crypto: tea - stop using cra_alignmask

Instead of specifying a nonzero alignmask, use the unaligned access
helpers.  This eliminates unnecessary alignment operations on most CPUs,
which can handle unaligned accesses efficiently, and brings us a step
closer to eventually removing support for the alignmask field.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Eric Biggers 2024-12-07 11:57:47 -08:00 committed by Herbert Xu
parent 6c178fd66b
commit 5e252f490c

View File

@ -18,7 +18,7 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <asm/byteorder.h> #include <linux/unaligned.h>
#include <linux/types.h> #include <linux/types.h>
#define TEA_KEY_SIZE 16 #define TEA_KEY_SIZE 16
@ -43,12 +43,11 @@ static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len) unsigned int key_len)
{ {
struct tea_ctx *ctx = crypto_tfm_ctx(tfm); struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
ctx->KEY[0] = le32_to_cpu(key[0]); ctx->KEY[0] = get_unaligned_le32(&in_key[0]);
ctx->KEY[1] = le32_to_cpu(key[1]); ctx->KEY[1] = get_unaligned_le32(&in_key[4]);
ctx->KEY[2] = le32_to_cpu(key[2]); ctx->KEY[2] = get_unaligned_le32(&in_key[8]);
ctx->KEY[3] = le32_to_cpu(key[3]); ctx->KEY[3] = get_unaligned_le32(&in_key[12]);
return 0; return 0;
@ -59,11 +58,9 @@ static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
u32 y, z, n, sum = 0; u32 y, z, n, sum = 0;
u32 k0, k1, k2, k3; u32 k0, k1, k2, k3;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm); struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
k0 = ctx->KEY[0]; k0 = ctx->KEY[0];
k1 = ctx->KEY[1]; k1 = ctx->KEY[1];
@ -78,8 +75,8 @@ static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
@ -87,11 +84,9 @@ static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
u32 y, z, n, sum; u32 y, z, n, sum;
u32 k0, k1, k2, k3; u32 k0, k1, k2, k3;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm); struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
k0 = ctx->KEY[0]; k0 = ctx->KEY[0];
k1 = ctx->KEY[1]; k1 = ctx->KEY[1];
@ -108,20 +103,19 @@ static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
sum -= TEA_DELTA; sum -= TEA_DELTA;
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key, static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len) unsigned int key_len)
{ {
struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
ctx->KEY[0] = le32_to_cpu(key[0]); ctx->KEY[0] = get_unaligned_le32(&in_key[0]);
ctx->KEY[1] = le32_to_cpu(key[1]); ctx->KEY[1] = get_unaligned_le32(&in_key[4]);
ctx->KEY[2] = le32_to_cpu(key[2]); ctx->KEY[2] = get_unaligned_le32(&in_key[8]);
ctx->KEY[3] = le32_to_cpu(key[3]); ctx->KEY[3] = get_unaligned_le32(&in_key[12]);
return 0; return 0;
@ -132,11 +126,9 @@ static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
u32 y, z, sum = 0; u32 y, z, sum = 0;
u32 limit = XTEA_DELTA * XTEA_ROUNDS; u32 limit = XTEA_DELTA * XTEA_ROUNDS;
struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
while (sum != limit) { while (sum != limit) {
y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
@ -144,19 +136,17 @@ static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{ {
u32 y, z, sum; u32 y, z, sum;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm); struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
sum = XTEA_DELTA * XTEA_ROUNDS; sum = XTEA_DELTA * XTEA_ROUNDS;
@ -166,8 +156,8 @@ static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]); y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
@ -176,11 +166,9 @@ static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
u32 y, z, sum = 0; u32 y, z, sum = 0;
u32 limit = XTEA_DELTA * XTEA_ROUNDS; u32 limit = XTEA_DELTA * XTEA_ROUNDS;
struct xtea_ctx *ctx = crypto_tfm_ctx(tfm); struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
while (sum != limit) { while (sum != limit) {
y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]; y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
@ -188,19 +176,17 @@ static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]; z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{ {
u32 y, z, sum; u32 y, z, sum;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm); struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = le32_to_cpu(in[0]); y = get_unaligned_le32(&src[0]);
z = le32_to_cpu(in[1]); z = get_unaligned_le32(&src[4]);
sum = XTEA_DELTA * XTEA_ROUNDS; sum = XTEA_DELTA * XTEA_ROUNDS;
@ -210,8 +196,8 @@ static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3]; y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
} }
out[0] = cpu_to_le32(y); put_unaligned_le32(y, &dst[0]);
out[1] = cpu_to_le32(z); put_unaligned_le32(z, &dst[4]);
} }
static struct crypto_alg tea_algs[3] = { { static struct crypto_alg tea_algs[3] = { {
@ -220,7 +206,6 @@ static struct crypto_alg tea_algs[3] = { {
.cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = TEA_BLOCK_SIZE, .cra_blocksize = TEA_BLOCK_SIZE,
.cra_ctxsize = sizeof (struct tea_ctx), .cra_ctxsize = sizeof (struct tea_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_u = { .cipher = { .cra_u = { .cipher = {
.cia_min_keysize = TEA_KEY_SIZE, .cia_min_keysize = TEA_KEY_SIZE,
@ -234,7 +219,6 @@ static struct crypto_alg tea_algs[3] = { {
.cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = XTEA_BLOCK_SIZE, .cra_blocksize = XTEA_BLOCK_SIZE,
.cra_ctxsize = sizeof (struct xtea_ctx), .cra_ctxsize = sizeof (struct xtea_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_u = { .cipher = { .cra_u = { .cipher = {
.cia_min_keysize = XTEA_KEY_SIZE, .cia_min_keysize = XTEA_KEY_SIZE,
@ -248,7 +232,6 @@ static struct crypto_alg tea_algs[3] = { {
.cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = XTEA_BLOCK_SIZE, .cra_blocksize = XTEA_BLOCK_SIZE,
.cra_ctxsize = sizeof (struct xtea_ctx), .cra_ctxsize = sizeof (struct xtea_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_u = { .cipher = { .cra_u = { .cipher = {
.cia_min_keysize = XTEA_KEY_SIZE, .cia_min_keysize = XTEA_KEY_SIZE,