mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-29 17:22:07 +00:00
bpf: Add verifier support for dynptrs
This patch adds the bulk of the verifier work for supporting dynamic pointers (dynptrs) in bpf. A bpf_dynptr is opaque to the bpf program. It is a 16-byte structure defined internally as: struct bpf_dynptr_kern { void *data; u32 size; u32 offset; } __aligned(8); The upper 8 bits of *size* is reserved (it contains extra metadata about read-only status and dynptr type). Consequently, a dynptr only supports memory less than 16 MB. There are different types of dynptrs (eg malloc, ringbuf, ...). In this patchset, the most basic one, dynptrs to a bpf program's local memory, is added. For now only local memory that is of reg type PTR_TO_MAP_VALUE is supported. In the verifier, dynptr state information will be tracked in stack slots. When the program passes in an uninitialized dynptr (ARG_PTR_TO_DYNPTR | MEM_UNINIT), the stack slots corresponding to the frame pointer where the dynptr resides at are marked STACK_DYNPTR. For helper functions that take in initialized dynptrs (eg bpf_dynptr_read + bpf_dynptr_write which are added later in this patchset), the verifier enforces that the dynptr has been initialized properly by checking that their corresponding stack slots have been marked as STACK_DYNPTR. The 6th patch in this patchset adds test cases that the verifier should successfully reject, such as for example attempting to use a dynptr after doing a direct write into it inside the bpf program. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20220523210712.3641569-2-joannelkoong@gmail.com
This commit is contained in:
parent
1ec5ee8c8a
commit
97e03f5210
@ -392,10 +392,15 @@ enum bpf_type_flag {
|
||||
|
||||
MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
|
||||
|
||||
/* DYNPTR points to memory local to the bpf program. */
|
||||
DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
|
||||
|
||||
__BPF_TYPE_FLAG_MAX,
|
||||
__BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
|
||||
};
|
||||
|
||||
#define DYNPTR_TYPE_FLAG_MASK DYNPTR_TYPE_LOCAL
|
||||
|
||||
/* Max number of base types. */
|
||||
#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
|
||||
|
||||
@ -438,6 +443,7 @@ enum bpf_arg_type {
|
||||
ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
|
||||
ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
|
||||
ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
|
||||
ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
|
||||
__BPF_ARG_TYPE_MAX,
|
||||
|
||||
/* Extended arg_types. */
|
||||
@ -2376,4 +2382,26 @@ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
|
||||
u32 **bin_buf, u32 num_args);
|
||||
void bpf_bprintf_cleanup(void);
|
||||
|
||||
/* the implementation of the opaque uapi struct bpf_dynptr */
|
||||
struct bpf_dynptr_kern {
|
||||
void *data;
|
||||
/* Size represents the number of usable bytes of dynptr data.
|
||||
* If for example the offset is at 4 for a local dynptr whose data is
|
||||
* of type u64, the number of usable bytes is 4.
|
||||
*
|
||||
* The upper 8 bits are reserved. It is as follows:
|
||||
* Bits 0 - 23 = size
|
||||
* Bits 24 - 30 = dynptr type
|
||||
* Bit 31 = whether dynptr is read-only
|
||||
*/
|
||||
u32 size;
|
||||
u32 offset;
|
||||
} __aligned(8);
|
||||
|
||||
enum bpf_dynptr_type {
|
||||
BPF_DYNPTR_TYPE_INVALID,
|
||||
/* Points to memory that is local to the bpf program */
|
||||
BPF_DYNPTR_TYPE_LOCAL,
|
||||
};
|
||||
|
||||
#endif /* _LINUX_BPF_H */
|
||||
|
@ -72,6 +72,18 @@ struct bpf_reg_state {
|
||||
|
||||
u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
|
||||
|
||||
/* For dynptr stack slots */
|
||||
struct {
|
||||
enum bpf_dynptr_type type;
|
||||
/* A dynptr is 16 bytes so it takes up 2 stack slots.
|
||||
* We need to track which slot is the first slot
|
||||
* to protect against cases where the user may try to
|
||||
* pass in an address starting at the second slot of the
|
||||
* dynptr.
|
||||
*/
|
||||
bool first_slot;
|
||||
} dynptr;
|
||||
|
||||
/* Max size from any of the above. */
|
||||
struct {
|
||||
unsigned long raw1;
|
||||
@ -174,9 +186,15 @@ enum bpf_stack_slot_type {
|
||||
STACK_SPILL, /* register spilled into stack */
|
||||
STACK_MISC, /* BPF program wrote some data into this slot */
|
||||
STACK_ZERO, /* BPF program wrote constant zero */
|
||||
/* A dynptr is stored in this stack slot. The type of dynptr
|
||||
* is stored in bpf_stack_state->spilled_ptr.dynptr.type
|
||||
*/
|
||||
STACK_DYNPTR,
|
||||
};
|
||||
|
||||
#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
|
||||
#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
|
||||
#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
|
||||
|
||||
struct bpf_stack_state {
|
||||
struct bpf_reg_state spilled_ptr;
|
||||
|
@ -6528,6 +6528,11 @@ struct bpf_timer {
|
||||
__u64 :64;
|
||||
} __attribute__((aligned(8)));
|
||||
|
||||
struct bpf_dynptr {
|
||||
__u64 :64;
|
||||
__u64 :64;
|
||||
} __attribute__((aligned(8)));
|
||||
|
||||
struct bpf_sysctl {
|
||||
__u32 write; /* Sysctl is being read (= 0) or written (= 1).
|
||||
* Allows 1,2,4-byte read, but no write.
|
||||
|
@ -259,6 +259,7 @@ struct bpf_call_arg_meta {
|
||||
u32 ret_btf_id;
|
||||
u32 subprogno;
|
||||
struct bpf_map_value_off_desc *kptr_off_desc;
|
||||
u8 uninit_dynptr_regno;
|
||||
};
|
||||
|
||||
struct btf *btf_vmlinux;
|
||||
@ -581,6 +582,7 @@ static char slot_type_char[] = {
|
||||
[STACK_SPILL] = 'r',
|
||||
[STACK_MISC] = 'm',
|
||||
[STACK_ZERO] = '0',
|
||||
[STACK_DYNPTR] = 'd',
|
||||
};
|
||||
|
||||
static void print_liveness(struct bpf_verifier_env *env,
|
||||
@ -596,6 +598,25 @@ static void print_liveness(struct bpf_verifier_env *env,
|
||||
verbose(env, "D");
|
||||
}
|
||||
|
||||
static int get_spi(s32 off)
|
||||
{
|
||||
return (-off - 1) / BPF_REG_SIZE;
|
||||
}
|
||||
|
||||
static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
|
||||
{
|
||||
int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
|
||||
|
||||
/* We need to check that slots between [spi - nr_slots + 1, spi] are
|
||||
* within [0, allocated_stack).
|
||||
*
|
||||
* Please note that the spi grows downwards. For example, a dynptr
|
||||
* takes the size of two stack slots; the first slot will be at
|
||||
* spi and the second slot will be at spi - 1.
|
||||
*/
|
||||
return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
|
||||
}
|
||||
|
||||
static struct bpf_func_state *func(struct bpf_verifier_env *env,
|
||||
const struct bpf_reg_state *reg)
|
||||
{
|
||||
@ -647,6 +668,108 @@ static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
|
||||
env->scratched_stack_slots = ~0ULL;
|
||||
}
|
||||
|
||||
static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
|
||||
{
|
||||
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
|
||||
case DYNPTR_TYPE_LOCAL:
|
||||
return BPF_DYNPTR_TYPE_LOCAL;
|
||||
default:
|
||||
return BPF_DYNPTR_TYPE_INVALID;
|
||||
}
|
||||
}
|
||||
|
||||
static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
||||
enum bpf_arg_type arg_type, int insn_idx)
|
||||
{
|
||||
struct bpf_func_state *state = func(env, reg);
|
||||
enum bpf_dynptr_type type;
|
||||
int spi, i;
|
||||
|
||||
spi = get_spi(reg->off);
|
||||
|
||||
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
|
||||
return -EINVAL;
|
||||
|
||||
for (i = 0; i < BPF_REG_SIZE; i++) {
|
||||
state->stack[spi].slot_type[i] = STACK_DYNPTR;
|
||||
state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
|
||||
}
|
||||
|
||||
type = arg_to_dynptr_type(arg_type);
|
||||
if (type == BPF_DYNPTR_TYPE_INVALID)
|
||||
return -EINVAL;
|
||||
|
||||
state->stack[spi].spilled_ptr.dynptr.first_slot = true;
|
||||
state->stack[spi].spilled_ptr.dynptr.type = type;
|
||||
state->stack[spi - 1].spilled_ptr.dynptr.type = type;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
||||
{
|
||||
struct bpf_func_state *state = func(env, reg);
|
||||
int spi, i;
|
||||
|
||||
spi = get_spi(reg->off);
|
||||
|
||||
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
|
||||
return -EINVAL;
|
||||
|
||||
for (i = 0; i < BPF_REG_SIZE; i++) {
|
||||
state->stack[spi].slot_type[i] = STACK_INVALID;
|
||||
state->stack[spi - 1].slot_type[i] = STACK_INVALID;
|
||||
}
|
||||
|
||||
state->stack[spi].spilled_ptr.dynptr.first_slot = false;
|
||||
state->stack[spi].spilled_ptr.dynptr.type = 0;
|
||||
state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
|
||||
{
|
||||
struct bpf_func_state *state = func(env, reg);
|
||||
int spi = get_spi(reg->off);
|
||||
int i;
|
||||
|
||||
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
|
||||
return true;
|
||||
|
||||
for (i = 0; i < BPF_REG_SIZE; i++) {
|
||||
if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
|
||||
state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
|
||||
enum bpf_arg_type arg_type)
|
||||
{
|
||||
struct bpf_func_state *state = func(env, reg);
|
||||
int spi = get_spi(reg->off);
|
||||
int i;
|
||||
|
||||
if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
|
||||
!state->stack[spi].spilled_ptr.dynptr.first_slot)
|
||||
return false;
|
||||
|
||||
for (i = 0; i < BPF_REG_SIZE; i++) {
|
||||
if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
|
||||
state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
|
||||
return false;
|
||||
}
|
||||
|
||||
/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
|
||||
if (arg_type == ARG_PTR_TO_DYNPTR)
|
||||
return true;
|
||||
|
||||
return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type);
|
||||
}
|
||||
|
||||
/* The reg state of a pointer or a bounded scalar was saved when
|
||||
* it was spilled to the stack.
|
||||
*/
|
||||
@ -5400,6 +5523,11 @@ static bool arg_type_is_release(enum bpf_arg_type type)
|
||||
return type & OBJ_RELEASE;
|
||||
}
|
||||
|
||||
static bool arg_type_is_dynptr(enum bpf_arg_type type)
|
||||
{
|
||||
return base_type(type) == ARG_PTR_TO_DYNPTR;
|
||||
}
|
||||
|
||||
static int int_ptr_type_to_size(enum bpf_arg_type type)
|
||||
{
|
||||
if (type == ARG_PTR_TO_INT)
|
||||
@ -5539,6 +5667,7 @@ static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
|
||||
[ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
|
||||
[ARG_PTR_TO_TIMER] = &timer_types,
|
||||
[ARG_PTR_TO_KPTR] = &kptr_types,
|
||||
[ARG_PTR_TO_DYNPTR] = &stack_ptr_types,
|
||||
};
|
||||
|
||||
static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
|
||||
@ -5628,8 +5757,13 @@ int check_func_arg_reg_off(struct bpf_verifier_env *env,
|
||||
bool fixed_off_ok = false;
|
||||
|
||||
switch ((u32)type) {
|
||||
case SCALAR_VALUE:
|
||||
/* Pointer types where reg offset is explicitly allowed: */
|
||||
case PTR_TO_STACK:
|
||||
if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
|
||||
verbose(env, "cannot pass in dynptr at an offset\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
fallthrough;
|
||||
case PTR_TO_PACKET:
|
||||
case PTR_TO_PACKET_META:
|
||||
case PTR_TO_MAP_KEY:
|
||||
@ -5639,7 +5773,7 @@ int check_func_arg_reg_off(struct bpf_verifier_env *env,
|
||||
case PTR_TO_MEM | MEM_ALLOC:
|
||||
case PTR_TO_BUF:
|
||||
case PTR_TO_BUF | MEM_RDONLY:
|
||||
case PTR_TO_STACK:
|
||||
case SCALAR_VALUE:
|
||||
/* Some of the argument types nevertheless require a
|
||||
* zero register offset.
|
||||
*/
|
||||
@ -5837,6 +5971,36 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
|
||||
bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
|
||||
|
||||
err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta);
|
||||
} else if (arg_type_is_dynptr(arg_type)) {
|
||||
if (arg_type & MEM_UNINIT) {
|
||||
if (!is_dynptr_reg_valid_uninit(env, reg)) {
|
||||
verbose(env, "Dynptr has to be an uninitialized dynptr\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* We only support one dynptr being uninitialized at the moment,
|
||||
* which is sufficient for the helper functions we have right now.
|
||||
*/
|
||||
if (meta->uninit_dynptr_regno) {
|
||||
verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
meta->uninit_dynptr_regno = regno;
|
||||
} else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) {
|
||||
const char *err_extra = "";
|
||||
|
||||
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
|
||||
case DYNPTR_TYPE_LOCAL:
|
||||
err_extra = "local ";
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
verbose(env, "Expected an initialized %sdynptr as arg #%d\n",
|
||||
err_extra, arg + 1);
|
||||
return -EINVAL;
|
||||
}
|
||||
} else if (arg_type_is_alloc_size(arg_type)) {
|
||||
if (!tnum_is_const(reg->var_off)) {
|
||||
verbose(env, "R%d is not a known constant'\n",
|
||||
@ -6970,9 +7134,27 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
|
||||
|
||||
regs = cur_regs(env);
|
||||
|
||||
if (meta.uninit_dynptr_regno) {
|
||||
/* we write BPF_DW bits (8 bytes) at a time */
|
||||
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
|
||||
err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
|
||||
i, BPF_DW, BPF_WRITE, -1, false);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno],
|
||||
fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
|
||||
insn_idx);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
if (meta.release_regno) {
|
||||
err = -EINVAL;
|
||||
if (meta.ref_obj_id)
|
||||
if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
|
||||
err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
|
||||
else if (meta.ref_obj_id)
|
||||
err = release_reference(env, meta.ref_obj_id);
|
||||
/* meta.ref_obj_id can only be 0 if register that is meant to be
|
||||
* released is NULL, which must be > R0.
|
||||
|
@ -634,6 +634,7 @@ class PrinterHelpers(Printer):
|
||||
'struct file',
|
||||
'struct bpf_timer',
|
||||
'struct mptcp_sock',
|
||||
'struct bpf_dynptr',
|
||||
]
|
||||
known_types = {
|
||||
'...',
|
||||
@ -684,6 +685,7 @@ class PrinterHelpers(Printer):
|
||||
'struct file',
|
||||
'struct bpf_timer',
|
||||
'struct mptcp_sock',
|
||||
'struct bpf_dynptr',
|
||||
}
|
||||
mapped_types = {
|
||||
'u8': '__u8',
|
||||
|
@ -6528,6 +6528,11 @@ struct bpf_timer {
|
||||
__u64 :64;
|
||||
} __attribute__((aligned(8)));
|
||||
|
||||
struct bpf_dynptr {
|
||||
__u64 :64;
|
||||
__u64 :64;
|
||||
} __attribute__((aligned(8)));
|
||||
|
||||
struct bpf_sysctl {
|
||||
__u32 write; /* Sysctl is being read (= 0) or written (= 1).
|
||||
* Allows 1,2,4-byte read, but no write.
|
||||
|
Loading…
Reference in New Issue
Block a user