *c, size_t idx) static void heap_verify_backpointer(struct bch_fs *c, size_t idx)
{ {
ec_stripes_heap *h = &c->ec_stripes_heap; ec_stripes_heap *h = &c->ec_stripes_heap;
struct stripe *m = genradix_ptr(&c->stripes, idx); struct stripe *m = genradix_ptr(&c->stripes, idx);
BUG_ON(m->heap_idx >= h->used); BUG_ON(m->heap_idx >= h->nr);
BUG_ON(h->data[m->heap_idx].idx != idx); BUG_ON(h->data[m->heap_idx].idx != idx);
} }
void bch2_stripes_heap_del(struct bch_fs *c, void bch2_stripes_heap_del(struct bch_fs *c,
struct stripe *m, size_t idx) struct stripe *m, size_t idx)
{ {
const struct min_heap_callbacks callbacks = {
.less = ec_stripes_heap_cmp,
.swp = ec_stripes_heap_swap,
};
mutex_lock(&c->ec_stripes_heap_lock); mutex_lock(&c->ec_stripes_heap_lock);
heap_verify_backpointer(c, idx); heap_verify_backpointer(c, idx);
heap_del(&c->ec_stripes_heap, m->heap_idx, min_heap_del(&c->ec_stripes_heap, m->heap_idx, &callbacks, &c->ec_stripes_heap);
ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
mutex_unlock(&c->ec_stripes_heap_lock); mutex_unlock(&c->ec_stripes_heap_lock);
} }
void bch2_stripes_heap_insert(struct bch_fs *c, void bch2_stripes_heap_insert(struct bch_fs *c,
struct stripe *m, size_t idx) struct stripe *m, size_t idx)
{ {
mutex_lock(&c->ec_stripes_heap_lock); const struct min_heap_callbacks callbacks = {
BUG_ON(heap_full(&c->ec_stripes_heap)); .less = ec_stripes_heap_cmp,
.swp = ec_stripes_heap_swap,
};
heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) { mutex_lock(&c->ec_stripes_heap_lock);
BUG_ON(min_heap_full(&c->ec_stripes_heap));
genradix_ptr(&c->stripes, idx)->heap_idx = c->ec_stripes_heap.nr;
min_heap_push(&c->ec_stripes_heap, &((struct ec_stripe_heap_entry) {
.idx = idx, .idx = idx,
.blocks_nonempty = m->blocks_nonempty, .blocks_nonempty = m->blocks_nonempty,
}), }),
ec_stripes_heap_cmp, &callbacks,
ec_stripes_heap_set_backpointer); &c->ec_stripes_heap);
heap_verify_backpointer(c, idx); heap_verify_backpointer(c, idx);
mutex_unlock(&c->ec_stripes_heap_lock); mutex_unlock(&c->ec_stripes_heap_lock);
@ -1058,6 +1082,10 @@ void bch2_stripes_heap_insert(struct bch_fs *c,
void bch2_stripes_heap_update(struct bch_fs *c, void bch2_stripes_heap_update(struct bch_fs *c,
struct stripe *m, size_t idx) struct stripe *m, size_t idx)
{ {
const struct min_heap_callbacks callbacks = {
.less = ec_stripes_heap_cmp,
.swp = ec_stripes_heap_swap,
};
ec_stripes_heap *h = &c->ec_stripes_heap; ec_stripes_heap *h = &c->ec_stripes_heap;
bool do_deletes; bool do_deletes;
size_t i; size_t i;
@ -1068,10 +1096,8 @@ void bch2_stripes_heap_update(struct bch_fs *c,
h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty; h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty;
i = m->heap_idx; i = m->heap_idx;
heap_sift_up(h, i, ec_stripes_heap_cmp, min_heap_sift_up(h, i, &callbacks, &c->ec_stripes_heap);
ec_stripes_heap_set_backpointer); min_heap_sift_down(h, i, &callbacks, &c->ec_stripes_heap);
heap_sift_down(h, i, ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
heap_verify_backpointer(c, idx); heap_verify_backpointer(c, idx);
@ -1864,7 +1890,7 @@ static s64 get_existing_stripe(struct bch_fs *c,
return -1; return -1;
mutex_lock(&c->ec_stripes_heap_lock); mutex_lock(&c->ec_stripes_heap_lock);
for (heap_idx = 0; heap_idx < h->used; heap_idx++) { for (heap_idx = 0; heap_idx < h->nr; heap_idx++) {
/* No blocks worth reusing, stripe will just be deleted: */ /* No blocks worth reusing, stripe will just be deleted: */
if (!h->data[heap_idx].blocks_nonempty) if (!h->data[heap_idx].blocks_nonempty)
continue; continue;
@ -2195,7 +2221,7 @@ void bch2_stripes_heap_to_text(struct printbuf *out, struct bch_fs *c)
size_t i; size_t i;
mutex_lock(&c->ec_stripes_heap_lock); mutex_lock(&c->ec_stripes_heap_lock);
for (i = 0; i < min_t(size_t, h->used, 50); i++) { for (i = 0; i < min_t(size_t, h->nr, 50); i++) {
m = genradix_ptr(&c->stripes, h->data[i].idx); m = genradix_ptr(&c->stripes, h->data[i].idx);
prt_printf(out, "%zu %u/%u+%u", h->data[i].idx, prt_printf(out, "%zu %u/%u+%u", h->data[i].idx,

View File

@ -36,6 +36,6 @@ struct ec_stripe_heap_entry {
unsigned blocks_nonempty; unsigned blocks_nonempty;
}; };
typedef HEAP(struct ec_stripe_heap_entry) ec_stripes_heap; typedef DEFINE_MIN_HEAP(struct ec_stripe_heap_entry, ec_stripes_heap) ec_stripes_heap;
#endif /* _BCACHEFS_EC_TYPES_H */ #endif /* _BCACHEFS_EC_TYPES_H */

View File

@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0 // SPDX-License-Identifier: GPL-2.0
/* /*
* random utiility code, for bcache but in theory not specific to bcache * random utility code, for bcache but in theory not specific to bcache
* *
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc. * Copyright 2012 Google, Inc.

View File

@ -8,6 +8,7 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/freezer.h> #include <linux/freezer.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/min_heap.h>
#include <linux/sched/clock.h> #include <linux/sched/clock.h>
#include <linux/llist.h> #include <linux/llist.h>
#include <linux/log2.h> #include <linux/log2.h>
@ -54,17 +55,9 @@ static inline size_t buf_pages(void *p, size_t len)
PAGE_SIZE); PAGE_SIZE);
} }
#define HEAP(type) \
struct { \
size_t size, used; \
type *data; \
}
#define DECLARE_HEAP(type, name) HEAP(type) name
#define init_heap(heap, _size, gfp) \ #define init_heap(heap, _size, gfp) \
({ \ ({ \
(heap)->used = 0; \ (heap)->nr = 0; \
(heap)->size = (_size); \ (heap)->size = (_size); \
(heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\ (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
(gfp)); \ (gfp)); \
@ -76,113 +69,6 @@ do { \
(heap)->data = NULL; \ (heap)->data = NULL; \
} while (0) } while (0)
#define heap_set_backpointer(h, i, _fn) \
do { \
void (*fn)(typeof(h), size_t) = _fn; \
if (fn) \
fn(h, i); \
} while (0)
#define heap_swap(h, i, j, set_backpointer) \
do { \
swap((h)->data[i], (h)->data[j]); \
heap_set_backpointer(h, i, set_backpointer); \
heap_set_backpointer(h, j, set_backpointer); \
} while (0)
#define heap_peek(h) \
({ \
EBUG_ON(!(h)->used); \
(h)->data[0]; \
})
#define heap_full(h) ((h)->used == (h)->size)
#define heap_sift_down(h, i, cmp, set_backpointer) \
do { \
size_t _c, _j = i; \
\
for (; _j * 2 + 1 < (h)->used; _j = _c) { \
_c = _j * 2 + 1; \
if (_c + 1 < (h)->used && \
cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \
_c++; \
\
if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \
break; \
heap_swap(h, _c, _j, set_backpointer); \
} \
} while (0)
#define heap_sift_up(h, i, cmp, set_backpointer) \
do { \
while (i) { \
size_t p = (i - 1) / 2; \
if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \
break; \
heap_swap(h, i, p, set_backpointer); \
i = p; \
} \
} while (0)
#define __heap_add(h, d, cmp, set_backpointer) \
({ \
size_t _i = (h)->used++; \
(h)->data[_i] = d; \
heap_set_backpointer(h, _i, set_backpointer); \
\
heap_sift_up(h, _i, cmp, set_backpointer); \
_i; \
})
#define heap_add(h, d, cmp, set_backpointer) \
({ \
bool _r = !heap_full(h); \
if (_r) \
__heap_add(h, d, cmp, set_backpointer); \
_r; \
})
#define heap_add_or_replace(h, new, cmp, set_backpointer) \
do { \
if (!heap_add(h, new, cmp, set_backpointer) && \
cmp(h, new, heap_peek(h)) >= 0) { \
(h)->data[0] = new; \
heap_set_backpointer(h, 0, set_backpointer); \
heap_sift_down(h, 0, cmp, set_backpointer); \
} \
} while (0)
#define heap_del(h, i, cmp, set_backpointer) \
do { \
size_t _i = (i); \
\
BUG_ON(_i >= (h)->used); \
(h)->used--; \
if ((_i) < (h)->used) { \
heap_swap(h, _i, (h)->used, set_backpointer); \
heap_sift_up(h, _i, cmp, set_backpointer); \
heap_sift_down(h, _i, cmp, set_backpointer); \
} \
} while (0)
#define heap_pop(h, d, cmp, set_backpointer) \
({ \
bool _r = (h)->used; \
if (_r) { \
(d) = (h)->data[0]; \
heap_del(h, 0, cmp, set_backpointer); \
} \
_r; \
})
#define heap_resort(heap, cmp, set_backpointer) \
do { \
ssize_t _i; \
for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \
heap_sift_down(heap, _i, cmp, set_backpointer); \
} while (0)
#define ANYSINT_MAX(t) \ #define ANYSINT_MAX(t) \
((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)

View File

@ -361,17 +361,16 @@ static int format_corename(struct core_name *cn, struct coredump_params *cprm,
return ispipe; return ispipe;
} }
static int zap_process(struct task_struct *start, int exit_code) static int zap_process(struct signal_struct *signal, int exit_code)
{ {
struct task_struct *t; struct task_struct *t;
int nr = 0; int nr = 0;
/* Allow SIGKILL, see prepare_signal() */ signal->flags = SIGNAL_GROUP_EXIT;
start->signal->flags = SIGNAL_GROUP_EXIT; signal->group_exit_code = exit_code;
start->signal->group_exit_code = exit_code; signal->group_stop_count = 0;
start->signal->group_stop_count = 0;
for_each_thread(start, t) { __for_each_thread(signal, t) {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
if (t != current && !(t->flags & PF_POSTCOREDUMP)) { if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
sigaddset(&t->pending.signal, SIGKILL); sigaddset(&t->pending.signal, SIGKILL);
@ -391,8 +390,9 @@ static int zap_threads(struct task_struct *tsk,
spin_lock_irq(&tsk->sighand->siglock); spin_lock_irq(&tsk->sighand->siglock);
if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
/* Allow SIGKILL, see prepare_signal() */
signal->core_state = core_state; signal->core_state = core_state;
nr = zap_process(tsk, exit_code); nr = zap_process(signal, exit_code);
clear_tsk_thread_flag(tsk, TIF_SIGPENDING); clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
tsk->flags |= PF_DUMPCORE; tsk->flags |= PF_DUMPCORE;
atomic_set(&core_state->nr_threads, nr); atomic_set(&core_state->nr_threads, nr);

View File

@ -136,7 +136,7 @@ static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
#define nilfs_cnt32_ge(a, b) \ #define nilfs_cnt32_ge(a, b) \
(typecheck(__u32, a) && typecheck(__u32, b) && \ (typecheck(__u32, a) && typecheck(__u32, b) && \
((__s32)(a) - (__s32)(b) >= 0)) ((__s32)((a) - (b)) >= 0))
static int nilfs_prepare_segment_lock(struct super_block *sb, static int nilfs_prepare_segment_lock(struct super_block *sb,
struct nilfs_transaction_info *ti) struct nilfs_transaction_info *ti)
@ -1639,41 +1639,30 @@ static void nilfs_begin_folio_io(struct folio *folio)
folio_unlock(folio); folio_unlock(folio);
} }
static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) /**
* nilfs_prepare_write_logs - prepare to write logs
* @logs: logs to prepare for writing
* @seed: checksum seed value
*
* nilfs_prepare_write_logs() adds checksums and prepares the block
* buffers/folios for writing logs. In order to stabilize folios of
* memory-mapped file blocks by putting them in writeback state before
* calculating the checksums, first prepare to write payload blocks other
* than segment summary and super root blocks in which the checksums will
* be embedded.
*/
static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
{ {
struct nilfs_segment_buffer *segbuf; struct nilfs_segment_buffer *segbuf;
struct folio *bd_folio = NULL, *fs_folio = NULL; struct folio *bd_folio = NULL, *fs_folio = NULL;
struct buffer_head *bh;
list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { /* Prepare to write payload blocks */
struct buffer_head *bh; list_for_each_entry(segbuf, logs, sb_list) {
list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
b_assoc_buffers) {
if (bh->b_folio != bd_folio) {
if (bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
}
bd_folio = bh->b_folio;
}
}
list_for_each_entry(bh, &segbuf->sb_payload_buffers, list_for_each_entry(bh, &segbuf->sb_payload_buffers,
b_assoc_buffers) { b_assoc_buffers) {
if (bh == segbuf->sb_super_root) { if (bh == segbuf->sb_super_root)
if (bh->b_folio != bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
bd_folio = bh->b_folio;
}
break; break;
}
set_buffer_async_write(bh); set_buffer_async_write(bh);
if (bh->b_folio != fs_folio) { if (bh->b_folio != fs_folio) {
nilfs_begin_folio_io(fs_folio); nilfs_begin_folio_io(fs_folio);
@ -1681,6 +1670,42 @@ static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
} }
} }
} }
nilfs_begin_folio_io(fs_folio);
nilfs_add_checksums_on_logs(logs, seed);
/* Prepare to write segment summary blocks */
list_for_each_entry(segbuf, logs, sb_list) {
list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
b_assoc_buffers) {
mark_buffer_dirty(bh);
if (bh->b_folio == bd_folio)
continue;
if (bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
}
bd_folio = bh->b_folio;
}
}
/* Prepare to write super root block */
bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
if (bh) {
mark_buffer_dirty(bh);
if (bh->b_folio != bd_folio) {
folio_lock(bd_folio);
folio_wait_writeback(bd_folio);
folio_clear_dirty_for_io(bd_folio);
folio_start_writeback(bd_folio);
folio_unlock(bd_folio);
bd_folio = bh->b_folio;
}
}
if (bd_folio) { if (bd_folio) {
folio_lock(bd_folio); folio_lock(bd_folio);
folio_wait_writeback(bd_folio); folio_wait_writeback(bd_folio);
@ -1688,7 +1713,6 @@ static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
folio_start_writeback(bd_folio); folio_start_writeback(bd_folio);
folio_unlock(bd_folio); folio_unlock(bd_folio);
} }
nilfs_begin_folio_io(fs_folio);
} }
static int nilfs_segctor_write(struct nilfs_sc_info *sci, static int nilfs_segctor_write(struct nilfs_sc_info *sci,
@ -2070,10 +2094,7 @@ static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
/* Write partial segments */ /* Write partial segments */
nilfs_segctor_prepare_write(sci); nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
nilfs_add_checksums_on_logs(&sci->sc_segbufs,
nilfs->ns_crc_seed);
err = nilfs_segctor_write(sci, nilfs); err = nilfs_segctor_write(sci, nilfs);
if (unlikely(err)) if (unlikely(err))
@ -2824,8 +2845,6 @@ int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
if (!nilfs->ns_writer) if (!nilfs->ns_writer)
return -ENOMEM; return -ENOMEM;
inode_attach_wb(nilfs->ns_bdev->bd_mapping->host, NULL);
err = nilfs_segctor_start_thread(nilfs->ns_writer); err = nilfs_segctor_start_thread(nilfs->ns_writer);
if (unlikely(err)) if (unlikely(err))
nilfs_detach_log_writer(sb); nilfs_detach_log_writer(sb);

View File

@ -56,7 +56,7 @@ static void nilfs_##name##_attr_release(struct kobject *kobj) \
sg_##name##_kobj); \ sg_##name##_kobj); \
complete(&subgroups->sg_##name##_kobj_unregister); \ complete(&subgroups->sg_##name##_kobj_unregister); \
} \ } \
static struct kobj_type nilfs_##name##_ktype = { \ static const struct kobj_type nilfs_##name##_ktype = { \
.default_groups = nilfs_##name##_groups, \ .default_groups = nilfs_##name##_groups, \
.sysfs_ops = &nilfs_##name##_attr_ops, \ .sysfs_ops = &nilfs_##name##_attr_ops, \
.release = nilfs_##name##_attr_release, \ .release = nilfs_##name##_attr_release, \
@ -166,7 +166,7 @@ static const struct sysfs_ops nilfs_snapshot_attr_ops = {
.store = nilfs_snapshot_attr_store, .store = nilfs_snapshot_attr_store,
}; };
static struct kobj_type nilfs_snapshot_ktype = { static const struct kobj_type nilfs_snapshot_ktype = {
.default_groups = nilfs_snapshot_groups, .default_groups = nilfs_snapshot_groups,
.sysfs_ops = &nilfs_snapshot_attr_ops, .sysfs_ops = &nilfs_snapshot_attr_ops,
.release = nilfs_snapshot_attr_release, .release = nilfs_snapshot_attr_release,
@ -967,7 +967,7 @@ static const struct sysfs_ops nilfs_dev_attr_ops = {
.store = nilfs_dev_attr_store, .store = nilfs_dev_attr_store,
}; };
static struct kobj_type nilfs_dev_ktype = { static const struct kobj_type nilfs_dev_ktype = {
.default_groups = nilfs_dev_groups, .default_groups = nilfs_dev_groups,
.sysfs_ops = &nilfs_dev_attr_ops, .sysfs_ops = &nilfs_dev_attr_ops,
.release = nilfs_dev_attr_release, .release = nilfs_dev_attr_release,

View File

@ -294,13 +294,16 @@ static void ocfs2_dx_dir_name_hash(struct inode *dir, const char *name, int len,
* bh passed here can be an inode block or a dir data block, depending * bh passed here can be an inode block or a dir data block, depending
* on the inode inline data flag. * on the inode inline data flag.
*/ */
static int ocfs2_check_dir_entry(struct inode * dir, static int ocfs2_check_dir_entry(struct inode *dir,
struct ocfs2_dir_entry * de, struct ocfs2_dir_entry *de,
struct buffer_head * bh, struct buffer_head *bh,
char *buf,
unsigned int size,
unsigned long offset) unsigned long offset)
{ {
const char *error_msg = NULL; const char *error_msg = NULL;
const int rlen = le16_to_cpu(de->rec_len); const int rlen = le16_to_cpu(de->rec_len);
const unsigned long next_offset = ((char *) de - buf) + rlen;
if (unlikely(rlen < OCFS2_DIR_REC_LEN(1))) if (unlikely(rlen < OCFS2_DIR_REC_LEN(1)))
error_msg = "rec_len is smaller than minimal"; error_msg = "rec_len is smaller than minimal";
@ -308,9 +311,11 @@ static int ocfs2_check_dir_entry(struct inode * dir,
error_msg = "rec_len % 4 != 0"; error_msg = "rec_len % 4 != 0";
else if (unlikely(rlen < OCFS2_DIR_REC_LEN(de->name_len))) else if (unlikely(rlen < OCFS2_DIR_REC_LEN(de->name_len)))
error_msg = "rec_len is too small for name_len"; error_msg = "rec_len is too small for name_len";
else if (unlikely( else if (unlikely(next_offset > size))
((char *) de - bh->b_data) + rlen > dir->i_sb->s_blocksize)) error_msg = "directory entry overrun";
error_msg = "directory entry across blocks"; else if (unlikely(next_offset > size - OCFS2_DIR_REC_LEN(1)) &&
next_offset != size)
error_msg = "directory entry too close to end";
if (unlikely(error_msg != NULL)) if (unlikely(error_msg != NULL))
mlog(ML_ERROR, "bad entry in directory #%llu: %s - " mlog(ML_ERROR, "bad entry in directory #%llu: %s - "
@ -352,16 +357,17 @@ static inline int ocfs2_search_dirblock(struct buffer_head *bh,
de_buf = first_de; de_buf = first_de;
dlimit = de_buf + bytes; dlimit = de_buf + bytes;
while (de_buf < dlimit) { while (de_buf < dlimit - OCFS2_DIR_MEMBER_LEN) {
/* this code is executed quadratically often */ /* this code is executed quadratically often */
/* do minimal checking `by hand' */ /* do minimal checking `by hand' */
de = (struct ocfs2_dir_entry *) de_buf; de = (struct ocfs2_dir_entry *) de_buf;
if (de_buf + namelen <= dlimit && if (de->name + namelen <= dlimit &&
ocfs2_match(namelen, name, de)) { ocfs2_match(namelen, name, de)) {
/* found a match - just to be sure, do a full check */ /* found a match - just to be sure, do a full check */
if (!ocfs2_check_dir_entry(dir, de, bh, offset)) { if (!ocfs2_check_dir_entry(dir, de, bh, first_de,
bytes, offset)) {
ret = -1; ret = -1;
goto bail; goto bail;
} }
@ -1138,7 +1144,7 @@ static int __ocfs2_delete_entry(handle_t *handle, struct inode *dir,
pde = NULL; pde = NULL;
de = (struct ocfs2_dir_entry *) first_de; de = (struct ocfs2_dir_entry *) first_de;
while (i < bytes) { while (i < bytes) {
if (!ocfs2_check_dir_entry(dir, de, bh, i)) { if (!ocfs2_check_dir_entry(dir, de, bh, first_de, bytes, i)) {
status = -EIO; status = -EIO;
mlog_errno(status); mlog_errno(status);
goto bail; goto bail;
@ -1635,7 +1641,8 @@ int __ocfs2_add_entry(handle_t *handle,
/* These checks should've already been passed by the /* These checks should've already been passed by the
* prepare function, but I guess we can leave them * prepare function, but I guess we can leave them
* here anyway. */ * here anyway. */
if (!ocfs2_check_dir_entry(dir, de, insert_bh, offset)) { if (!ocfs2_check_dir_entry(dir, de, insert_bh, data_start,
size, offset)) {
retval = -ENOENT; retval = -ENOENT;
goto bail; goto bail;
} }
@ -1774,7 +1781,8 @@ static int ocfs2_dir_foreach_blk_id(struct inode *inode,
} }
de = (struct ocfs2_dir_entry *) (data->id_data + ctx->pos); de = (struct ocfs2_dir_entry *) (data->id_data + ctx->pos);
if (!ocfs2_check_dir_entry(inode, de, di_bh, ctx->pos)) { if (!ocfs2_check_dir_entry(inode, de, di_bh, (char *)data->id_data,
i_size_read(inode), ctx->pos)) {
/* On error, skip the f_pos to the end. */ /* On error, skip the f_pos to the end. */
ctx->pos = i_size_read(inode); ctx->pos = i_size_read(inode);
break; break;
@ -1867,7 +1875,8 @@ static int ocfs2_dir_foreach_blk_el(struct inode *inode,
while (ctx->pos < i_size_read(inode) while (ctx->pos < i_size_read(inode)
&& offset < sb->s_blocksize) { && offset < sb->s_blocksize) {
de = (struct ocfs2_dir_entry *) (bh->b_data + offset); de = (struct ocfs2_dir_entry *) (bh->b_data + offset);
if (!ocfs2_check_dir_entry(inode, de, bh, offset)) { if (!ocfs2_check_dir_entry(inode, de, bh, bh->b_data,
sb->s_blocksize, offset)) {
/* On error, skip the f_pos to the /* On error, skip the f_pos to the
next block. */ next block. */
ctx->pos = (ctx->pos | (sb->s_blocksize - 1)) + 1; ctx->pos = (ctx->pos | (sb->s_blocksize - 1)) + 1;
@ -3339,7 +3348,7 @@ static int ocfs2_find_dir_space_id(struct inode *dir, struct buffer_head *di_bh,
struct super_block *sb = dir->i_sb; struct super_block *sb = dir->i_sb;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_dir_entry *de, *last_de = NULL; struct ocfs2_dir_entry *de, *last_de = NULL;
char *de_buf, *limit; char *first_de, *de_buf, *limit;
unsigned long offset = 0; unsigned long offset = 0;
unsigned int rec_len, new_rec_len, free_space; unsigned int rec_len, new_rec_len, free_space;
@ -3352,14 +3361,16 @@ static int ocfs2_find_dir_space_id(struct inode *dir, struct buffer_head *di_bh,
else else
free_space = dir->i_sb->s_blocksize - i_size_read(dir); free_space = dir->i_sb->s_blocksize - i_size_read(dir);
de_buf = di->id2.i_data.id_data; first_de = di->id2.i_data.id_data;
de_buf = first_de;
limit = de_buf + i_size_read(dir); limit = de_buf + i_size_read(dir);
rec_len = OCFS2_DIR_REC_LEN(namelen); rec_len = OCFS2_DIR_REC_LEN(namelen);
while (de_buf < limit) { while (de_buf < limit) {
de = (struct ocfs2_dir_entry *)de_buf; de = (struct ocfs2_dir_entry *)de_buf;
if (!ocfs2_check_dir_entry(dir, de, di_bh, offset)) { if (!ocfs2_check_dir_entry(dir, de, di_bh, first_de,
i_size_read(dir), offset)) {
ret = -ENOENT; ret = -ENOENT;
goto out; goto out;
} }
@ -3441,7 +3452,8 @@ static int ocfs2_find_dir_space_el(struct inode *dir, const char *name,
/* move to next block */ /* move to next block */
de = (struct ocfs2_dir_entry *) bh->b_data; de = (struct ocfs2_dir_entry *) bh->b_data;
} }
if (!ocfs2_check_dir_entry(dir, de, bh, offset)) { if (!ocfs2_check_dir_entry(dir, de, bh, bh->b_data, blocksize,
offset)) {
status = -ENOENT; status = -ENOENT;
goto bail; goto bail;
} }

View File

@ -221,12 +221,12 @@ struct ocfs2_lock_res_ops {
*/ */
#define LOCK_TYPE_USES_LVB 0x2 #define LOCK_TYPE_USES_LVB 0x2
static struct ocfs2_lock_res_ops ocfs2_inode_rw_lops = { static const struct ocfs2_lock_res_ops ocfs2_inode_rw_lops = {
.get_osb = ocfs2_get_inode_osb, .get_osb = ocfs2_get_inode_osb,
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_inode_inode_lops = { static const struct ocfs2_lock_res_ops ocfs2_inode_inode_lops = {
.get_osb = ocfs2_get_inode_osb, .get_osb = ocfs2_get_inode_osb,
.check_downconvert = ocfs2_check_meta_downconvert, .check_downconvert = ocfs2_check_meta_downconvert,
.set_lvb = ocfs2_set_meta_lvb, .set_lvb = ocfs2_set_meta_lvb,
@ -234,50 +234,50 @@ static struct ocfs2_lock_res_ops ocfs2_inode_inode_lops = {
.flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB,
}; };
static struct ocfs2_lock_res_ops ocfs2_super_lops = { static const struct ocfs2_lock_res_ops ocfs2_super_lops = {
.flags = LOCK_TYPE_REQUIRES_REFRESH, .flags = LOCK_TYPE_REQUIRES_REFRESH,
}; };
static struct ocfs2_lock_res_ops ocfs2_rename_lops = { static const struct ocfs2_lock_res_ops ocfs2_rename_lops = {
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_nfs_sync_lops = { static const struct ocfs2_lock_res_ops ocfs2_nfs_sync_lops = {
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_trim_fs_lops = { static const struct ocfs2_lock_res_ops ocfs2_trim_fs_lops = {
.flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB,
}; };
static struct ocfs2_lock_res_ops ocfs2_orphan_scan_lops = { static const struct ocfs2_lock_res_ops ocfs2_orphan_scan_lops = {
.flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB,
}; };
static struct ocfs2_lock_res_ops ocfs2_dentry_lops = { static const struct ocfs2_lock_res_ops ocfs2_dentry_lops = {
.get_osb = ocfs2_get_dentry_osb, .get_osb = ocfs2_get_dentry_osb,
.post_unlock = ocfs2_dentry_post_unlock, .post_unlock = ocfs2_dentry_post_unlock,
.downconvert_worker = ocfs2_dentry_convert_worker, .downconvert_worker = ocfs2_dentry_convert_worker,
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_inode_open_lops = { static const struct ocfs2_lock_res_ops ocfs2_inode_open_lops = {
.get_osb = ocfs2_get_inode_osb, .get_osb = ocfs2_get_inode_osb,
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_flock_lops = { static const struct ocfs2_lock_res_ops ocfs2_flock_lops = {
.get_osb = ocfs2_get_file_osb, .get_osb = ocfs2_get_file_osb,
.flags = 0, .flags = 0,
}; };
static struct ocfs2_lock_res_ops ocfs2_qinfo_lops = { static const struct ocfs2_lock_res_ops ocfs2_qinfo_lops = {
.set_lvb = ocfs2_set_qinfo_lvb, .set_lvb = ocfs2_set_qinfo_lvb,
.get_osb = ocfs2_get_qinfo_osb, .get_osb = ocfs2_get_qinfo_osb,
.flags = LOCK_TYPE_REQUIRES_REFRESH | LOCK_TYPE_USES_LVB, .flags = LOCK_TYPE_REQUIRES_REFRESH | LOCK_TYPE_USES_LVB,
}; };
static struct ocfs2_lock_res_ops ocfs2_refcount_block_lops = { static const struct ocfs2_lock_res_ops ocfs2_refcount_block_lops = {
.check_downconvert = ocfs2_check_refcount_downconvert, .check_downconvert = ocfs2_check_refcount_downconvert,
.downconvert_worker = ocfs2_refcount_convert_worker, .downconvert_worker = ocfs2_refcount_convert_worker,
.flags = 0, .flags = 0,
@ -510,7 +510,7 @@ static inline void ocfs2_init_start_time(struct ocfs2_mask_waiter *mw)
static void ocfs2_lock_res_init_common(struct ocfs2_super *osb, static void ocfs2_lock_res_init_common(struct ocfs2_super *osb,
struct ocfs2_lock_res *res, struct ocfs2_lock_res *res,
enum ocfs2_lock_type type, enum ocfs2_lock_type type,
struct ocfs2_lock_res_ops *ops, const struct ocfs2_lock_res_ops *ops,
void *priv) void *priv)
{ {
res->l_type = type; res->l_type = type;
@ -553,7 +553,7 @@ void ocfs2_inode_lock_res_init(struct ocfs2_lock_res *res,
unsigned int generation, unsigned int generation,
struct inode *inode) struct inode *inode)
{ {
struct ocfs2_lock_res_ops *ops; const struct ocfs2_lock_res_ops *ops;
switch(type) { switch(type) {
case OCFS2_LOCK_TYPE_RW: case OCFS2_LOCK_TYPE_RW:

View File

@ -2189,8 +2189,10 @@ static int __ocfs2_prepare_orphan_dir(struct inode *orphan_dir_inode,
* @osb: ocfs2 file system * @osb: ocfs2 file system
* @ret_orphan_dir: Orphan dir inode - returned locked! * @ret_orphan_dir: Orphan dir inode - returned locked!
* @blkno: Actual block number of the inode to be inserted into orphan dir. * @blkno: Actual block number of the inode to be inserted into orphan dir.
* @name: Buffer to store the name of the orphan.
* @lookup: dir lookup result, to be passed back into functions like * @lookup: dir lookup result, to be passed back into functions like
* ocfs2_orphan_add * ocfs2_orphan_add
* @dio: Flag indicating if direct IO is being used or not.
* *
* Returns zero on success and the ret_orphan_dir, name and lookup * Returns zero on success and the ret_orphan_dir, name and lookup
* fields will be populated. * fields will be populated.

View File

@ -154,7 +154,7 @@ struct ocfs2_lock_stats {
struct ocfs2_lock_res { struct ocfs2_lock_res {
void *l_priv; void *l_priv;
struct ocfs2_lock_res_ops *l_ops; const struct ocfs2_lock_res_ops *l_ops;
struct list_head l_blocked_list; struct list_head l_blocked_list;

View File

@ -404,7 +404,7 @@ static int o2cb_cluster_this_node(struct ocfs2_cluster_connection *conn,
return 0; return 0;
} }
static struct ocfs2_stack_operations o2cb_stack_ops = { static const struct ocfs2_stack_operations o2cb_stack_ops = {
.connect = o2cb_cluster_connect, .connect = o2cb_cluster_connect,
.disconnect = o2cb_cluster_disconnect, .disconnect = o2cb_cluster_disconnect,
.this_node = o2cb_cluster_this_node, .this_node = o2cb_cluster_this_node,

View File

@ -1065,7 +1065,7 @@ static int user_cluster_this_node(struct ocfs2_cluster_connection *conn,
return 0; return 0;
} }
static struct ocfs2_stack_operations ocfs2_user_plugin_ops = { static const struct ocfs2_stack_operations ocfs2_user_plugin_ops = {
.connect = user_cluster_connect, .connect = user_cluster_connect,
.disconnect = user_cluster_disconnect, .disconnect = user_cluster_disconnect,
.this_node = user_cluster_this_node, .this_node = user_cluster_this_node,

View File

@ -223,7 +223,7 @@ struct ocfs2_stack_operations {
*/ */
struct ocfs2_stack_plugin { struct ocfs2_stack_plugin {
char *sp_name; char *sp_name;
struct ocfs2_stack_operations *sp_ops; const struct ocfs2_stack_operations *sp_ops;
struct module *sp_owner; struct module *sp_owner;
/* These are managed by the stackglue code. */ /* These are managed by the stackglue code. */

View File

@ -1062,13 +1062,13 @@ ssize_t ocfs2_listxattr(struct dentry *dentry,
return i_ret + b_ret; return i_ret + b_ret;
} }
static int ocfs2_xattr_find_entry(int name_index, static int ocfs2_xattr_find_entry(struct inode *inode, int name_index,
const char *name, const char *name,
struct ocfs2_xattr_search *xs) struct ocfs2_xattr_search *xs)
{ {
struct ocfs2_xattr_entry *entry; struct ocfs2_xattr_entry *entry;
size_t name_len; size_t name_len;
int i, cmp = 1; int i, name_offset, cmp = 1;
if (name == NULL) if (name == NULL)
return -EINVAL; return -EINVAL;
@ -1076,13 +1076,22 @@ static int ocfs2_xattr_find_entry(int name_index,
name_len = strlen(name); name_len = strlen(name);
entry = xs->here; entry = xs->here;
for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) { for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) {
if ((void *)entry >= xs->end) {
ocfs2_error(inode->i_sb, "corrupted xattr entries");
return -EFSCORRUPTED;
}
cmp = name_index - ocfs2_xattr_get_type(entry); cmp = name_index - ocfs2_xattr_get_type(entry);
if (!cmp) if (!cmp)
cmp = name_len - entry->xe_name_len; cmp = name_len - entry->xe_name_len;
if (!cmp) if (!cmp) {
cmp = memcmp(name, (xs->base + name_offset = le16_to_cpu(entry->xe_name_offset);
le16_to_cpu(entry->xe_name_offset)), if ((xs->base + name_offset + name_len) > xs->end) {
name_len); ocfs2_error(inode->i_sb,
"corrupted xattr entries");
return -EFSCORRUPTED;
}
cmp = memcmp(name, (xs->base + name_offset), name_len);
}
if (cmp == 0) if (cmp == 0)
break; break;
entry += 1; entry += 1;
@ -1166,7 +1175,7 @@ static int ocfs2_xattr_ibody_get(struct inode *inode,
xs->base = (void *)xs->header; xs->base = (void *)xs->header;
xs->here = xs->header->xh_entries; xs->here = xs->header->xh_entries;
ret = ocfs2_xattr_find_entry(name_index, name, xs); ret = ocfs2_xattr_find_entry(inode, name_index, name, xs);
if (ret) if (ret)
return ret; return ret;
size = le64_to_cpu(xs->here->xe_value_size); size = le64_to_cpu(xs->here->xe_value_size);
@ -2698,7 +2707,7 @@ static int ocfs2_xattr_ibody_find(struct inode *inode,
/* Find the named attribute. */ /* Find the named attribute. */
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) {
ret = ocfs2_xattr_find_entry(name_index, name, xs); ret = ocfs2_xattr_find_entry(inode, name_index, name, xs);
if (ret && ret != -ENODATA) if (ret && ret != -ENODATA)
return ret; return ret;
xs->not_found = ret; xs->not_found = ret;
@ -2833,7 +2842,7 @@ static int ocfs2_xattr_block_find(struct inode *inode,
xs->end = (void *)(blk_bh->b_data) + blk_bh->b_size; xs->end = (void *)(blk_bh->b_data) + blk_bh->b_size;
xs->here = xs->header->xh_entries; xs->here = xs->header->xh_entries;
ret = ocfs2_xattr_find_entry(name_index, name, xs); ret = ocfs2_xattr_find_entry(inode, name_index, name, xs);
} else } else
ret = ocfs2_xattr_index_block_find(inode, blk_bh, ret = ocfs2_xattr_index_block_find(inode, blk_bh,
name_index, name_index,

View File

@ -1540,4 +1540,5 @@ static void __exit exit_ufs_fs(void)
module_init(init_ufs_fs) module_init(init_ufs_fs)
module_exit(exit_ufs_fs) module_exit(exit_ufs_fs)
MODULE_DESCRIPTION("UFS Filesystem");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -141,14 +141,6 @@
* often happens at runtime) * often happens at runtime)
*/ */
#if defined(CONFIG_MEMORY_HOTPLUG)
#define MEM_KEEP(sec) *(.mem##sec)
#define MEM_DISCARD(sec)
#else
#define MEM_KEEP(sec)
#define MEM_DISCARD(sec) *(.mem##sec)
#endif
#ifndef CONFIG_HAVE_DYNAMIC_FTRACE_NO_PATCHABLE #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_NO_PATCHABLE
#define KEEP_PATCHABLE KEEP(*(__patchable_function_entries)) #define KEEP_PATCHABLE KEEP(*(__patchable_function_entries))
#define PATCHABLE_DISCARDS #define PATCHABLE_DISCARDS
@ -357,7 +349,6 @@
*(.data..decrypted) \ *(.data..decrypted) \
*(.ref.data) \ *(.ref.data) \
*(.data..shared_aligned) /* percpu related */ \ *(.data..shared_aligned) /* percpu related */ \
MEM_KEEP(init.data*) \
*(.data.unlikely) \ *(.data.unlikely) \
__start_once = .; \ __start_once = .; \
*(.data.once) \ *(.data.once) \
@ -542,7 +533,6 @@
/* __*init sections */ \ /* __*init sections */ \
__init_rodata : AT(ADDR(__init_rodata) - LOAD_OFFSET) { \ __init_rodata : AT(ADDR(__init_rodata) - LOAD_OFFSET) { \
*(.ref.rodata) \ *(.ref.rodata) \
MEM_KEEP(init.rodata) \
} \ } \
\ \
/* Built-in module parameters. */ \ /* Built-in module parameters. */ \
@ -593,8 +583,7 @@
*(.text.unknown .text.unknown.*) \ *(.text.unknown .text.unknown.*) \
NOINSTR_TEXT \ NOINSTR_TEXT \
*(.ref.text) \ *(.ref.text) \
*(.text.asan.* .text.tsan.*) \ *(.text.asan.* .text.tsan.*)
MEM_KEEP(init.text*) \
/* sched.text is aling to function alignment to secure we have same /* sched.text is aling to function alignment to secure we have same
@ -701,7 +690,6 @@
#define INIT_DATA \ #define INIT_DATA \
KEEP(*(SORT(___kentry+*))) \ KEEP(*(SORT(___kentry+*))) \
*(.init.data .init.data.*) \ *(.init.data .init.data.*) \
MEM_DISCARD(init.data*) \
KERNEL_CTORS() \ KERNEL_CTORS() \
MCOUNT_REC() \ MCOUNT_REC() \
*(.init.rodata .init.rodata.*) \ *(.init.rodata .init.rodata.*) \
@ -709,7 +697,6 @@
TRACE_SYSCALLS() \ TRACE_SYSCALLS() \
KPROBE_BLACKLIST() \ KPROBE_BLACKLIST() \
ERROR_INJECT_WHITELIST() \ ERROR_INJECT_WHITELIST() \
MEM_DISCARD(init.rodata) \
CLK_OF_TABLES() \ CLK_OF_TABLES() \
RESERVEDMEM_OF_TABLES() \ RESERVEDMEM_OF_TABLES() \
TIMER_OF_TABLES() \ TIMER_OF_TABLES() \
@ -727,8 +714,7 @@
#define INIT_TEXT \ #define INIT_TEXT \
*(.init.text .init.text.*) \ *(.init.text .init.text.*) \
*(.text.startup) \ *(.text.startup)
MEM_DISCARD(init.text*)
#define EXIT_DATA \ #define EXIT_DATA \
*(.exit.data .exit.data.*) \ *(.exit.data .exit.data.*) \

View File

@ -4,7 +4,7 @@
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/cpuhplock.h> #include <linux/cpuhplock.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/smp.h> #include <linux/smp.h>
struct device_node; struct device_node;

View File

@ -10,7 +10,6 @@
*/ */
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h> #include <linux/nodemask.h>
#include <linux/rculist.h> #include <linux/rculist.h>
#include <linux/cgroupstats.h> #include <linux/cgroupstats.h>

View File

@ -12,7 +12,7 @@
#ifdef CONFIG_GENERIC_CLOCKEVENTS #ifdef CONFIG_GENERIC_CLOCKEVENTS
# include <linux/clocksource.h> # include <linux/clocksource.h>
# include <linux/cpumask.h> # include <linux/cpumask_types.h>
# include <linux/ktime.h> # include <linux/ktime.h>
# include <linux/notifier.h> # include <linux/notifier.h>

View File

@ -208,10 +208,8 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
*/ */
#define data_race(expr) \ #define data_race(expr) \
({ \ ({ \
__unqual_scalar_typeof(({ expr; })) __v = ({ \ __kcsan_disable_current(); \
__kcsan_disable_current(); \ __auto_type __v = (expr); \
expr; \
}); \
__kcsan_enable_current(); \ __kcsan_enable_current(); \
__v; \ __v; \
}) })

View File

@ -16,7 +16,6 @@
#include <linux/node.h> #include <linux/node.h>
#include <linux/compiler.h> #include <linux/compiler.h>
#include <linux/cpumask.h>
#include <linux/cpuhotplug.h> #include <linux/cpuhotplug.h>
#include <linux/cpuhplock.h> #include <linux/cpuhplock.h>
#include <linux/cpu_smt.h> #include <linux/cpu_smt.h>

View File

@ -15,7 +15,6 @@
#include <linux/of.h> #include <linux/of.h>
#include <linux/thermal.h> #include <linux/thermal.h>
#include <linux/cpumask.h>
struct cpufreq_policy; struct cpufreq_policy;

View File

@ -7,7 +7,7 @@
* Copyright 2011 Solarflare Communications Inc. * Copyright 2011 Solarflare Communications Inc.
*/ */
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/kref.h> #include <linux/kref.h>

View File

@ -9,25 +9,13 @@
*/ */
#include <linux/cleanup.h> #include <linux/cleanup.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/bitmap.h> #include <linux/bitmap.h>
#include <linux/cpumask_types.h>
#include <linux/atomic.h> #include <linux/atomic.h>
#include <linux/bug.h> #include <linux/bug.h>
#include <linux/gfp_types.h> #include <linux/gfp_types.h>
#include <linux/numa.h> #include <linux/numa.h>
/* Don't assign or return these: may not be this big! */
typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
/**
* cpumask_bits - get the bits in a cpumask
* @maskp: the struct cpumask *
*
* You should only assume nr_cpu_ids bits of this mask are valid. This is
* a macro so it's const-correct.
*/
#define cpumask_bits(maskp) ((maskp)->bits)
/** /**
* cpumask_pr_args - printf args to output a cpumask * cpumask_pr_args - printf args to output a cpumask
* @maskp: cpumask to be printed * @maskp: cpumask to be printed
@ -925,48 +913,7 @@ static inline unsigned int cpumask_size(void)
return bitmap_size(large_cpumask_bits); return bitmap_size(large_cpumask_bits);
} }
/*
* cpumask_var_t: struct cpumask for stack usage.
*
* Oh, the wicked games we play! In order to make kernel coding a
* little more difficult, we typedef cpumask_var_t to an array or a
* pointer: doing &mask on an array is a noop, so it still works.
*
* i.e.
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* ... use 'tmpmask' like a normal struct cpumask * ...
*
* free_cpumask_var(tmpmask);
*
*
* However, one notable exception is there. alloc_cpumask_var() allocates
* only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
* NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
*
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* var = *tmpmask;
*
* This code makes NR_CPUS length memcopy and brings to a memory corruption.
* cpumask_copy() provide safe copy functionality.
*
* Note that there is another evil here: If you define a cpumask_var_t
* as a percpu variable then the way to obtain the address of the cpumask
* structure differently influences what this_cpu_* operation needs to be
* used. Please use this_cpu_cpumask_var_t in those cases. The direct use
* of this_cpu_ptr() or this_cpu_read() will lead to failures when the
* other type of cpumask_var_t implementation is configured.
*
* Please also note that __cpumask_var_read_mostly can be used to declare
* a cpumask_var_t variable itself (not its content) as read mostly.
*/
#ifdef CONFIG_CPUMASK_OFFSTACK #ifdef CONFIG_CPUMASK_OFFSTACK
typedef struct cpumask *cpumask_var_t;
#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
#define __cpumask_var_read_mostly __read_mostly #define __cpumask_var_read_mostly __read_mostly
@ -1013,7 +960,6 @@ static inline bool cpumask_available(cpumask_var_t mask)
} }
#else #else
typedef struct cpumask cpumask_var_t[1];
#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
#define __cpumask_var_read_mostly #define __cpumask_var_read_mostly

View File

@ -0,0 +1,66 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_CPUMASK_TYPES_H
#define __LINUX_CPUMASK_TYPES_H
#include <linux/bitops.h>
#include <linux/threads.h>
/* Don't assign or return these: may not be this big! */
typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
/**
* cpumask_bits - get the bits in a cpumask
* @maskp: the struct cpumask *
*
* You should only assume nr_cpu_ids bits of this mask are valid. This is
* a macro so it's const-correct.
*/
#define cpumask_bits(maskp) ((maskp)->bits)
/*
* cpumask_var_t: struct cpumask for stack usage.
*
* Oh, the wicked games we play! In order to make kernel coding a
* little more difficult, we typedef cpumask_var_t to an array or a
* pointer: doing &mask on an array is a noop, so it still works.
*
* i.e.
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* ... use 'tmpmask' like a normal struct cpumask * ...
*
* free_cpumask_var(tmpmask);
*
*
* However, one notable exception is there. alloc_cpumask_var() allocates
* only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
* NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
*
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* var = *tmpmask;
*
* This code makes NR_CPUS length memcopy and brings to a memory corruption.
* cpumask_copy() provide safe copy functionality.
*
* Note that there is another evil here: If you define a cpumask_var_t
* as a percpu variable then the way to obtain the address of the cpumask
* structure differently influences what this_cpu_* operation needs to be
* used. Please use this_cpu_cpumask_var_t in those cases. The direct use
* of this_cpu_ptr() or this_cpu_read() will lead to failures when the
* other type of cpumask_var_t implementation is configured.
*
* Please also note that __cpumask_var_read_mostly can be used to declare
* a cpumask_var_t variable itself (not its content) as read mostly.
*/
#ifdef CONFIG_CPUMASK_OFFSTACK
typedef struct cpumask *cpumask_var_t;
#else
typedef struct cpumask cpumask_var_t[1];
#endif /* CONFIG_CPUMASK_OFFSTACK */
#endif /* __LINUX_CPUMASK_TYPES_H */

View File

@ -84,11 +84,15 @@
#define __exit __section(".exit.text") __exitused __cold notrace #define __exit __section(".exit.text") __exitused __cold notrace
/* Used for MEMORY_HOTPLUG */ #ifdef CONFIG_MEMORY_HOTPLUG
#define __meminit __section(".meminit.text") __cold notrace \ #define __meminit
__latent_entropy #define __meminitdata
#define __meminitdata __section(".meminit.data") #define __meminitconst
#define __meminitconst __section(".meminit.rodata") #else
#define __meminit __init
#define __meminitdata __initdata
#define __meminitconst __initconst
#endif
/* For assembly routines */ /* For assembly routines */
#define __HEAD .section ".head.text","ax" #define __HEAD .section ".head.text","ax"
@ -99,10 +103,6 @@
#define __INITRODATA .section ".init.rodata","a",%progbits #define __INITRODATA .section ".init.rodata","a",%progbits
#define __FINITDATA .previous #define __FINITDATA .previous
#define __MEMINIT .section ".meminit.text", "ax"
#define __MEMINITDATA .section ".meminit.data", "aw"
#define __MEMINITRODATA .section ".meminit.rodata", "a"
/* silence warnings when references are OK */ /* silence warnings when references are OK */
#define __REF .section ".ref.text", "ax" #define __REF .section ".ref.text", "ax"
#define __REFDATA .section ".ref.data", "aw" #define __REFDATA .section ".ref.data", "aw"

View File

@ -6,13 +6,13 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/cleanup.h> #include <linux/cleanup.h>
#include <linux/cpumask.h>
#include <linux/irqreturn.h> #include <linux/irqreturn.h>
#include <linux/irqnr.h> #include <linux/irqnr.h>
#include <linux/hardirq.h> #include <linux/hardirq.h>
#include <linux/irqflags.h> #include <linux/irqflags.h>
#include <linux/hrtimer.h> #include <linux/hrtimer.h>
#include <linux/kref.h> #include <linux/kref.h>
#include <linux/cpumask_types.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/jump_label.h> #include <linux/jump_label.h>

View File

@ -8,7 +8,7 @@
#define __LINUX_IRQCHIP_IRQ_PARTITION_PERCPU_H #define __LINUX_IRQCHIP_IRQ_PARTITION_PERCPU_H
#include <linux/fwnode.h> #include <linux/fwnode.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/irqdomain.h> #include <linux/irqdomain.h>
struct partition_affinity { struct partition_affinity {

View File

@ -31,7 +31,7 @@
/* Mask the hash value, i.e (value & jhash_mask(n)) instead of (value % n) */ /* Mask the hash value, i.e (value & jhash_mask(n)) instead of (value % n) */
#define jhash_mask(n) (jhash_size(n)-1) #define jhash_mask(n) (jhash_size(n)-1)
/* __jhash_mix -- mix 3 32-bit values reversibly. */ /* __jhash_mix - mix 3 32-bit values reversibly. */
#define __jhash_mix(a, b, c) \ #define __jhash_mix(a, b, c) \
{ \ { \
a -= c; a ^= rol32(c, 4); c += b; \ a -= c; a ^= rol32(c, 4); c += b; \
@ -60,7 +60,7 @@
/* jhash - hash an arbitrary key /* jhash - hash an arbitrary key
* @k: sequence of bytes as key * @k: sequence of bytes as key
* @length: the length of the key * @length: the length of the key
* @initval: the previous hash, or an arbitray value * @initval: the previous hash, or an arbitrary value
* *
* The generic version, hashes an arbitrary sequence of bytes. * The generic version, hashes an arbitrary sequence of bytes.
* No alignment or length assumptions are made about the input key. * No alignment or length assumptions are made about the input key.
@ -110,7 +110,7 @@ static inline u32 jhash(const void *key, u32 length, u32 initval)
/* jhash2 - hash an array of u32's /* jhash2 - hash an array of u32's
* @k: the key which must be an array of u32's * @k: the key which must be an array of u32's
* @length: the number of u32's in the key * @length: the number of u32's in the key
* @initval: the previous hash, or an arbitray value * @initval: the previous hash, or an arbitrary value
* *
* Returns the hash value of the key. * Returns the hash value of the key.
*/ */

View File

@ -5,7 +5,6 @@
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/threads.h> #include <linux/threads.h>
#include <linux/percpu.h> #include <linux/percpu.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/vtime.h> #include <linux/vtime.h>

View File

@ -7,46 +7,89 @@
#include <linux/types.h> #include <linux/types.h>
/** /**
* struct min_heap - Data structure to hold a min-heap. * Data structure to hold a min-heap.
* @data: Start of array holding the heap elements.
* @nr: Number of elements currently in the heap. * @nr: Number of elements currently in the heap.
* @size: Maximum number of elements that can be held in current storage. * @size: Maximum number of elements that can be held in current storage.
* @data: Pointer to the start of array holding the heap elements.
* @preallocated: Start of the static preallocated array holding the heap elements.
*/ */
struct min_heap { #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
void *data; struct _name { \
int nr; int nr; \
int size; int size; \
}; _type *data; \
_type preallocated[_nr]; \
}
#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
#define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
/** /**
* struct min_heap_callbacks - Data/functions to customise the min_heap. * struct min_heap_callbacks - Data/functions to customise the min_heap.
* @elem_size: The nr of each element in bytes.
* @less: Partial order function for this heap. * @less: Partial order function for this heap.
* @swp: Swap elements function. * @swp: Swap elements function.
*/ */
struct min_heap_callbacks { struct min_heap_callbacks {
int elem_size; bool (*less)(const void *lhs, const void *rhs, void *args);
bool (*less)(const void *lhs, const void *rhs); void (*swp)(void *lhs, void *rhs, void *args);
void (*swp)(void *lhs, void *rhs);
}; };
/* Initialize a min-heap. */
static __always_inline
void __min_heap_init(min_heap_char *heap, void *data, int size)
{
heap->nr = 0;
heap->size = size;
if (data)
heap->data = data;
else
heap->data = heap->preallocated;
}
#define min_heap_init(_heap, _data, _size) \
__min_heap_init((min_heap_char *)_heap, _data, _size)
/* Get the minimum element from the heap. */
static __always_inline
void *__min_heap_peek(struct min_heap_char *heap)
{
return heap->nr ? heap->data : NULL;
}
#define min_heap_peek(_heap) \
(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
/* Check if the heap is full. */
static __always_inline
bool __min_heap_full(min_heap_char *heap)
{
return heap->nr == heap->size;
}
#define min_heap_full(_heap) \
__min_heap_full((min_heap_char *)_heap)
/* Sift the element at pos down the heap. */ /* Sift the element at pos down the heap. */
static __always_inline static __always_inline
void min_heapify(struct min_heap *heap, int pos, void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
const struct min_heap_callbacks *func) const struct min_heap_callbacks *func, void *args)
{ {
void *left, *right; void *left, *right;
void *data = heap->data; void *data = heap->data;
void *root = data + pos * func->elem_size; void *root = data + pos * elem_size;
int i = pos, j; int i = pos, j;
/* Find the sift-down path all the way to the leaves. */ /* Find the sift-down path all the way to the leaves. */
for (;;) { for (;;) {
if (i * 2 + 2 >= heap->nr) if (i * 2 + 2 >= heap->nr)
break; break;
left = data + (i * 2 + 1) * func->elem_size; left = data + (i * 2 + 1) * elem_size;
right = data + (i * 2 + 2) * func->elem_size; right = data + (i * 2 + 2) * elem_size;
i = func->less(left, right) ? i * 2 + 1 : i * 2 + 2; i = func->less(left, right, args) ? i * 2 + 1 : i * 2 + 2;
} }
/* Special case for the last leaf with no sibling. */ /* Special case for the last leaf with no sibling. */
@ -54,83 +97,140 @@ void min_heapify(struct min_heap *heap, int pos,
i = i * 2 + 1; i = i * 2 + 1;
/* Backtrack to the correct location. */ /* Backtrack to the correct location. */
while (i != pos && func->less(root, data + i * func->elem_size)) while (i != pos && func->less(root, data + i * elem_size, args))
i = (i - 1) / 2; i = (i - 1) / 2;
/* Shift the element into its correct place. */ /* Shift the element into its correct place. */
j = i; j = i;
while (i != pos) { while (i != pos) {
i = (i - 1) / 2; i = (i - 1) / 2;
func->swp(data + i * func->elem_size, data + j * func->elem_size); func->swp(data + i * elem_size, data + j * elem_size, args);
} }
} }
#define min_heap_sift_down(_heap, _pos, _func, _args) \
__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
/* Sift up ith element from the heap, O(log2(nr)). */
static __always_inline
void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
size_t parent;
while (idx) {
parent = (idx - 1) / 2;
if (func->less(data + parent * elem_size, data + idx * elem_size, args))
break;
func->swp(data + parent * elem_size, data + idx * elem_size, args);
idx = parent;
}
}
#define min_heap_sift_up(_heap, _idx, _func, _args) \
__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
/* Floyd's approach to heapification that is O(nr). */ /* Floyd's approach to heapification that is O(nr). */
static __always_inline static __always_inline
void min_heapify_all(struct min_heap *heap, void __min_heapify_all(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func) const struct min_heap_callbacks *func, void *args)
{ {
int i; int i;
for (i = heap->nr / 2 - 1; i >= 0; i--) for (i = heap->nr / 2 - 1; i >= 0; i--)
min_heapify(heap, i, func); __min_heap_sift_down(heap, i, elem_size, func, args);
} }
#define min_heapify_all(_heap, _func, _args) \
__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/* Remove minimum element from the heap, O(log2(nr)). */ /* Remove minimum element from the heap, O(log2(nr)). */
static __always_inline static __always_inline
void min_heap_pop(struct min_heap *heap, bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func) const struct min_heap_callbacks *func, void *args)
{ {
void *data = heap->data; void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return; return false;
/* Place last element at the root (position 0) and then sift down. */ /* Place last element at the root (position 0) and then sift down. */
heap->nr--; heap->nr--;
memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); memcpy(data, data + (heap->nr * elem_size), elem_size);
min_heapify(heap, 0, func); __min_heap_sift_down(heap, 0, elem_size, func, args);
return true;
} }
#define min_heap_pop(_heap, _func, _args) \
__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/* /*
* Remove the minimum element and then push the given element. The * Remove the minimum element and then push the given element. The
* implementation performs 1 sift (O(log2(nr))) and is therefore more * implementation performs 1 sift (O(log2(nr))) and is therefore more
* efficient than a pop followed by a push that does 2. * efficient than a pop followed by a push that does 2.
*/ */
static __always_inline static __always_inline
void min_heap_pop_push(struct min_heap *heap, void __min_heap_pop_push(min_heap_char *heap,
const void *element, const void *element, size_t elem_size,
const struct min_heap_callbacks *func) const struct min_heap_callbacks *func,
void *args)
{ {
memcpy(heap->data, element, func->elem_size); memcpy(heap->data, element, elem_size);
min_heapify(heap, 0, func); __min_heap_sift_down(heap, 0, elem_size, func, args);
} }
#define min_heap_pop_push(_heap, _element, _func, _args) \
__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
/* Push an element on to the heap, O(log2(nr)). */ /* Push an element on to the heap, O(log2(nr)). */
static __always_inline static __always_inline
void min_heap_push(struct min_heap *heap, const void *element, bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func) const struct min_heap_callbacks *func, void *args)
{ {
void *data = heap->data; void *data = heap->data;
void *child, *parent;
int pos; int pos;
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
return; return false;
/* Place at the end of data. */ /* Place at the end of data. */
pos = heap->nr; pos = heap->nr;
memcpy(data + (pos * func->elem_size), element, func->elem_size); memcpy(data + (pos * elem_size), element, elem_size);
heap->nr++; heap->nr++;
/* Sift child at pos up. */ /* Sift child at pos up. */
for (; pos > 0; pos = (pos - 1) / 2) { __min_heap_sift_up(heap, elem_size, pos, func, args);
child = data + (pos * func->elem_size);
parent = data + ((pos - 1) / 2) * func->elem_size; return true;
if (func->less(parent, child))
break;
func->swp(parent, child);
}
} }
#define min_heap_push(_heap, _element, _func, _args) \
__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
/* Remove ith element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
if (idx == heap->nr)
return true;
func->swp(data + (idx * elem_size), data + (heap->nr * elem_size), args);
__min_heap_sift_up(heap, elem_size, idx, func, args);
__min_heap_sift_down(heap, idx, elem_size, func, args);
return true;
}
#define min_heap_del(_heap, _idx, _func, _args) \
__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
#endif /* _LINUX_MIN_HEAP_H */ #endif /* _LINUX_MIN_HEAP_H */

View File

@ -19,7 +19,7 @@
*/ */
#include <linux/irqdomain_defs.h> #include <linux/irqdomain_defs.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/msi_api.h> #include <linux/msi_api.h>
#include <linux/xarray.h> #include <linux/xarray.h>
#include <linux/mutex.h> #include <linux/mutex.h>

View File

@ -16,7 +16,6 @@
#define _LINUX_NODE_H_ #define _LINUX_NODE_H_
#include <linux/device.h> #include <linux/device.h>
#include <linux/cpumask.h>
#include <linux/list.h> #include <linux/list.h>
/** /**

View File

@ -620,7 +620,7 @@ enum {
* *
* Structure used between LLDD and nvmet-fc layer to represent the exchange * Structure used between LLDD and nvmet-fc layer to represent the exchange
* context for a FC-NVME FCP I/O operation (e.g. a nvme sqe, the sqe-related * context for a FC-NVME FCP I/O operation (e.g. a nvme sqe, the sqe-related
* memory transfers, and its assocated cqe transfer). * memory transfers, and its associated cqe transfer).
* *
* The structure is allocated by the LLDD whenever a FCP CMD IU is received * The structure is allocated by the LLDD whenever a FCP CMD IU is received
* from the FC link. The address of the structure is passed to the nvmet-fc * from the FC link. The address of the structure is passed to the nvmet-fc

View File

@ -77,9 +77,10 @@ static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
#define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1) #define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1)
struct taint_flag { struct taint_flag {
char c_true; /* character printed when tainted */ char c_true; /* character printed when tainted */
char c_false; /* character printed when not tainted */ char c_false; /* character printed when not tainted */
bool module; /* also show as a per-module taint flag */ bool module; /* also show as a per-module taint flag */
const char *desc; /* verbose description of the set taint flag */
}; };
extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
@ -90,6 +91,7 @@ enum lockdep_ok {
}; };
extern const char *print_tainted(void); extern const char *print_tainted(void);
extern const char *print_tainted_verbose(void);
extern void add_taint(unsigned flag, enum lockdep_ok); extern void add_taint(unsigned flag, enum lockdep_ok);
extern int test_taint(unsigned flag); extern int test_taint(unsigned flag);
extern unsigned long get_taint(void); extern unsigned long get_taint(void);

View File

@ -6,7 +6,6 @@
#include <linux/mmdebug.h> #include <linux/mmdebug.h>
#include <linux/preempt.h> #include <linux/preempt.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/cpumask.h>
#include <linux/pfn.h> #include <linux/pfn.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/cleanup.h> #include <linux/cleanup.h>

View File

@ -16,7 +16,7 @@
#include <linux/of.h> #include <linux/of.h>
#include <linux/notifier.h> #include <linux/notifier.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/time64.h> #include <linux/time64.h>
/* /*

View File

@ -49,12 +49,6 @@
/********** arch/$ARCH/mm/init.c **********/ /********** arch/$ARCH/mm/init.c **********/
#define POISON_FREE_INITMEM 0xcc #define POISON_FREE_INITMEM 0xcc
/********** arch/ia64/hp/common/sba_iommu.c **********/
/*
* arch/ia64/hp/common/sba_iommu.c uses a 16-byte poison string with a
* value of "SBAIOMMU POISON\0" for spill-over poisoning.
*/
/********** fs/jbd/journal.c **********/ /********** fs/jbd/journal.c **********/
#define JBD_POISON_FREE 0x5b #define JBD_POISON_FREE 0x5b
#define JBD2_POISON_FREE 0x5c #define JBD2_POISON_FREE 0x5c

View File

@ -4,7 +4,6 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/cache.h> #include <linux/cache.h>
#include <asm/errno.h> #include <asm/errno.h>

View File

@ -29,7 +29,6 @@
#include <linux/lockdep.h> #include <linux/lockdep.h>
#include <linux/cleanup.h> #include <linux/cleanup.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <linux/cpumask.h>
#include <linux/context_tracking_irq.h> #include <linux/context_tracking_irq.h>
#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))

View File

@ -13,7 +13,7 @@
#include <asm/processor.h> #include <asm/processor.h>
#include <linux/thread_info.h> #include <linux/thread_info.h>
#include <linux/preempt.h> #include <linux/preempt.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/irqflags_types.h> #include <linux/irqflags_types.h>
@ -1618,7 +1618,7 @@ static inline char task_index_to_char(unsigned int state)
{ {
static const char state_char[] = "RSDTtXZPI"; static const char state_char[] = "RSDTtXZPI";
BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
return state_char[state]; return state_char[state];
} }
@ -1792,7 +1792,8 @@ static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpuma
} }
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{ {
if (!cpumask_test_cpu(0, new_mask)) /* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
if ((*cpumask_bits(new_mask) & 1) == 0)
return -EINVAL; return -EINVAL;
return 0; return 0;
} }

View File

@ -7,7 +7,6 @@
#include <linux/string_helpers.h> #include <linux/string_helpers.h>
#include <linux/bug.h> #include <linux/bug.h>
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h> #include <linux/nodemask.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/cred.h> #include <linux/cred.h>

View File

@ -69,7 +69,7 @@ struct apple_rtkit;
* Initializes the internal state required to handle RTKit. This * Initializes the internal state required to handle RTKit. This
* should usually be called within _probe. * should usually be called within _probe.
* *
* @dev: Pointer to the device node this coprocessor is assocated with * @dev: Pointer to the device node this coprocessor is associated with
* @cookie: opaque cookie passed to all functions defined in rtkit_ops * @cookie: opaque cookie passed to all functions defined in rtkit_ops
* @mbox_name: mailbox name used to communicate with the co-processor * @mbox_name: mailbox name used to communicate with the co-processor
* @mbox_idx: mailbox index to be used if mbox_name is NULL * @mbox_idx: mailbox index to be used if mbox_name is NULL
@ -83,7 +83,7 @@ struct apple_rtkit *devm_apple_rtkit_init(struct device *dev, void *cookie,
* Non-devm version of devm_apple_rtkit_init. Must be freed with * Non-devm version of devm_apple_rtkit_init. Must be freed with
* apple_rtkit_free. * apple_rtkit_free.
* *
* @dev: Pointer to the device node this coprocessor is assocated with * @dev: Pointer to the device node this coprocessor is associated with
* @cookie: opaque cookie passed to all functions defined in rtkit_ops * @cookie: opaque cookie passed to all functions defined in rtkit_ops
* @mbox_name: mailbox name used to communicate with the co-processor * @mbox_name: mailbox name used to communicate with the co-processor
* @mbox_idx: mailbox index to be used if mbox_name is NULL * @mbox_idx: mailbox index to be used if mbox_name is NULL

View File

@ -3,7 +3,7 @@
#define _LINUX_STOP_MACHINE #define _LINUX_STOP_MACHINE
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/list.h> #include <linux/list.h>

View File

@ -14,7 +14,7 @@
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/threads.h> #include <linux/threads.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/seqlock.h> #include <linux/seqlock.h>
#include <linux/lockdep.h> #include <linux/lockdep.h>
#include <linux/completion.h> #include <linux/completion.h>

View File

@ -16,7 +16,6 @@
#include <linux/srcu.h> #include <linux/srcu.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/cpumask.h>
#include <linux/rcupdate.h> #include <linux/rcupdate.h>
#include <linux/tracepoint-defs.h> #include <linux/tracepoint-defs.h>
#include <linux/static_call.h> #include <linux/static_call.h>

View File

@ -12,7 +12,7 @@
#include <linux/lockdep.h> #include <linux/lockdep.h>
#include <linux/threads.h> #include <linux/threads.h>
#include <linux/atomic.h> #include <linux/atomic.h>
#include <linux/cpumask.h> #include <linux/cpumask_types.h>
#include <linux/rcupdate.h> #include <linux/rcupdate.h>
#include <linux/workqueue_types.h> #include <linux/workqueue_types.h>

View File

@ -74,5 +74,6 @@ static void exitf(void)
module_init(backtrace_regression_test); module_init(backtrace_regression_test);
module_exit(exitf); module_exit(exitf);
MODULE_DESCRIPTION("Simple stack backtrace regression test module");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");

View File

@ -13,7 +13,6 @@
#include <linux/memory.h> #include <linux/memory.h>
#include <linux/cpuhotplug.h> #include <linux/cpuhotplug.h>
#include <linux/memblock.h> #include <linux/memblock.h>
#include <linux/kexec.h>
#include <linux/kmemleak.h> #include <linux/kmemleak.h>
#include <asm/page.h> #include <asm/page.h>

View File

@ -534,7 +534,7 @@ void perf_sample_event_took(u64 sample_len_ns)
__this_cpu_write(running_sample_length, running_len); __this_cpu_write(running_sample_length, running_len);
/* /*
* Note: this will be biased artifically low until we have * Note: this will be biased artificially low until we have
* seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
* from having to maintain a count. * from having to maintain a count.
*/ */
@ -596,10 +596,10 @@ static inline u64 perf_event_clock(struct perf_event *event)
* *
* Event groups make things a little more complicated, but not terribly so. The * Event groups make things a little more complicated, but not terribly so. The
* rules for a group are that if the group leader is OFF the entire group is * rules for a group are that if the group leader is OFF the entire group is
* OFF, irrespecive of what the group member states are. This results in * OFF, irrespective of what the group member states are. This results in
* __perf_effective_state(). * __perf_effective_state().
* *
* A futher ramification is that when a group leader flips between OFF and * A further ramification is that when a group leader flips between OFF and
* !OFF, we need to update all group member times. * !OFF, we need to update all group member times.
* *
* *
@ -891,7 +891,7 @@ static int perf_cgroup_ensure_storage(struct perf_event *event,
int cpu, heap_size, ret = 0; int cpu, heap_size, ret = 0;
/* /*
* Allow storage to have sufficent space for an iterator for each * Allow storage to have sufficient space for an iterator for each
* possibly nested cgroup plus an iterator for events with no cgroup. * possibly nested cgroup plus an iterator for events with no cgroup.
*/ */
for (heap_size = 1; css; css = css->parent) for (heap_size = 1; css; css = css->parent)
@ -3671,7 +3671,7 @@ void __perf_event_task_sched_out(struct task_struct *task,
perf_cgroup_switch(next); perf_cgroup_switch(next);
} }
static bool perf_less_group_idx(const void *l, const void *r) static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
{ {
const struct perf_event *le = *(const struct perf_event **)l; const struct perf_event *le = *(const struct perf_event **)l;
const struct perf_event *re = *(const struct perf_event **)r; const struct perf_event *re = *(const struct perf_event **)r;
@ -3679,20 +3679,21 @@ static bool perf_less_group_idx(const void *l, const void *r)
return le->group_index < re->group_index; return le->group_index < re->group_index;
} }
static void swap_ptr(void *l, void *r) static void swap_ptr(void *l, void *r, void __always_unused *args)
{ {
void **lp = l, **rp = r; void **lp = l, **rp = r;
swap(*lp, *rp); swap(*lp, *rp);
} }
DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
static const struct min_heap_callbacks perf_min_heap = { static const struct min_heap_callbacks perf_min_heap = {
.elem_size = sizeof(struct perf_event *),
.less = perf_less_group_idx, .less = perf_less_group_idx,
.swp = swap_ptr, .swp = swap_ptr,
}; };
static void __heap_add(struct min_heap *heap, struct perf_event *event) static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
{ {
struct perf_event **itrs = heap->data; struct perf_event **itrs = heap->data;
@ -3726,7 +3727,7 @@ static noinline int visit_groups_merge(struct perf_event_context *ctx,
struct perf_cpu_context *cpuctx = NULL; struct perf_cpu_context *cpuctx = NULL;
/* Space for per CPU and/or any CPU event iterators. */ /* Space for per CPU and/or any CPU event iterators. */
struct perf_event *itrs[2]; struct perf_event *itrs[2];
struct min_heap event_heap; struct perf_event_min_heap event_heap;
struct perf_event **evt; struct perf_event **evt;
int ret; int ret;
@ -3735,7 +3736,7 @@ static noinline int visit_groups_merge(struct perf_event_context *ctx,
if (!ctx->task) { if (!ctx->task) {
cpuctx = this_cpu_ptr(&perf_cpu_context); cpuctx = this_cpu_ptr(&perf_cpu_context);
event_heap = (struct min_heap){ event_heap = (struct perf_event_min_heap){
.data = cpuctx->heap, .data = cpuctx->heap,
.nr = 0, .nr = 0,
.size = cpuctx->heap_size, .size = cpuctx->heap_size,
@ -3748,7 +3749,7 @@ static noinline int visit_groups_merge(struct perf_event_context *ctx,
css = &cpuctx->cgrp->css; css = &cpuctx->cgrp->css;
#endif #endif
} else { } else {
event_heap = (struct min_heap){ event_heap = (struct perf_event_min_heap){
.data = itrs, .data = itrs,
.nr = 0, .nr = 0,
.size = ARRAY_SIZE(itrs), .size = ARRAY_SIZE(itrs),
@ -3770,7 +3771,7 @@ static noinline int visit_groups_merge(struct perf_event_context *ctx,
perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
} }
min_heapify_all(&event_heap, &perf_min_heap); min_heapify_all(&event_heap, &perf_min_heap, NULL);
while (event_heap.nr) { while (event_heap.nr) {
ret = func(*evt, data); ret = func(*evt, data);
@ -3779,9 +3780,9 @@ static noinline int visit_groups_merge(struct perf_event_context *ctx,
*evt = perf_event_groups_next(*evt, pmu); *evt = perf_event_groups_next(*evt, pmu);
if (*evt) if (*evt)
min_heapify(&event_heap, 0, &perf_min_heap); min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
else else
min_heap_pop(&event_heap, &perf_min_heap); min_heap_pop(&event_heap, &perf_min_heap, NULL);
} }
return 0; return 0;

View File

@ -208,9 +208,10 @@ static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
unsigned int i; unsigned int i;
for (i = 0; i < NR_CACHED_STACKS; i++) { for (i = 0; i < NR_CACHED_STACKS; i++) {
if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) struct vm_struct *tmp = NULL;
continue;
return true; if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
return true;
} }
return false; return false;
} }

View File

@ -127,7 +127,7 @@ static void check_hung_task(struct task_struct *t, unsigned long timeout)
* Ok, the task did not get scheduled for more than 2 minutes, * Ok, the task did not get scheduled for more than 2 minutes,
* complain: * complain:
*/ */
if (sysctl_hung_task_warnings) { if (sysctl_hung_task_warnings || hung_task_call_panic) {
if (sysctl_hung_task_warnings > 0) if (sysctl_hung_task_warnings > 0)
sysctl_hung_task_warnings--; sysctl_hung_task_warnings--;
pr_err("INFO: task %s:%d blocked for more than %ld seconds.\n", pr_err("INFO: task %s:%d blocked for more than %ld seconds.\n",

View File

@ -35,6 +35,7 @@
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/sysfs.h> #include <linux/sysfs.h>
#include <linux/context_tracking.h> #include <linux/context_tracking.h>
#include <linux/seq_buf.h>
#include <trace/events/error_report.h> #include <trace/events/error_report.h>
#include <asm/sections.h> #include <asm/sections.h>
@ -470,32 +471,83 @@ void panic(const char *fmt, ...)
EXPORT_SYMBOL(panic); EXPORT_SYMBOL(panic);
#define TAINT_FLAG(taint, _c_true, _c_false, _module) \
[ TAINT_##taint ] = { \
.c_true = _c_true, .c_false = _c_false, \
.module = _module, \
.desc = #taint, \
}
/* /*
* TAINT_FORCED_RMMOD could be a per-module flag but the module * TAINT_FORCED_RMMOD could be a per-module flag but the module
* is being removed anyway. * is being removed anyway.
*/ */
const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
[ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, TAINT_FLAG(PROPRIETARY_MODULE, 'P', 'G', true),
[ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, TAINT_FLAG(FORCED_MODULE, 'F', ' ', true),
[ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, TAINT_FLAG(CPU_OUT_OF_SPEC, 'S', ' ', false),
[ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, TAINT_FLAG(FORCED_RMMOD, 'R', ' ', false),
[ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, TAINT_FLAG(MACHINE_CHECK, 'M', ' ', false),
[ TAINT_BAD_PAGE ] = { 'B', ' ', false }, TAINT_FLAG(BAD_PAGE, 'B', ' ', false),
[ TAINT_USER ] = { 'U', ' ', false }, TAINT_FLAG(USER, 'U', ' ', false),
[ TAINT_DIE ] = { 'D', ' ', false }, TAINT_FLAG(DIE, 'D', ' ', false),
[ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, TAINT_FLAG(OVERRIDDEN_ACPI_TABLE, 'A', ' ', false),
[ TAINT_WARN ] = { 'W', ' ', false }, TAINT_FLAG(WARN, 'W', ' ', false),
[ TAINT_CRAP ] = { 'C', ' ', true }, TAINT_FLAG(CRAP, 'C', ' ', true),
[ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, TAINT_FLAG(FIRMWARE_WORKAROUND, 'I', ' ', false),
[ TAINT_OOT_MODULE ] = { 'O', ' ', true }, TAINT_FLAG(OOT_MODULE, 'O', ' ', true),
[ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, TAINT_FLAG(UNSIGNED_MODULE, 'E', ' ', true),
[ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, TAINT_FLAG(SOFTLOCKUP, 'L', ' ', false),
[ TAINT_LIVEPATCH ] = { 'K', ' ', true }, TAINT_FLAG(LIVEPATCH, 'K', ' ', true),
[ TAINT_AUX ] = { 'X', ' ', true }, TAINT_FLAG(AUX, 'X', ' ', true),
[ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, TAINT_FLAG(RANDSTRUCT, 'T', ' ', true),
[ TAINT_TEST ] = { 'N', ' ', true }, TAINT_FLAG(TEST, 'N', ' ', true),
}; };
#undef TAINT_FLAG
static void print_tainted_seq(struct seq_buf *s, bool verbose)
{
const char *sep = "";
int i;
if (!tainted_mask) {
seq_buf_puts(s, "Not tainted");
return;
}
seq_buf_printf(s, "Tainted: ");
for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
const struct taint_flag *t = &taint_flags[i];
bool is_set = test_bit(i, &tainted_mask);
char c = is_set ? t->c_true : t->c_false;
if (verbose) {
if (is_set) {
seq_buf_printf(s, "%s[%c]=%s", sep, c, t->desc);
sep = ", ";
}
} else {
seq_buf_putc(s, c);
}
}
}
static const char *_print_tainted(bool verbose)
{
/* FIXME: what should the size be? */
static char buf[sizeof(taint_flags)];
struct seq_buf s;
BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
seq_buf_init(&s, buf, sizeof(buf));
print_tainted_seq(&s, verbose);
return seq_buf_str(&s);
}
/** /**
* print_tainted - return a string to represent the kernel taint state. * print_tainted - return a string to represent the kernel taint state.
* *
@ -506,25 +558,15 @@ const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
*/ */
const char *print_tainted(void) const char *print_tainted(void)
{ {
static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; return _print_tainted(false);
}
BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); /**
* print_tainted_verbose - A more verbose version of print_tainted()
if (tainted_mask) { */
char *s; const char *print_tainted_verbose(void)
int i; {
return _print_tainted(true);
s = buf + sprintf(buf, "Tainted: ");
for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
const struct taint_flag *t = &taint_flags[i];
*s++ = test_bit(i, &tainted_mask) ?
t->c_true : t->c_false;
}
*s = 0;
} else
snprintf(buf, sizeof(buf), "Not tainted");
return buf;
} }
int test_taint(unsigned flag) int test_taint(unsigned flag)

View File

@ -149,4 +149,5 @@ static struct kunit_suite resource_test_suite = {
}; };
kunit_test_suite(resource_test_suite); kunit_test_suite(resource_test_suite);
MODULE_DESCRIPTION("I/O Port & Memory Resource manager unit tests");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -76,7 +76,7 @@ void bacct_add_tsk(struct user_namespace *user_ns,
stats->ac_minflt = tsk->min_flt; stats->ac_minflt = tsk->min_flt;
stats->ac_majflt = tsk->maj_flt; stats->ac_majflt = tsk->maj_flt;
strncpy(stats->ac_comm, tsk->comm, sizeof(stats->ac_comm)); strscpy_pad(stats->ac_comm, tsk->comm);
} }

View File

@ -75,11 +75,15 @@ static bool watchdog_check_timestamp(void)
__this_cpu_write(last_timestamp, now); __this_cpu_write(last_timestamp, now);
return true; return true;
} }
#else
static inline bool watchdog_check_timestamp(void) static void watchdog_init_timestamp(void)
{ {
return true; __this_cpu_write(nmi_rearmed, 0);
__this_cpu_write(last_timestamp, ktime_get_mono_fast_ns());
} }
#else
static inline bool watchdog_check_timestamp(void) { return true; }
static inline void watchdog_init_timestamp(void) { }
#endif #endif
static struct perf_event_attr wd_hw_attr = { static struct perf_event_attr wd_hw_attr = {
@ -161,6 +165,7 @@ void watchdog_hardlockup_enable(unsigned int cpu)
if (!atomic_fetch_inc(&watchdog_cpus)) if (!atomic_fetch_inc(&watchdog_cpus))
pr_info("Enabled. Permanently consumes one hw-PMU counter.\n"); pr_info("Enabled. Permanently consumes one hw-PMU counter.\n");
watchdog_init_timestamp();
perf_event_enable(this_cpu_read(watchdog_ev)); perf_event_enable(this_cpu_read(watchdog_ev));
} }

View File

@ -1043,7 +1043,9 @@ config PANIC_TIMEOUT
Set the timeout value (in seconds) until a reboot occurs when Set the timeout value (in seconds) until a reboot occurs when
the kernel panics. If n = 0, then we wait forever. A timeout the kernel panics. If n = 0, then we wait forever. A timeout
value n > 0 will wait n seconds before rebooting, while a timeout value n > 0 will wait n seconds before rebooting, while a timeout
value n < 0 will reboot immediately. value n < 0 will reboot immediately. This setting can be overridden
with the kernel command line option panic=, and from userspace via
/proc/sys/kernel/panic.
config LOCKUP_DETECTOR config LOCKUP_DETECTOR
bool bool

View File

@ -449,4 +449,5 @@ asn1_encode_boolean(unsigned char *data, const unsigned char *end_data,
} }
EXPORT_SYMBOL_GPL(asn1_encode_boolean); EXPORT_SYMBOL_GPL(asn1_encode_boolean);
MODULE_DESCRIPTION("Simple encoder primitives for ASN.1 BER/DER/CER");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -273,4 +273,5 @@ static __exit void test_atomics_exit(void) {}
module_init(test_atomics_init); module_init(test_atomics_init);
module_exit(test_atomics_exit); module_exit(test_atomics_exit);
MODULE_DESCRIPTION("Testsuite for atomic64_t functions");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -479,11 +479,8 @@ static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
/* find suitable row for elimination */ /* find suitable row for elimination */
for (r = p; r < m; r++) { for (r = p; r < m; r++) {
if (rows[r] & mask) { if (rows[r] & mask) {
if (r != p) { if (r != p)
tmp = rows[r]; swap(rows[r], rows[p]);
rows[r] = rows[p];
rows[p] = tmp;
}
rem = r+1; rem = r+1;
break; break;
} }
@ -799,21 +796,14 @@ static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
struct gf_poly *b) struct gf_poly *b)
{ {
struct gf_poly *tmp;
dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
if (a->deg < b->deg) { if (a->deg < b->deg)
tmp = b; swap(a, b);
b = a;
a = tmp;
}
while (b->deg > 0) { while (b->deg > 0) {
gf_poly_mod(bch, a, b, NULL); gf_poly_mod(bch, a, b, NULL);
tmp = b; swap(a, b);
b = a;
a = tmp;
} }
dbg("%s\n", gf_poly_str(a)); dbg("%s\n", gf_poly_str(a));

View File

@ -151,4 +151,5 @@ static struct kunit_suite bitfields_test_suite = {
kunit_test_suites(&bitfields_test_suite); kunit_test_suites(&bitfields_test_suite);
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_DESCRIPTION("Test cases for bitfield helpers");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -73,6 +73,13 @@ static int get_build_id_32(const void *page_addr, unsigned char *build_id,
Elf32_Phdr *phdr; Elf32_Phdr *phdr;
int i; int i;
/*
* FIXME
* Neither ELF spec nor ELF loader require that program headers
* start immediately after ELF header.
*/
if (ehdr->e_phoff != sizeof(Elf32_Ehdr))
return -EINVAL;
/* only supports phdr that fits in one page */ /* only supports phdr that fits in one page */
if (ehdr->e_phnum > if (ehdr->e_phnum >
(PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr)) (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr))
@ -98,6 +105,13 @@ static int get_build_id_64(const void *page_addr, unsigned char *build_id,
Elf64_Phdr *phdr; Elf64_Phdr *phdr;
int i; int i;
/*
* FIXME
* Neither ELF spec nor ELF loader require that program headers
* start immediately after ELF header.
*/
if (ehdr->e_phoff != sizeof(Elf64_Ehdr))
return -EINVAL;
/* only supports phdr that fits in one page */ /* only supports phdr that fits in one page */
if (ehdr->e_phnum > if (ehdr->e_phnum >
(PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr)) (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr))

View File

@ -639,4 +639,5 @@ static struct kunit_suite checksum_test_suite = {
kunit_test_suites(&checksum_test_suite); kunit_test_suites(&checksum_test_suite);
MODULE_AUTHOR("Noah Goldstein <goldstein.w.n@gmail.com>"); MODULE_AUTHOR("Noah Goldstein <goldstein.w.n@gmail.com>");
MODULE_DESCRIPTION("Test cases csum_* APIs");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -153,4 +153,5 @@ static struct kunit_suite cmdline_test_suite = {
}; };
kunit_test_suite(cmdline_test_suite); kunit_test_suite(cmdline_test_suite);
MODULE_DESCRIPTION("Test cases for API provided by cmdline.c");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -83,4 +83,5 @@ static int __init dhry_init(void)
module_init(dhry_init); module_init(dhry_init);
MODULE_AUTHOR("Geert Uytterhoeven <geert+renesas@glider.be>"); MODULE_AUTHOR("Geert Uytterhoeven <geert+renesas@glider.be>");
MODULE_DESCRIPTION("Dhrystone benchmark test module");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -54,14 +54,19 @@ void __init dump_stack_set_arch_desc(const char *fmt, ...)
*/ */
void dump_stack_print_info(const char *log_lvl) void dump_stack_print_info(const char *log_lvl)
{ {
printk("%sCPU: %d PID: %d Comm: %.20s %s%s %s %.*s" BUILD_ID_FMT "\n", printk("%sCPU: %d UID: %u PID: %d Comm: %.20s %s%s %s %.*s" BUILD_ID_FMT "\n",
log_lvl, raw_smp_processor_id(), current->pid, current->comm, log_lvl, raw_smp_processor_id(),
__kuid_val(current_real_cred()->euid),
current->pid, current->comm,
kexec_crash_loaded() ? "Kdump: loaded " : "", kexec_crash_loaded() ? "Kdump: loaded " : "",
print_tainted(), print_tainted(),
init_utsname()->release, init_utsname()->release,
(int)strcspn(init_utsname()->version, " "), (int)strcspn(init_utsname()->version, " "),
init_utsname()->version, BUILD_ID_VAL); init_utsname()->version, BUILD_ID_VAL);
if (get_taint())
printk("%s%s\n", log_lvl, print_tainted_verbose());
if (dump_stack_arch_desc_str[0] != '\0') if (dump_stack_arch_desc_str[0] != '\0')
printk("%sHardware name: %s\n", printk("%sHardware name: %s\n",
log_lvl, dump_stack_arch_desc_str); log_lvl, dump_stack_arch_desc_str);

View File

@ -1093,4 +1093,5 @@ static struct kunit_suite fortify_test_suite = {
kunit_test_suite(fortify_test_suite); kunit_test_suite(fortify_test_suite);
MODULE_DESCRIPTION("Runtime test cases for CONFIG_FORTIFY_SOURCE");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -314,4 +314,5 @@ static struct kunit_suite hashtable_test_module = {
kunit_test_suites(&hashtable_test_module); kunit_test_suites(&hashtable_test_module);
MODULE_DESCRIPTION("KUnit test for the Kernel Hashtable structures");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -46,4 +46,5 @@ static struct kunit_suite is_signed_type_test_suite = {
kunit_test_suite(is_signed_type_test_suite); kunit_test_suite(is_signed_type_test_suite);
MODULE_DESCRIPTION("is_signed_type() KUnit test suite");
MODULE_LICENSE("Dual MIT/GPL"); MODULE_LICENSE("Dual MIT/GPL");

View File

@ -108,4 +108,5 @@ void rational_best_approximation(
EXPORT_SYMBOL(rational_best_approximation); EXPORT_SYMBOL(rational_best_approximation);
MODULE_DESCRIPTION("Rational fraction support library");
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2");

View File

@ -510,4 +510,5 @@ static struct kunit_suite memcpy_test_suite = {
kunit_test_suite(memcpy_test_suite); kunit_test_suite(memcpy_test_suite);
MODULE_DESCRIPTION("test cases for memcpy(), memmove(), and memset()");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -1237,4 +1237,5 @@ static struct kunit_suite overflow_test_suite = {
kunit_test_suite(overflow_test_suite); kunit_test_suite(overflow_test_suite);
MODULE_DESCRIPTION("Test cases for arithmetic overflow checks");
MODULE_LICENSE("Dual MIT/GPL"); MODULE_LICENSE("Dual MIT/GPL");

View File

@ -73,17 +73,50 @@ void percpu_counter_set(struct percpu_counter *fbc, s64 amount)
EXPORT_SYMBOL(percpu_counter_set); EXPORT_SYMBOL(percpu_counter_set);
/* /*
* local_irq_save() is needed to make the function irq safe: * Add to a counter while respecting batch size.
* - The slow path would be ok as protected by an irq-safe spinlock. *
* - this_cpu_add would be ok as it is irq-safe by definition. * There are 2 implementations, both dealing with the following problem:
* But: *
* The decision slow path/fast path and the actual update must be atomic, too. * The decision slow path/fast path and the actual update must be atomic.
* Otherwise a call in process context could check the current values and * Otherwise a call in process context could check the current values and
* decide that the fast path can be used. If now an interrupt occurs before * decide that the fast path can be used. If now an interrupt occurs before
* the this_cpu_add(), and the interrupt updates this_cpu(*fbc->counters), * the this_cpu_add(), and the interrupt updates this_cpu(*fbc->counters),
* then the this_cpu_add() that is executed after the interrupt has completed * then the this_cpu_add() that is executed after the interrupt has completed
* can produce values larger than "batch" or even overflows. * can produce values larger than "batch" or even overflows.
*/ */
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
/*
* Safety against interrupts is achieved in 2 ways:
* 1. the fast path uses local cmpxchg (note: no lock prefix)
* 2. the slow path operates with interrupts disabled
*/
void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch)
{
s64 count;
unsigned long flags;
count = this_cpu_read(*fbc->counters);
do {
if (unlikely(abs(count + amount) >= batch)) {
raw_spin_lock_irqsave(&fbc->lock, flags);
/*
* Note: by now we might have migrated to another CPU
* or the value might have changed.
*/
count = __this_cpu_read(*fbc->counters);
fbc->count += count + amount;
__this_cpu_sub(*fbc->counters, count);
raw_spin_unlock_irqrestore(&fbc->lock, flags);
return;
}
} while (!this_cpu_try_cmpxchg(*fbc->counters, &count, count + amount));
}
#else
/*
* local_irq_save() is used to make the function irq safe:
* - The slow path would be ok as protected by an irq-safe spinlock.
* - this_cpu_add would be ok as it is irq-safe by definition.
*/
void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch)
{ {
s64 count; s64 count;
@ -101,6 +134,7 @@ void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch)
} }
local_irq_restore(flags); local_irq_restore(flags);
} }
#endif
EXPORT_SYMBOL(percpu_counter_add_batch); EXPORT_SYMBOL(percpu_counter_add_batch);
/* /*

Some files were not shown because too many files have changed in this diff Show More