gpio updates for v6.11-rc1

GPIOLIB core:
 - rework kfifo handling rework in the character device code
 - improve the labeling of GPIOs requested as interrupts and show more info
   on interrupt-only GPIOs in debugfs
 - remove unused APIs
 - unexport interfaces that are only used from the core GPIO code
 - drop the return value from gpiochip_set_desc_names() as it cannot fail
 - move a string array definition out of a header and into a specific
   compilation unit
 - convert the last user of gpiochip_get_desc() other than GPIO core to using
   a safer alternative
 - use array_index_nospec() where applicable
 
 New drivers:
 - add a "virtual GPIO consumer" module that allows requesting GPIOs from actual
   hardware and driving tests of the in-kernel GPIO API from user-space over
   debugfs
 - add a GPIO-based "sloppy" logic analyzer module useful for "first glance"
   debugging on remote boards
 
 Driver improvements:
 - add support for a new model to gpio-pca953x
 - lock GPIOs as interrupts in gpio-sim when the lines are requested as irqs
   via the simulator domain + some other minor improvements
 - improve error reporting in gpio-syscon
 - convert gpio-ath79 to using dynamic GPIO base and range
 - use pcibios_err_to_errno() for converting PCIBIOS error codes to errno
   vaues in gpio-amd8111 and gpio-rdc321x
 - allow building gpio-brcmstb for the BCM2835 architecture
 
 DT bindings:
 - convert DT bindings for lsi,zevio, mpc8xxx, and atmel to DT schema
 - document new properties for aspeed,gpio, fsl,qoriq-gpio and gpio-vf610
 - document new compatibles for pca953x and fsl,qoriq-gpio
 
 Documentation:
 - document stricter behavior of the GPIO character device uAPI with regards to
   reconfiguring requested line without direction set
 - clarify the effect of the active-low flag on line values and edges
 - remove documentation for the legacy GPIO API in order to stop tempting
   people to use it
 - document the preference for using pread() for reading edge events in the
   sysfs API
 
 Other:
 - add an extended initializer to the interrupt simulator allowing to specify
   a number of callbacks callers can use to be notified about irqs being
   requested and released
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEFp3rbAvDxGAT0sefEacuoBRx13IFAmaU3n4ACgkQEacuoBRx
 13LnYxAAgIfV2MQxdlB8+I3+PrObiom9uykNpoj8Ho3FiGroJEmSi2Vg9NOP5j8n
 7THjBDFqKk0USMdzGgWDe+u0oCpql8ONLd+lxPiKzRxkebMVzlumeNzWNEE3wqxO
 MdV3AOs9DLM1a4MAuv9E8PgooBVR8Cyqs3tc3wwpZRKoSZBIzwrjFL3tO1P8Dezv
 9xoPqIiMJRBZr8jifU/ZRdLG3gYKqgQH1Mha7bm94ebUwA6q/hxtGYAtc2a3Q+dF
 6lPrPONJBN6/YwvmoDddm2ppoiyWN7QdX9DQjJvKBcNRTZSE1EAggdh8kNnCoa1d
 +PeClIAJLl8ZSkdMS8yvMZIpduK4gTl7yEBMkER1d0JoJLkTowqKsvONgU12Npr2
 3rwbpACt/kVt5v0lRwaafj5vnD3NgiiVCeuZZz99ICbrXqe6rYszMIemKDYWWlTn
 kEFrTM5ql+dwAfvp8Y9JZf4oOgInHbF3LBKM34PKMW9D0a4aQC/HTfmtHobeNHzn
 FmY9ysHjMG6fvuwnkpojW6N3/LLwt+TX8jik9x0O42AE7qXn6a8U2g6RUg6rJOdd
 mUiIX3+rn+AaI6eKPvUNp2h391jH1K3hBCAca4cNAIKpqPuE/A/B5RyZZnL5Q7HQ
 Iz2G3hSlTBVPf7QWMkBUfMzQMwmvqfoKsZljC5y7YgafJc5cf4k=
 =kK88
 -----END PGP SIGNATURE-----

Merge tag 'gpio-updates-for-v6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux

Pull gpio updates from Bartosz Golaszewski:
 "The majority of added lines are two new modules: the GPIO virtual
  consumer module that improves our ability to add automated tests for
  the kernel API and the "sloppy" logic analyzer module that uses the
  GPIO API to implement a coarse-grained debugging tool for useful for
  remote development.

  Other than that we have the usual assortment of various driver
  extensions, improvements to the core GPIO code, DT-bindings and other
  documentation updates as well as an extension to the interrupt
  simulator:

  GPIOLIB core:
   - rework kfifo handling rework in the character device code
   - improve the labeling of GPIOs requested as interrupts and show more
     info on interrupt-only GPIOs in debugfs
   - remove unused APIs
   - unexport interfaces that are only used from the core GPIO code
   - drop the return value from gpiochip_set_desc_names() as it cannot
     fail
   - move a string array definition out of a header and into a specific
     compilation unit
   - convert the last user of gpiochip_get_desc() other than GPIO core
     to using a safer alternative
   - use array_index_nospec() where applicable

  New drivers:
   - add a "virtual GPIO consumer" module that allows requesting GPIOs
     from actual hardware and driving tests of the in-kernel GPIO API
     from user-space over debugfs
   - add a GPIO-based "sloppy" logic analyzer module useful for "first
     glance" debugging on remote boards

  Driver improvements:
   - add support for a new model to gpio-pca953x
   - lock GPIOs as interrupts in gpio-sim when the lines are requested
     as irqs via the simulator domain + some other minor improvements
   - improve error reporting in gpio-syscon
   - convert gpio-ath79 to using dynamic GPIO base and range
   - use pcibios_err_to_errno() for converting PCIBIOS error codes to
     errno vaues in gpio-amd8111 and gpio-rdc321x
   - allow building gpio-brcmstb for the BCM2835 architecture

  DT bindings:
   - convert DT bindings for lsi,zevio, mpc8xxx, and atmel to DT schema
   - document new properties for aspeed,gpio, fsl,qoriq-gpio and
     gpio-vf610
   - document new compatibles for pca953x and fsl,qoriq-gpio

  Documentation:
   - document stricter behavior of the GPIO character device uAPI with
     regards to reconfiguring requested line without direction set
   - clarify the effect of the active-low flag on line values and edges
   - remove documentation for the legacy GPIO API in order to stop
     tempting people to use it
   - document the preference for using pread() for reading edge events
     in the sysfs API

  Other:
   - add an extended initializer to the interrupt simulator allowing to
     specify a number of callbacks callers can use to be notified about
     irqs being requested and released"

* tag 'gpio-updates-for-v6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux: (41 commits)
  gpio: mc33880: Convert comma to semicolon
  gpio: virtuser: actually use the "trimmed" local variable
  dt-bindings: gpio: convert Atmel GPIO to json-schema
  gpio: virtuser: new virtual testing driver for the GPIO API
  dt-bindings: gpio: vf610: Allow gpio-line-names to be set
  gpio: sim: lock GPIOs as interrupts when they are requested
  genirq/irq_sim: add an extended irq_sim initializer
  dt-bindings: gpio: fsl,qoriq-gpio: Add compatible string fsl,ls1046a-gpio
  gpiolib: unexport gpiochip_get_desc()
  gpio: add sloppy logic analyzer using polling
  Documentation: gpio: Reconfiguration with unset direction (uAPI v2)
  Documentation: gpio: Reconfiguration with unset direction (uAPI v1)
  dt-bindings: gpio: fsl,qoriq-gpio: add common property gpio-line-names
  gpio: ath79: convert to dynamic GPIO base allocation
  pinctrl: da9062: replace gpiochip_get_desc() with gpio_device_get_desc()
  gpiolib: put gpio_suffixes in a single compilation unit
  Documentation: gpio: Clarify effect of active low flag on line edges
  Documentation: gpio: Clarify effect of active low flag on line values
  gpiolib: Remove data-less gpiochip_add() function
  gpio: sim: use devm_mutex_init()
  ...
This commit is contained in:
Linus Torvalds 2024-07-15 17:53:24 -07:00
commit b3c0eccb48
54 changed files with 3187 additions and 2123 deletions

View File

@ -0,0 +1,177 @@
.. SPDX-License-Identifier: GPL-2.0-only
Virtual GPIO Consumer
=====================
The virtual GPIO Consumer module allows users to instantiate virtual devices
that request GPIOs and then control their behavior over debugfs. Virtual
consumer devices can be instantiated from device-tree or over configfs.
A virtual consumer uses the driver-facing GPIO APIs and allows to cover it with
automated tests driven by user-space. The GPIOs are requested using
``gpiod_get_array()`` and so we support multiple GPIOs per connector ID.
Creating GPIO consumers
-----------------------
The gpio-consumer module registers a configfs subsystem called
``'gpio-virtuser'``. For details of the configfs filesystem, please refer to
the configfs documentation.
The user can create a hierarchy of configfs groups and items as well as modify
values of exposed attributes. Once the consumer is instantiated, this hierarchy
will be translated to appropriate device properties. The general structure is:
**Group:** ``/config/gpio-virtuser``
This is the top directory of the gpio-consumer configfs tree.
**Group:** ``/config/gpio-consumer/example-name``
**Attribute:** ``/config/gpio-consumer/example-name/live``
**Attribute:** ``/config/gpio-consumer/example-name/dev_name``
This is a directory representing a GPIO consumer device.
The read-only ``dev_name`` attribute exposes the name of the device as it will
appear in the system on the platform bus. This is useful for locating the
associated debugfs directory under
``/sys/kernel/debug/gpio-virtuser/$dev_name``.
The ``'live'`` attribute allows to trigger the actual creation of the device
once it's fully configured. The accepted values are: ``'1'`` to enable the
virtual device and ``'0'`` to disable and tear it down.
Creating GPIO lookup tables
---------------------------
Users can create a number of configfs groups under the device group:
**Group:** ``/config/gpio-consumer/example-name/con_id``
The ``'con_id'`` directory represents a single GPIO lookup and its value maps
to the ``'con_id'`` argument of the ``gpiod_get()`` function. For example:
``con_id`` == ``'reset'`` maps to the ``reset-gpios`` device property.
Users can assign a number of GPIOs to each lookup. Each GPIO is a sub-directory
with a user-defined name under the ``'con_id'`` group.
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/key``
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/offset``
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/drive``
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/pull``
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/active_low``
**Attribute:** ``/config/gpio-consumer/example-name/con_id/0/transitory``
This is a group describing a single GPIO in the ``con_id-gpios`` property.
For virtual consumers created using configfs we use machine lookup tables so
this group can be considered as a mapping between the filesystem and the fields
of a single entry in ``'struct gpiod_lookup'``.
The ``'key'`` attribute represents either the name of the chip this GPIO
belongs to or the GPIO line name. This depends on the value of the ``'offset'``
attribute: if its value is >= 0, then ``'key'`` represents the label of the
chip to lookup while ``'offset'`` represents the offset of the line in that
chip. If ``'offset'`` is < 0, then ``'key'`` represents the name of the line.
The remaining attributes map to the ``'flags'`` field of the GPIO lookup
struct. The first two take string values as arguments:
**``'drive'``:** ``'push-pull'``, ``'open-drain'``, ``'open-source'``
**``'pull'``:** ``'pull-up'``, ``'pull-down'``, ``'pull-disabled'``, ``'as-is'``
``'active_low'`` and ``'transitory'`` are boolean attributes.
Activating GPIO consumers
-------------------------
Once the confiuration is complete, the ``'live'`` attribute must be set to 1 in
order to instantiate the consumer. It can be set back to 0 to destroy the
virtual device. The module will synchronously wait for the new simulated device
to be successfully probed and if this doesn't happen, writing to ``'live'`` will
result in an error.
Device-tree
-----------
Virtual GPIO consumers can also be defined in device-tree. The compatible string
must be: ``"gpio-virtuser"`` with at least one property following the
standardized GPIO pattern.
An example device-tree code defining a virtual GPIO consumer:
.. code-block :: none
gpio-virt-consumer {
compatible = "gpio-virtuser";
foo-gpios = <&gpio0 5 GPIO_ACTIVE_LOW>, <&gpio1 2 0>;
bar-gpios = <&gpio0 6 0>;
};
Controlling virtual GPIO consumers
----------------------------------
Once active, the device will export debugfs attributes for controlling GPIO
arrays as well as each requested GPIO line separately. Let's consider the
following device property: ``foo-gpios = <&gpio0 0 0>, <&gpio0 4 0>;``.
The following debugfs attribute groups will be created:
**Group:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo/``
This is the group that will contain the attributes for the entire GPIO array.
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo/values``
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo/values_atomic``
Both attributes allow to read and set arrays of GPIO values. User must pass
exactly the number of values that the array contains in the form of a string
containing zeroes and ones representing inactive and active GPIO states
respectively. In this example: ``echo 11 > values``.
The ``values_atomic`` attribute works the same as ``values`` but the kernel
will execute the GPIO driver callbacks in interrupt context.
**Group:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/``
This is a group that represents a single GPIO with ``$index`` being its offset
in the array.
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/consumer``
Allows to set and read the consumer label of the GPIO line.
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/debounce``
Allows to set and read the debounce period of the GPIO line.
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/direction``
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/direction_atomic``
These two attributes allow to set the direction of the GPIO line. They accept
"input" and "output" as values. The atomic variant executes the driver callback
in interrupt context.
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/interrupts``
If the line is requested in input mode, writing ``1`` to this attribute will
make the module listen for edge interrupts on the GPIO. Writing ``0`` disables
the monitoring. Reading this attribute returns the current number of registered
interrupts (both edges).
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/value``
**Attribute:** ``/sys/kernel/debug/gpio-virtuser/$dev_name/gpiod:foo:$index/value_atomic``
Both attributes allow to read and set values of individual requested GPIO lines.
They accept the following values: ``1`` and ``0``.

View File

@ -10,6 +10,7 @@ GPIO
Character Device Userspace API <../../userspace-api/gpio/chardev>
gpio-aggregator
gpio-sim
gpio-virtuser
Obsolete APIs <obsolete>
.. only:: subproject and html

View File

@ -0,0 +1,93 @@
.. SPDX-License-Identifier: GPL-2.0
=============================================
Linux Kernel GPIO based sloppy logic analyzer
=============================================
:Author: Wolfram Sang
Introduction
============
This document briefly describes how to run the GPIO based in-kernel sloppy
logic analyzer running on an isolated CPU.
The sloppy logic analyzer will utilize a few GPIO lines in input mode on a
system to rapidly sample these digital lines, which will, if the Nyquist
criteria is met, result in a time series log with approximate waveforms as they
appeared on these lines. One way to use it is to analyze external traffic
connected to these GPIO lines with wires (i.e. digital probes), acting as a
common logic analyzer.
Another feature is to snoop on on-chip peripherals if the I/O cells of these
peripherals can be used in GPIO input mode at the same time as they are being
used as inputs or outputs for the peripheral. That means you could e.g. snoop
I2C traffic without any wiring (if your hardware supports it). In the pin
control subsystem such pin controllers are called "non-strict": a certain pin
can be used with a certain peripheral and as a GPIO input line at the same
time.
Note that this is a last resort analyzer which can be affected by latencies,
non-deterministic code paths and non-maskable interrupts. It is called 'sloppy'
for a reason. However, for e.g. remote development, it may be useful to get a
first view and aid further debugging.
Setup
=====
Your kernel must have CONFIG_DEBUG_FS and CONFIG_CPUSETS enabled. Ideally, your
runtime environment does not utilize cpusets otherwise, then isolation of a CPU
core is easiest. If you do need cpusets, check that helper script for the
sloppy logic analyzer does not interfere with your other settings.
Tell the kernel which GPIOs are used as probes. For a Device Tree based system,
you need to use the following bindings. Because these bindings are only for
debugging, there is no official schema::
i2c-analyzer {
compatible = "gpio-sloppy-logic-analyzer";
probe-gpios = <&gpio6 21 GPIO_OPEN_DRAIN>, <&gpio6 4 GPIO_OPEN_DRAIN>;
probe-names = "SCL", "SDA";
};
Note that you must provide a name for every GPIO specified. Currently a
maximum of 8 probes are supported. 32 are likely possible but are not
implemented yet.
Usage
=====
The logic analyzer is configurable via files in debugfs. However, it is
strongly recommended to not use them directly, but to use the script
``tools/gpio/gpio-sloppy-logic-analyzer``. Besides checking parameters more
extensively, it will isolate the CPU core so you will have the least
disturbance while measuring.
The script has a help option explaining the parameters. For the above DT
snippet which analyzes an I2C bus at 400kHz on a Renesas Salvator-XS board, the
following settings are used: The isolated CPU shall be CPU1 because it is a big
core in a big.LITTLE setup. Because CPU1 is the default, we don't need a
parameter. The bus speed is 400kHz. So, the sampling theorem says we need to
sample at least at 800kHz. However, falling edges of both signals in an I2C
start condition happen faster, so we need a higher sampling frequency, e.g.
``-s 1500000`` for 1.5MHz. Also, we don't want to sample right away but wait
for a start condition on an idle bus. So, we need to set a trigger to a falling
edge on SDA while SCL stays high, i.e. ``-t 1H+2F``. Last is the duration, let
us assume 15ms here which results in the parameter ``-d 15000``. So,
altogether::
gpio-sloppy-logic-analyzer -s 1500000 -t 1H+2F -d 15000
Note that the process will return you back to the prompt but a sub-process is
still sampling in the background. Unless this has finished, you will not find a
result file in the current or specified directory. For the above example, we
will then need to trigger I2C communication::
i2cdetect -y -r <your bus number>
Result is a .sr file to be consumed with PulseView or sigrok-cli from the free
`sigrok`_ project. It is a zip file which also contains the binary sample data
which may be consumed by other software. The filename is the logic analyzer
instance name plus a since-epoch timestamp.
.. _sigrok: https://sigrok.org/

View File

@ -32,6 +32,7 @@ Documentation/dev-tools/testing-overview.rst
kunit/index
ktap
checkuapi
gpio-sloppy-logic-analyzer
.. only:: subproject and html

View File

@ -33,6 +33,11 @@ properties:
gpio-controller: true
# Each SGPIO is represented as a pair of input and output GPIOs
gpio-line-names:
minItems: 160
maxItems: 256
'#gpio-cells':
const: 2
@ -41,6 +46,9 @@ properties:
interrupt-controller: true
'#interrupt-cells':
const: 2
clocks:
maxItems: 1
@ -55,6 +63,7 @@ required:
- '#gpio-cells'
- interrupts
- interrupt-controller
- '#interrupt-cells'
- ngpios
- clocks
- bus-frequency
@ -72,6 +81,7 @@ examples:
reg = <0x1e780200 0x0100>;
clocks = <&syscon ASPEED_CLK_APB>;
interrupt-controller;
#interrupt-cells = <2>;
ngpios = <80>;
bus-frequency = <12000000>;
};

View File

@ -0,0 +1,81 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/gpio/atmel,at91rm9200-gpio.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Microchip GPIO controller (PIO)
maintainers:
- Manikandan Muralidharan <manikandan.m@microchip.com>
properties:
compatible:
oneOf:
- items:
- enum:
- atmel,at91sam9x5-gpio
- microchip,sam9x60-gpio
- const: atmel,at91rm9200-gpio
- items:
- enum:
- microchip,sam9x7-gpio
- const: microchip,sam9x60-gpio
- const: atmel,at91rm9200-gpio
- items:
- const: atmel,at91rm9200-gpio
reg:
maxItems: 1
interrupts:
maxItems: 1
interrupt-controller: true
"#interrupt-cells":
const: 2
gpio-controller: true
gpio-line-names: true
"#gpio-cells":
const: 2
clocks:
maxItems: 1
"#gpio-lines":
description:
Number of gpio, 32 by default if absent
maxItems: 1
default: 32
required:
- compatible
- reg
- interrupts
- interrupt-controller
- "#interrupt-cells"
- gpio-controller
- "#gpio-cells"
- clocks
additionalProperties: false
examples:
- |
#include <dt-bindings/clock/at91.h>
#include <dt-bindings/interrupt-controller/irq.h>
gpio@fffff400 {
compatible = "atmel,at91rm9200-gpio";
reg = <0xfffff400 0x200>;
interrupts = <2 IRQ_TYPE_LEVEL_HIGH 1>;
#gpio-cells = <2>;
gpio-controller;
interrupt-controller;
#interrupt-cells = <2>;
clocks = <&pmc PMC_TYPE_PERIPHERAL 2>;
};
...

View File

@ -0,0 +1,87 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/gpio/fsl,qoriq-gpio.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale MPC512x/MPC8xxx/QorIQ/Layerscape GPIO controller
maintainers:
- Frank Li <Frank.Li@nxp.com>
properties:
compatible:
oneOf:
- enum:
- fsl,mpc5121-gpio
- fsl,mpc5125-gpio
- fsl,mpc8349-gpio
- fsl,mpc8572-gpio
- fsl,mpc8610-gpio
- fsl,pq3-gpio
- items:
- enum:
- fsl,ls1021a-gpio
- fsl,ls1028a-gpio
- fsl,ls1043a-gpio
- fsl,ls1046a-gpio
- fsl,ls1088a-gpio
- fsl,ls2080a-gpio
- const: fsl,qoriq-gpio
reg:
maxItems: 1
interrupts:
maxItems: 1
"#gpio-cells":
const: 2
gpio-controller: true
interrupt-controller: true
"#interrupt-cells":
const: 2
gpio-line-names:
minItems: 1
maxItems: 32
little-endian:
$ref: /schemas/types.yaml#/definitions/flag
description:
GPIO registers are used as little endian. If not
present registers are used as big endian by default.
required:
- compatible
- reg
- interrupts
- "#gpio-cells"
additionalProperties: false
examples:
- |
gpio@1100 {
compatible = "fsl,mpc5125-gpio";
reg = <0x1100 0x080>;
interrupts = <78 0x8>;
gpio-controller;
#gpio-cells = <2>;
};
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
gpio@2300000 {
compatible = "fsl,ls2080a-gpio", "fsl,qoriq-gpio";
reg = <0x2300000 0x10000>;
interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
little-endian;
gpio-controller;
#gpio-cells = <2>;
interrupt-controller;
#interrupt-cells = <2>;
};

View File

@ -1,53 +0,0 @@
* Freescale MPC512x/MPC8xxx/QorIQ/Layerscape GPIO controller
Required properties:
- compatible : Should be "fsl,<soc>-gpio"
The following <soc>s are known to be supported:
mpc5121, mpc5125, mpc8349, mpc8572, mpc8610, pq3, qoriq,
ls1021a, ls1043a, ls2080a, ls1028a, ls1088a.
- reg : Address and length of the register set for the device
- interrupts : Should be the port interrupt shared by all 32 pins.
- #gpio-cells : Should be two. The first cell is the pin number and
the second cell is used to specify the gpio polarity:
0 = active high
1 = active low
Optional properties:
- little-endian : GPIO registers are used as little endian. If not
present registers are used as big endian by default.
Example of gpio-controller node for a mpc5125 SoC:
gpio0: gpio@1100 {
compatible = "fsl,mpc5125-gpio";
#gpio-cells = <2>;
reg = <0x1100 0x080>;
interrupts = <78 0x8>;
};
Example of gpio-controller node for a ls2080a SoC:
gpio0: gpio@2300000 {
compatible = "fsl,ls2080a-gpio", "fsl,qoriq-gpio";
reg = <0x0 0x2300000 0x0 0x10000>;
interrupts = <0 36 0x4>; /* Level high type */
gpio-controller;
little-endian;
#gpio-cells = <2>;
interrupt-controller;
#interrupt-cells = <2>;
};
Example of gpio-controller node for a ls1028a/ls1088a SoC:
gpio1: gpio@2300000 {
compatible = "fsl,ls1028a-gpio", "fsl,ls1088a-gpio", "fsl,qoriq-gpio";
reg = <0x0 0x2300000 0x0 0x10000>;
interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
gpio-controller;
#gpio-cells = <2>;
interrupt-controller;
#interrupt-cells = <2>;
little-endian;
};

View File

@ -66,6 +66,7 @@ properties:
- ti,tca6408
- ti,tca6416
- ti,tca6424
- ti,tca9535
- ti,tca9538
- ti,tca9539
- ti,tca9554

View File

@ -51,6 +51,10 @@ properties:
gpio-controller: true
gpio-line-names:
minItems: 1
maxItems: 32
clocks:
items:
- description: SoC GPIO clock

View File

@ -1,16 +0,0 @@
Zevio GPIO controller
Required properties:
- compatible: Should be "lsi,zevio-gpio"
- reg: Address and length of the register set for the device
- #gpio-cells: Should be two. The first cell is the pin number and the
second cell is used to specify optional parameters (currently unused).
- gpio-controller: Marks the device node as a GPIO controller.
Example:
gpio: gpio@90000000 {
compatible = "lsi,zevio-gpio";
reg = <0x90000000 0x1000>;
gpio-controller;
#gpio-cells = <2>;
};

View File

@ -1,31 +0,0 @@
* Atmel GPIO controller (PIO)
Required properties:
- compatible: "atmel,<chip>-gpio", where <chip> is at91rm9200 or at91sam9x5.
- reg: Should contain GPIO controller registers location and length
- interrupts: Should be the port interrupt shared by all the pins.
- #gpio-cells: Should be two. The first cell is the pin number and
the second cell is used to specify optional parameters to declare if the GPIO
is active high or low. See gpio.txt.
- gpio-controller: Marks the device node as a GPIO controller.
- interrupt-controller: Marks the device node as an interrupt controller.
- #interrupt-cells: Should be two. The first cell is the pin number and the
second cell is used to specify irq type flags, see the two cell description
in interrupt-controller/interrupts.txt for details.
optional properties:
- #gpio-lines: Number of gpio if absent 32.
Example:
pioA: gpio@fffff200 {
compatible = "atmel,at91rm9200-gpio";
reg = <0xfffff200 0x100>;
interrupts = <2 4>;
#gpio-cells = <2>;
gpio-controller;
#gpio-lines = <19>;
interrupt-controller;
#interrupt-cells = <2>;
};

View File

@ -0,0 +1,43 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/gpio/lsi,zevio-gpio.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Zevio GPIO controller
maintainers:
- Pratik Farkase <pratikfarkase94@gmail.com>
properties:
compatible:
items:
- const: lsi,zevio-gpio
reg:
maxItems: 1
interrupts:
maxItems: 1
"#gpio-cells":
const: 2
gpio-controller: true
required:
- compatible
- reg
- "#gpio-cells"
- gpio-controller
unevaluatedProperties: false
examples:
- |
gpio@90000000 {
compatible = "lsi,zevio-gpio";
reg = <0x90000000 0x1000>;
gpio-controller;
#gpio-cells = <2>;
};

View File

@ -4,12 +4,6 @@ GPIO Mappings
This document explains how GPIOs can be assigned to given devices and functions.
Note that it only applies to the new descriptor-based interface. For a
description of the deprecated integer-based GPIO interface please refer to
legacy.rst (actually, there is no real mapping possible with the old
interface; you just fetch an integer from somewhere and request the
corresponding GPIO).
All platforms can enable the GPIO library, but if the platform strictly
requires GPIO functionality to be present, it needs to select GPIOLIB from its
Kconfig. Then, how GPIOs are mapped depends on what the platform uses to

View File

@ -2,9 +2,7 @@
GPIO Descriptor Consumer Interface
==================================
This document describes the consumer interface of the GPIO framework. Note that
it describes the new descriptor-based interface. For a description of the
deprecated integer-based GPIO interface please refer to legacy.rst.
This document describes the consumer interface of the GPIO framework.
Guidelines for GPIOs consumers

View File

@ -69,9 +69,8 @@ driver code:
The code implementing a gpio_chip should support multiple instances of the
controller, preferably using the driver model. That code will configure each
gpio_chip and issue gpiochip_add(), gpiochip_add_data(), or
devm_gpiochip_add_data(). Removing a GPIO controller should be rare; use
gpiochip_remove() when it is unavoidable.
gpio_chip and issue gpiochip_add_data() or devm_gpiochip_add_data(). Removing
a GPIO controller should be rare; use gpiochip_remove() when it is unavoidable.
Often a gpio_chip is part of an instance-specific structure with states not
exposed by the GPIO interfaces, such as addressing, power management, and more.

View File

@ -13,7 +13,6 @@ Contents:
consumer
board
drivers-on-gpio
legacy
bt8xxgpio
Core

View File

@ -10,18 +10,6 @@ The documents in this directory give detailed instructions on how to access
GPIOs in drivers, and how to write a driver for a device that provides GPIOs
itself.
Due to the history of GPIO interfaces in the kernel, there are two different
ways to obtain and use GPIOs:
- The descriptor-based interface is the preferred way to manipulate GPIOs,
and is described by all the files in this directory excepted legacy.rst.
- The legacy integer-based interface which is considered deprecated (but still
usable for compatibility reasons) is documented in legacy.rst.
The remainder of this document applies to the new descriptor-based interface.
legacy.rst contains the same information applied to the legacy
integer-based interface.
What is a GPIO?
===============

View File

@ -1,679 +0,0 @@
======================
Legacy GPIO Interfaces
======================
This provides an overview of GPIO access conventions on Linux.
These calls use the gpio_* naming prefix. No other calls should use that
prefix, or the related __gpio_* prefix.
What is a GPIO?
===============
A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
digital signal. They are provided from many kinds of chip, and are familiar
to Linux developers working with embedded and custom hardware. Each GPIO
represents a bit connected to a particular pin, or "ball" on Ball Grid Array
(BGA) packages. Board schematics show which external hardware connects to
which GPIOs. Drivers can be written generically, so that board setup code
passes such pin configuration data to drivers.
System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
non-dedicated pin can be configured as a GPIO; and most chips have at least
several dozen of them. Programmable logic devices (like FPGAs) can easily
provide GPIOs; multifunction chips like power managers, and audio codecs
often have a few such pins to help with pin scarcity on SOCs; and there are
also "GPIO Expander" chips that connect using the I2C or SPI serial busses.
Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
firmware knowing how they're used).
The exact capabilities of GPIOs vary between systems. Common options:
- Output values are writable (high=1, low=0). Some chips also have
options about how that value is driven, so that for example only one
value might be driven ... supporting "wire-OR" and similar schemes
for the other value (notably, "open drain" signaling).
- Input values are likewise readable (1, 0). Some chips support readback
of pins configured as "output", which is very useful in such "wire-OR"
cases (to support bidirectional signaling). GPIO controllers may have
input de-glitch/debounce logic, sometimes with software controls.
- Inputs can often be used as IRQ signals, often edge triggered but
sometimes level triggered. Such IRQs may be configurable as system
wakeup events, to wake the system from a low power state.
- Usually a GPIO will be configurable as either input or output, as needed
by different product boards; single direction ones exist too.
- Most GPIOs can be accessed while holding spinlocks, but those accessed
through a serial bus normally can't. Some systems support both types.
On a given board each GPIO is used for one specific purpose like monitoring
MMC/SD card insertion/removal, detecting card writeprotect status, driving
a LED, configuring a transceiver, bitbanging a serial bus, poking a hardware
watchdog, sensing a switch, and so on.
GPIO conventions
================
Note that this is called a "convention" because you don't need to do it this
way, and it's no crime if you don't. There **are** cases where portability
is not the main issue; GPIOs are often used for the kind of board-specific
glue logic that may even change between board revisions, and can't ever be
used on a board that's wired differently. Only least-common-denominator
functionality can be very portable. Other features are platform-specific,
and that can be critical for glue logic.
Plus, this doesn't require any implementation framework, just an interface.
One platform might implement it as simple inline functions accessing chip
registers; another might implement it by delegating through abstractions
used for several very different kinds of GPIO controller. (There is some
optional code supporting such an implementation strategy, described later
in this document, but drivers acting as clients to the GPIO interface must
not care how it's implemented.)
That said, if the convention is supported on their platform, drivers should
use it when possible. Platforms must select GPIOLIB if GPIO functionality
is strictly required. Drivers that can't work without
standard GPIO calls should have Kconfig entries which depend on GPIOLIB. The
GPIO calls are available, either as "real code" or as optimized-away stubs,
when drivers use the include file:
#include <linux/gpio.h>
If you stick to this convention then it'll be easier for other developers to
see what your code is doing, and help maintain it.
Note that these operations include I/O barriers on platforms which need to
use them; drivers don't need to add them explicitly.
Identifying GPIOs
-----------------
GPIOs are identified by unsigned integers in the range 0..MAX_INT. That
reserves "negative" numbers for other purposes like marking signals as
"not available on this board", or indicating faults. Code that doesn't
touch the underlying hardware treats these integers as opaque cookies.
Platforms define how they use those integers, and usually #define symbols
for the GPIO lines so that board-specific setup code directly corresponds
to the relevant schematics. In contrast, drivers should only use GPIO
numbers passed to them from that setup code, using platform_data to hold
board-specific pin configuration data (along with other board specific
data they need). That avoids portability problems.
So for example one platform uses numbers 32-159 for GPIOs; while another
uses numbers 0..63 with one set of GPIO controllers, 64-79 with another
type of GPIO controller, and on one particular board 80-95 with an FPGA.
The numbers need not be contiguous; either of those platforms could also
use numbers 2000-2063 to identify GPIOs in a bank of I2C GPIO expanders.
If you want to initialize a structure with an invalid GPIO number, use
some negative number (perhaps "-EINVAL"); that will never be valid. To
test if such number from such a structure could reference a GPIO, you
may use this predicate:
int gpio_is_valid(int number);
A number that's not valid will be rejected by calls which may request
or free GPIOs (see below). Other numbers may also be rejected; for
example, a number might be valid but temporarily unused on a given board.
Whether a platform supports multiple GPIO controllers is a platform-specific
implementation issue, as are whether that support can leave "holes" in the space
of GPIO numbers, and whether new controllers can be added at runtime. Such issues
can affect things including whether adjacent GPIO numbers are both valid.
Using GPIOs
-----------
The first thing a system should do with a GPIO is allocate it, using
the gpio_request() call; see later.
One of the next things to do with a GPIO, often in board setup code when
setting up a platform_device using the GPIO, is mark its direction::
/* set as input or output, returning 0 or negative errno */
int gpio_direction_input(unsigned gpio);
int gpio_direction_output(unsigned gpio, int value);
The return value is zero for success, else a negative errno. It should
be checked, since the get/set calls don't have error returns and since
misconfiguration is possible. You should normally issue these calls from
a task context. However, for spinlock-safe GPIOs it's OK to use them
before tasking is enabled, as part of early board setup.
For output GPIOs, the value provided becomes the initial output value.
This helps avoid signal glitching during system startup.
For compatibility with legacy interfaces to GPIOs, setting the direction
of a GPIO implicitly requests that GPIO (see below) if it has not been
requested already. That compatibility is being removed from the optional
gpiolib framework.
Setting the direction can fail if the GPIO number is invalid, or when
that particular GPIO can't be used in that mode. It's generally a bad
idea to rely on boot firmware to have set the direction correctly, since
it probably wasn't validated to do more than boot Linux. (Similarly,
that board setup code probably needs to multiplex that pin as a GPIO,
and configure pullups/pulldowns appropriately.)
Spinlock-Safe GPIO access
-------------------------
Most GPIO controllers can be accessed with memory read/write instructions.
Those don't need to sleep, and can safely be done from inside hard
(nonthreaded) IRQ handlers and similar contexts.
Use the following calls to access such GPIOs::
/* GPIO INPUT: return zero or nonzero */
int gpio_get_value(unsigned gpio);
/* GPIO OUTPUT */
void gpio_set_value(unsigned gpio, int value);
The values are boolean, zero for low, nonzero for high. When reading the
value of an output pin, the value returned should be what's seen on the
pin ... that won't always match the specified output value, because of
issues including open-drain signaling and output latencies.
The get/set calls have no error returns because "invalid GPIO" should have
been reported earlier from gpio_direction_*(). However, note that not all
platforms can read the value of output pins; those that can't should always
return zero. Also, using these calls for GPIOs that can't safely be accessed
without sleeping (see below) is an error.
Platform-specific implementations are encouraged to optimize the two
calls to access the GPIO value in cases where the GPIO number (and for
output, value) are constant. It's normal for them to need only a couple
of instructions in such cases (reading or writing a hardware register),
and not to need spinlocks. Such optimized calls can make bitbanging
applications a lot more efficient (in both space and time) than spending
dozens of instructions on subroutine calls.
GPIO access that may sleep
--------------------------
Some GPIO controllers must be accessed using message based busses like I2C
or SPI. Commands to read or write those GPIO values require waiting to
get to the head of a queue to transmit a command and get its response.
This requires sleeping, which can't be done from inside IRQ handlers.
To access such GPIOs, a different set of accessors is defined::
/* GPIO INPUT: return zero or nonzero, might sleep */
int gpio_get_value_cansleep(unsigned gpio);
/* GPIO OUTPUT, might sleep */
void gpio_set_value_cansleep(unsigned gpio, int value);
Accessing such GPIOs requires a context which may sleep, for example
a threaded IRQ handler, and those accessors must be used instead of
spinlock-safe accessors without the cansleep() name suffix.
Other than the fact that these accessors might sleep, and will work
on GPIOs that can't be accessed from hardIRQ handlers, these calls act
the same as the spinlock-safe calls.
**IN ADDITION** calls to setup and configure such GPIOs must be made
from contexts which may sleep, since they may need to access the GPIO
controller chip too (These setup calls are usually made from board
setup or driver probe/teardown code, so this is an easy constraint.)::
gpio_direction_input()
gpio_direction_output()
gpio_request()
## gpio_request_one()
gpio_free()
Claiming and Releasing GPIOs
----------------------------
To help catch system configuration errors, two calls are defined::
/* request GPIO, returning 0 or negative errno.
* non-null labels may be useful for diagnostics.
*/
int gpio_request(unsigned gpio, const char *label);
/* release previously-claimed GPIO */
void gpio_free(unsigned gpio);
Passing invalid GPIO numbers to gpio_request() will fail, as will requesting
GPIOs that have already been claimed with that call. The return value of
gpio_request() must be checked. You should normally issue these calls from
a task context. However, for spinlock-safe GPIOs it's OK to request GPIOs
before tasking is enabled, as part of early board setup.
These calls serve two basic purposes. One is marking the signals which
are actually in use as GPIOs, for better diagnostics; systems may have
several hundred potential GPIOs, but often only a dozen are used on any
given board. Another is to catch conflicts, identifying errors when
(a) two or more drivers wrongly think they have exclusive use of that
signal, or (b) something wrongly believes it's safe to remove drivers
needed to manage a signal that's in active use. That is, requesting a
GPIO can serve as a kind of lock.
Some platforms may also use knowledge about what GPIOs are active for
power management, such as by powering down unused chip sectors and, more
easily, gating off unused clocks.
For GPIOs that use pins known to the pinctrl subsystem, that subsystem should
be informed of their use; a gpiolib driver's .request() operation may call
pinctrl_gpio_request(), and a gpiolib driver's .free() operation may call
pinctrl_gpio_free(). The pinctrl subsystem allows a pinctrl_gpio_request()
to succeed concurrently with a pin or pingroup being "owned" by a device for
pin multiplexing.
Any programming of pin multiplexing hardware that is needed to route the
GPIO signal to the appropriate pin should occur within a GPIO driver's
.direction_input() or .direction_output() operations, and occur after any
setup of an output GPIO's value. This allows a glitch-free migration from a
pin's special function to GPIO. This is sometimes required when using a GPIO
to implement a workaround on signals typically driven by a non-GPIO HW block.
Some platforms allow some or all GPIO signals to be routed to different pins.
Similarly, other aspects of the GPIO or pin may need to be configured, such as
pullup/pulldown. Platform software should arrange that any such details are
configured prior to gpio_request() being called for those GPIOs, e.g. using
the pinctrl subsystem's mapping table, so that GPIO users need not be aware
of these details.
Also note that it's your responsibility to have stopped using a GPIO
before you free it.
Considering in most cases GPIOs are actually configured right after they
are claimed, three additional calls are defined::
/* request a single GPIO, with initial configuration specified by
* 'flags', identical to gpio_request() wrt other arguments and
* return value
*/
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
where 'flags' is currently defined to specify the following properties:
* GPIOF_DIR_IN - to configure direction as input
* GPIOF_DIR_OUT - to configure direction as output
* GPIOF_INIT_LOW - as output, set initial level to LOW
* GPIOF_INIT_HIGH - as output, set initial level to HIGH
since GPIOF_INIT_* are only valid when configured as output, so group valid
combinations as:
* GPIOF_IN - configure as input
* GPIOF_OUT_INIT_LOW - configured as output, initial level LOW
* GPIOF_OUT_INIT_HIGH - configured as output, initial level HIGH
Further more, to ease the claim/release of multiple GPIOs, 'struct gpio' is
introduced to encapsulate all three fields as::
struct gpio {
unsigned gpio;
unsigned long flags;
const char *label;
};
A typical example of usage::
static struct gpio leds_gpios[] = {
{ 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* default to ON */
{ 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* default to OFF */
{ 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* default to OFF */
{ 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* default to OFF */
{ ... },
};
err = gpio_request_one(31, GPIOF_IN, "Reset Button");
if (err)
...
GPIOs mapped to IRQs
--------------------
GPIO numbers are unsigned integers; so are IRQ numbers. These make up
two logically distinct namespaces (GPIO 0 need not use IRQ 0). You can
map between them using calls like::
/* map GPIO numbers to IRQ numbers */
int gpio_to_irq(unsigned gpio);
Those return either the corresponding number in the other namespace, or
else a negative errno code if the mapping can't be done. (For example,
some GPIOs can't be used as IRQs.) It is an unchecked error to use a GPIO
number that wasn't set up as an input using gpio_direction_input(), or
to use an IRQ number that didn't originally come from gpio_to_irq().
These two mapping calls are expected to cost on the order of a single
addition or subtraction. They're not allowed to sleep.
Non-error values returned from gpio_to_irq() can be passed to request_irq()
or free_irq(). They will often be stored into IRQ resources for platform
devices, by the board-specific initialization code. Note that IRQ trigger
options are part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are
system wakeup capabilities.
Emulating Open Drain Signals
----------------------------
Sometimes shared signals need to use "open drain" signaling, where only the
low signal level is actually driven. (That term applies to CMOS transistors;
"open collector" is used for TTL.) A pullup resistor causes the high signal
level. This is sometimes called a "wire-AND"; or more practically, from the
negative logic (low=true) perspective this is a "wire-OR".
One common example of an open drain signal is a shared active-low IRQ line.
Also, bidirectional data bus signals sometimes use open drain signals.
Some GPIO controllers directly support open drain outputs; many don't. When
you need open drain signaling but your hardware doesn't directly support it,
there's a common idiom you can use to emulate it with any GPIO pin that can
be used as either an input or an output:
LOW: gpio_direction_output(gpio, 0) ... this drives the signal
and overrides the pullup.
HIGH: gpio_direction_input(gpio) ... this turns off the output,
so the pullup (or some other device) controls the signal.
If you are "driving" the signal high but gpio_get_value(gpio) reports a low
value (after the appropriate rise time passes), you know some other component
is driving the shared signal low. That's not necessarily an error. As one
common example, that's how I2C clocks are stretched: a slave that needs a
slower clock delays the rising edge of SCK, and the I2C master adjusts its
signaling rate accordingly.
GPIO controllers and the pinctrl subsystem
------------------------------------------
A GPIO controller on a SOC might be tightly coupled with the pinctrl
subsystem, in the sense that the pins can be used by other functions
together with an optional gpio feature. We have already covered the
case where e.g. a GPIO controller need to reserve a pin or set the
direction of a pin by calling any of::
pinctrl_gpio_request()
pinctrl_gpio_free()
pinctrl_gpio_direction_input()
pinctrl_gpio_direction_output()
But how does the pin control subsystem cross-correlate the GPIO
numbers (which are a global business) to a certain pin on a certain
pin controller?
This is done by registering "ranges" of pins, which are essentially
cross-reference tables. These are described in
Documentation/driver-api/pin-control.rst
While the pin allocation is totally managed by the pinctrl subsystem,
gpio (under gpiolib) is still maintained by gpio drivers. It may happen
that different pin ranges in a SoC is managed by different gpio drivers.
This makes it logical to let gpio drivers announce their pin ranges to
the pin ctrl subsystem before it will call 'pinctrl_gpio_request' in order
to request the corresponding pin to be prepared by the pinctrl subsystem
before any gpio usage.
For this, the gpio controller can register its pin range with pinctrl
subsystem. There are two ways of doing it currently: with or without DT.
For with DT support refer to Documentation/devicetree/bindings/gpio/gpio.txt.
For non-DT support, user can call gpiochip_add_pin_range() with appropriate
parameters to register a range of gpio pins with a pinctrl driver. For this
exact name string of pinctrl device has to be passed as one of the
argument to this routine.
What do these conventions omit?
===============================
One of the biggest things these conventions omit is pin multiplexing, since
this is highly chip-specific and nonportable. One platform might not need
explicit multiplexing; another might have just two options for use of any
given pin; another might have eight options per pin; another might be able
to route a given GPIO to any one of several pins. (Yes, those examples all
come from systems that run Linux today.)
Related to multiplexing is configuration and enabling of the pullups or
pulldowns integrated on some platforms. Not all platforms support them,
or support them in the same way; and any given board might use external
pullups (or pulldowns) so that the on-chip ones should not be used.
(When a circuit needs 5 kOhm, on-chip 100 kOhm resistors won't do.)
Likewise drive strength (2 mA vs 20 mA) and voltage (1.8V vs 3.3V) is a
platform-specific issue, as are models like (not) having a one-to-one
correspondence between configurable pins and GPIOs.
There are other system-specific mechanisms that are not specified here,
like the aforementioned options for input de-glitching and wire-OR output.
Hardware may support reading or writing GPIOs in gangs, but that's usually
configuration dependent: for GPIOs sharing the same bank. (GPIOs are
commonly grouped in banks of 16 or 32, with a given SOC having several such
banks.) Some systems can trigger IRQs from output GPIOs, or read values
from pins not managed as GPIOs. Code relying on such mechanisms will
necessarily be nonportable.
Dynamic definition of GPIOs is not currently standard; for example, as
a side effect of configuring an add-on board with some GPIO expanders.
GPIO implementor's framework (OPTIONAL)
=======================================
As noted earlier, there is an optional implementation framework making it
easier for platforms to support different kinds of GPIO controller using
the same programming interface. This framework is called "gpiolib".
As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
will be found there. That will list all the controllers registered through
this framework, and the state of the GPIOs currently in use.
Controller Drivers: gpio_chip
-----------------------------
In this framework each GPIO controller is packaged as a "struct gpio_chip"
with information common to each controller of that type:
- methods to establish GPIO direction
- methods used to access GPIO values
- flag saying whether calls to its methods may sleep
- optional debugfs dump method (showing extra state like pullup config)
- label for diagnostics
There is also per-instance data, which may come from device.platform_data:
the number of its first GPIO, and how many GPIOs it exposes.
The code implementing a gpio_chip should support multiple instances of the
controller, possibly using the driver model. That code will configure each
gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be
rare; use gpiochip_remove() when it is unavoidable.
Most often a gpio_chip is part of an instance-specific structure with state
not exposed by the GPIO interfaces, such as addressing, power management,
and more. Chips such as codecs will have complex non-GPIO state.
Any debugfs dump method should normally ignore signals which haven't been
requested as GPIOs. They can use gpiochip_is_requested(), which returns
either NULL or the label associated with that GPIO when it was requested.
Platform Support
----------------
To force-enable this framework, a platform's Kconfig will "select" GPIOLIB,
else it is up to the user to configure support for GPIO.
If neither of these options are selected, the platform does not support
GPIOs through GPIO-lib and the code cannot be enabled by the user.
Trivial implementations of those functions can directly use framework
code, which always dispatches through the gpio_chip::
#define gpio_get_value __gpio_get_value
#define gpio_set_value __gpio_set_value
Fancier implementations could instead define those as inline functions with
logic optimizing access to specific SOC-based GPIOs. For example, if the
referenced GPIO is the constant "12", getting or setting its value could
cost as little as two or three instructions, never sleeping. When such an
optimization is not possible those calls must delegate to the framework
code, costing at least a few dozen instructions. For bitbanged I/O, such
instruction savings can be significant.
For SOCs, platform-specific code defines and registers gpio_chip instances
for each bank of on-chip GPIOs. Those GPIOs should be numbered/labeled to
match chip vendor documentation, and directly match board schematics. They
may well start at zero and go up to a platform-specific limit. Such GPIOs
are normally integrated into platform initialization to make them always be
available, from arch_initcall() or earlier; they can often serve as IRQs.
Board Support
-------------
For external GPIO controllers -- such as I2C or SPI expanders, ASICs, multi
function devices, FPGAs or CPLDs -- most often board-specific code handles
registering controller devices and ensures that their drivers know what GPIO
numbers to use with gpiochip_add(). Their numbers often start right after
platform-specific GPIOs.
For example, board setup code could create structures identifying the range
of GPIOs that chip will expose, and passes them to each GPIO expander chip
using platform_data. Then the chip driver's probe() routine could pass that
data to gpiochip_add().
Initialization order can be important. For example, when a device relies on
an I2C-based GPIO, its probe() routine should only be called after that GPIO
becomes available. That may mean the device should not be registered until
calls for that GPIO can work. One way to address such dependencies is for
such gpio_chip controllers to provide setup() and teardown() callbacks to
board specific code; those board specific callbacks would register devices
once all the necessary resources are available, and remove them later when
the GPIO controller device becomes unavailable.
Sysfs Interface for Userspace (OPTIONAL)
========================================
Platforms which use the "gpiolib" implementors framework may choose to
configure a sysfs user interface to GPIOs. This is different from the
debugfs interface, since it provides control over GPIO direction and
value instead of just showing a gpio state summary. Plus, it could be
present on production systems without debugging support.
Given appropriate hardware documentation for the system, userspace could
know for example that GPIO #23 controls the write protect line used to
protect boot loader segments in flash memory. System upgrade procedures
may need to temporarily remove that protection, first importing a GPIO,
then changing its output state, then updating the code before re-enabling
the write protection. In normal use, GPIO #23 would never be touched,
and the kernel would have no need to know about it.
Again depending on appropriate hardware documentation, on some systems
userspace GPIO can be used to determine system configuration data that
standard kernels won't know about. And for some tasks, simple userspace
GPIO drivers could be all that the system really needs.
Note that standard kernel drivers exist for common "LEDs and Buttons"
GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
instead of talking directly to the GPIOs; they integrate with kernel
frameworks better than your userspace code could.
Paths in Sysfs
--------------
There are three kinds of entry in /sys/class/gpio:
- Control interfaces used to get userspace control over GPIOs;
- GPIOs themselves; and
- GPIO controllers ("gpio_chip" instances).
That's in addition to standard files including the "device" symlink.
The control interfaces are write-only:
/sys/class/gpio/
"export" ... Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file.
Example: "echo 19 > export" will create a "gpio19" node
for GPIO #19, if that's not requested by kernel code.
"unexport" ... Reverses the effect of exporting to userspace.
Example: "echo 19 > unexport" will remove a "gpio19"
node exported using the "export" file.
GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
and have the following read/write attributes:
/sys/class/gpio/gpioN/
"direction" ... reads as either "in" or "out". This value may
normally be written. Writing as "out" defaults to
initializing the value as low. To ensure glitch free
operation, values "low" and "high" may be written to
configure the GPIO as an output with that initial value.
Note that this attribute *will not exist* if the kernel
doesn't support changing the direction of a GPIO, or
it was exported by kernel code that didn't explicitly
allow userspace to reconfigure this GPIO's direction.
"value" ... reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written;
any nonzero value is treated as high.
If the pin can be configured as interrupt-generating interrupt
and if it has been configured to generate interrupts (see the
description of "edge"), you can poll(2) on that file and
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI. If you use select(2),
set the file descriptor in exceptfds. After poll(2) returns,
either lseek(2) to the beginning of the sysfs file and read the
new value or close the file and re-open it to read the value.
"edge" ... reads as either "none", "rising", "falling", or
"both". Write these strings to select the signal edge(s)
that will make poll(2) on the "value" file return.
This file exists only if the pin can be configured as an
interrupt generating input pin.
"active_low" ... reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both
for reading and writing. Existing and subsequent
poll(2) support configuration via the edge attribute
for "rising" and "falling" edges will follow this
setting.
GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
controller implementing GPIOs starting at #42) and have the following
read-only attributes:
/sys/class/gpio/gpiochipN/
"base" ... same as N, the first GPIO managed by this chip
"label" ... provided for diagnostics (not always unique)
"ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
Board documentation should in most cases cover what GPIOs are used for
what purposes. However, those numbers are not always stable; GPIOs on
a daughtercard might be different depending on the base board being used,
or other cards in the stack. In such cases, you may need to use the
gpiochip nodes (possibly in conjunction with schematics) to determine
the correct GPIO number to use for a given signal.
API Reference
=============
The functions listed in this section are deprecated. The GPIO descriptor based
API should be used in new code.
.. kernel-doc:: drivers/gpio/gpiolib-legacy.c
:export:

View File

@ -18,8 +18,6 @@
:caption: 目录
:maxdepth: 2
legacy
Todolist:
* intro

View File

@ -1,618 +0,0 @@
.. SPDX-License-Identifier: GPL-2.0
.. include:: ../../disclaimer-zh_CN.rst
:Original: Documentation/driver-api/gpio/legacy.rst
:翻译:
傅炜 Fu Wei <tekkamanninja@gmail.com>
司延腾 Yanteng Si <siyanteng@loongson.cn>
:校译:
传统GPIO接口
============
本文档概述了Linux下的GPIO访问公约。
这些函数以 gpio_* 作为前缀。其他的函数不允许使用这样的前缀或相关的
__gpio_* 前缀。
什么是GPIO
============
"通用输入/输出口"(GPIO)是一个灵活的由软件控制的数字信号。他们可
由多种芯片提供,且对于从事嵌入式和定制硬件的 Linux 开发者来说是
比较熟悉。每个GPIO 都代表一个连接到特定引脚或球栅阵列(BGA)封装中
“球珠”的一个位。电路板原理图显示了 GPIO 与外部硬件的连接关系。
驱动可以编写成通用代码,以使板级启动代码可传递引脚配置数据给驱动。
片上系统 (SOC) 处理器对 GPIO 有很大的依赖。在某些情况下,每个
非专用引脚都可配置为 GPIO,且大多数芯片都最少有一些 GPIO。
可编程逻辑器件(类似 FPGA) 可以方便地提供 GPIO。像电源管理和
音频编解码器这样的多功能芯片经常留有一些这样的引脚来帮助那些引脚
匮乏的 SOC。同时还有通过 I2C 或 SPI 串行总线连接的“GPIO扩展器”
芯片。大多数 PC 的南桥有一些拥有 GPIO 能力的引脚 (只有BIOS
固件才知道如何使用他们)。
GPIO 的实际功能因系统而异。通常用法有:
- 输出值可写 (高电平=1低电平=0)。一些芯片也有如何驱动这些值的选项,
例如只允许输出一个值、支持“线与”及其他取值类似的模式(值得注意的是
“开漏”信号)
- 输入值可读(1、0)。一些芯片支持引脚在配置为“输出”时回读,这对于类似
“线与”的情况(以支持双向信号)是非常有用的。GPIO 控制器可能有输入
去毛刺/消抖逻辑,这有时需要软件控制。
- 输入通常可作为 IRQ 信号,一般是沿触发,但有时是电平触发。这样的 IRQ
可能配置为系统唤醒事件,以将系统从低功耗状态下唤醒。
- 通常一个 GPIO 根据不同产品电路板的需求,可以配置为输入或输出,也有仅
支持单向的。
- 大部分 GPIO 可以在持有自旋锁时访问,但是通常由串行总线扩展的 GPIO
不允许持有自旋锁。但某些系统也支持这种类型。
对于给定的电路板,每个 GPIO 都用于某个特定的目的,如监控 MMC/SD 卡的
插入/移除、检测卡的写保护状态、驱动 LED、配置收发器、模拟串行总线、
复位硬件看门狗、感知开关状态等等。
GPIO 公约
=========
注意,这个叫做“公约”,因为这不是强制性的,不遵循这个公约是无伤大雅的,
因为此时可移植性并不重要。GPIO 常用于板级特定的电路逻辑,甚至可能
随着电路板的版本而改变,且不可能在不同走线的电路板上使用。仅有在少数
功能上才具有可移植性,其他功能是平台特定。这也是由于“胶合”的逻辑造成的。
此外,这不需要任何的执行框架,只是一个接口。某个平台可能通过一个简单地
访问芯片寄存器的内联函数来实现它其他平台可能通过委托一系列不同的GPIO
控制器的抽象函数来实现它。(有一些可选的代码能支持这种策略的实现,本文档
后面会介绍,但作为 GPIO 接口的客户端驱动程序必须与它的实现无关。)
也就是说,如果在他们的平台上支持这个公约,驱动应尽可能的使用它。同时,平台
必须在 Kconfig 中选择 ARCH_REQUIRE_GPIOLIB 或者 ARCH_WANT_OPTIONAL_GPIOLIB
选项。那些调用标准 GPIO 函数的驱动应该在 Kconfig 入口中声明依赖GENERIC_GPIO。
当驱动包含文件:
#include <linux/gpio.h>
则 GPIO 函数是可用,无论是“真实代码”还是经优化过的语句。如果你遵守
这个公约,当你的代码完成后,对其他的开发者来说会更容易看懂和维护。
注意,这些操作包含所用平台的 I/O 屏障代码,驱动无须显式地调用他们。
标识 GPIO
---------
GPIO 是通过无符号整型来标识的,范围是 0 到 MAX_INT。保留“负”数
用于其他目的,例如标识信号“在这个板子上不可用”或指示错误。未接触底层
硬件的代码会忽略这些整数。
平台会定义这些整数的用法,且通常使用 #define 来定义 GPIO这样
板级特定的启动代码可以直接关联相应的原理图。相对来说,驱动应该仅使用
启动代码传递过来的 GPIO 编号,使用 platform_data 保存板级特定
引脚配置数据 (同时还有其他须要的板级特定数据),避免可能出现的问题。
例如一个平台使用编号 32-159 来标识 GPIO,而在另一个平台使用编号0-63
标识一组 GPIO 控制器,64-79标识另一类 GPIO 控制器,且在一个含有
FPGA 的特定板子上使用 80-95。编号不一定要连续,那些平台中,也可以
使用编号2000-2063来标识一个 I2C 接口的 GPIO 扩展器中的 GPIO。
如果你要初始化一个带有无效 GPIO 编号的结构体,可以使用一些负编码
(如"-EINVAL"),那将使其永远不会是有效。来测试这样一个结构体中的编号
是否关联一个 GPIO你可使用以下断言::
int gpio_is_valid(int number);
如果编号不存在,则请求和释放 GPIO 的函数将拒绝执行相关操作(见下文)。
其他编号也可能被拒绝,比如一个编号可能存在,但暂时在给定的电路上不可用。
一个平台是否支持多个 GPIO 控制器为平台特定的实现问题,就像是否可以
在 GPIO 编号空间中有“空洞”和是否可以在运行时添加新的控制器一样。
这些问题会影响其他事情,包括相邻的 GPIO 编号是否存在等。
使用 GPIO
---------
对于一个 GPIO系统应该做的第一件事情就是通过 gpio_request()
函数分配它,见下文。
接下来是设置I/O方向这通常是在板级启动代码中为所使用的 GPIO 设置
platform_device 时完成::
/* 设置为输入或输出, 返回 0 或负的错误代码 */
int gpio_direction_input(unsigned gpio);
int gpio_direction_output(unsigned gpio, int value);
返回值为零代表成功,否则返回一个负的错误代码。这个返回值需要检查,因为
get/set(获取/设置)函数调用没法返回错误,且有可能是配置错误。通常,
你应该在进程上下文中调用这些函数。然而,对于自旋锁安全的 GPIO在板子
启动的早期、进程启动前使用他们也是可以的。
对于作为输出的 GPIO为其提供初始输出值对于避免在系统启动期间出现
信号毛刺是很有帮助的。
为了与传统的 GPIO 接口兼容, 在设置一个 GPIO 方向时,如果它还未被申请,
则隐含了申请那个 GPIO 的操作(见下文)。这种兼容性正在从可选的 gpiolib
框架中移除。
如果这个 GPIO 编码不存在,或者特定的 GPIO 不能用于那种模式,则方向
设置可能失败。依赖启动固件来正确地设置方向通常是一个坏主意,因为它可能
除了启动Linux并没有做更多的验证工作。(同理, 板子的启动代码可能需要
将这个复用的引脚设置为 GPIO并正确地配置上拉/下拉电阻。)
访问自旋锁安全的 GPIO
---------------------
大多数 GPIO 控制器可以通过内存读/写指令来访问。这些指令不会休眠,可以
安全地在硬(非线程)中断例程和类似的上下文中完成。
对于那些 GPIO使用以下的函数访问::
/* GPIO 输入:返回零或非零 */
int gpio_get_value(unsigned gpio);
/* GPIO 输出 */
void gpio_set_value(unsigned gpio, int value);
GPIO值是布尔值零表示低电平非零表示高电平。当读取一个输出引脚的值时
返回值应该是引脚上的值。这个值不总是和输出值相符,因为存在开漏输出信号和
输出延迟问题。
以上的 get/set 函数无错误返回值,因为之前 gpio_direction_*()应已检查过
其是否为“无效GPIO”。此外还需要注意的是并不是所有平台都可以从输出引脚
中读取数据,对于不能读取的引脚应总返回零。另外,对那些在原子上下文中无法
安全访问的 GPIO (译者注:因为访问可能导致休眠)使用这些函数是不合适的
(见下文)。
在 GPIO 编号(还有输出、值)为常数的情况下,鼓励通过平台特定的实现来优化
这两个函数来访问 GPIO 值。这种情况(读写一个硬件寄存器)下只需要几条指令
是很正常的,且无须自旋锁。这种优化函数比起那些在子程序上花费许多指令的
函数可以使得模拟接口(译者注:例如 GPIO 模拟 I2C、1-wire 或 SPI)的
应用(在空间和时间上都)更具效率。
访问可能休眠的 GPIO
-------------------
某些 GPIO 控制器必须通过基于总线(如 I2C 或 SPI)的消息访问。读或写这些
GPIO 值的命令需要等待其信息排到队首才发送命令,再获得其反馈。期间需要
休眠,这不能在 IRQ 例程(中断上下文)中执行。
为了访问这种 GPIO,内核定义了一套不同的函数::
/* GPIO 输入:返回零或非零 ,可能会休眠 */
int gpio_get_value_cansleep(unsigned gpio);
/* GPIO 输出,可能会休眠 */
void gpio_set_value_cansleep(unsigned gpio, int value);
访问这样的 GPIO 需要一个允许休眠的上下文,例如线程 IRQ 处理例程,并用以上的
访问函数替换那些没有 cansleep()后缀的自旋锁安全访问函数。
除了这些访问函数可能休眠,且它们操作的 GPIO 不能在硬件 IRQ 处理例程中访问的
事实,这些处理例程实际上和自旋锁安全的函数是一样的。
** 除此之外 ** 调用设置和配置此类 GPIO 的函数也必须在允许休眠的上下文中,
因为它们可能也需要访问 GPIO 控制器芯片 (这些设置函数通常在板级启动代码或者
驱动探测/断开代码中,所以这是一个容易满足的约束条件。) ::
gpio_direction_input()
gpio_direction_output()
gpio_request()
## gpio_request_one()
gpio_free()
声明和释放 GPIO
----------------
为了有助于捕获系统配置错误,定义了两个函数::
/* 申请 GPIO, 返回 0 或负的错误代码.
* 非空标签可能有助于诊断.
*/
int gpio_request(unsigned gpio, const char *label);
/* 释放之前声明的 GPIO */
void gpio_free(unsigned gpio);
将无效的 GPIO 编码传递给 gpio_request()会导致失败,申请一个已使用这个
函数声明过的 GPIO 也会失败。gpio_request()的返回值必须检查。你应该在
进程上下文中调用这些函数。然而,对于自旋锁安全的 GPIO,在板子启动的早期、
进入进程之前是可以申请的。
这个函数完成两个基本的目标。一是标识那些实际上已作为 GPIO 使用的信号线,
这样便于更好地诊断;系统可能需要服务几百个可用的 GPIO但是对于任何一个
给定的电路板通常只有一些被使用。另一个目的是捕获冲突,查明错误:如两个或
更多驱动错误地认为他们已经独占了某个信号线,或是错误地认为移除一个管理着
某个已激活信号的驱动是安全的。也就是说,申请 GPIO 的作用类似一种锁机制。
某些平台可能也使用 GPIO 作为电源管理激活信号(例如通过关闭未使用芯片区和
简单地关闭未使用时钟)。
对于 GPIO 使用引脚控制子系统已知的引脚,子系统应该被告知其使用情况;
一个 gpiolib 驱动的 .request()操作应调用 pinctrl_gpio_request()
而 gpiolib 驱动的 .free()操作应调用 pinctrl_gpio_free()。引脚控制
子系统允许 pinctrl_gpio_request()在某个引脚或引脚组以复用形式“属于”
一个设备时都成功返回。
任何须将 GPIO 信号导向适当引脚的引脚复用硬件的编程应该发生在 GPIO
驱动的 .direction_input()或 .direction_output()函数中,以及
任何输出 GPIO 值的设置之后。这样可使从引脚特殊功能到 GPIO 的转换
不会在引脚产生毛刺波形。有时当用一个 GPIO 实现其信号驱动一个非 GPIO
硬件模块的解决方案时,就需要这种机制。
某些平台允许部分或所有 GPIO 信号使用不同的引脚。类似的GPIO 或引脚的
其他方面也需要配置,如上拉/下拉。平台软件应该在对这些 GPIO 调用
gpio_request()前将这类细节配置好,例如使用引脚控制子系统的映射表,
使得 GPIO 的用户无须关注这些细节。
还有一个值得注意的是在释放 GPIO 前,你必须停止使用它。
注意:申请一个 GPIO 并没有以任何方式配置它,只不过标识那个 GPIO 处于使用
状态。必须有另外的代码来处理引脚配置(如控制 GPIO 使用的引脚、上拉/下拉)。
考虑到大多数情况下声明 GPIO 之后就会立即配置它们,所以定义了以下三个辅助函数::
/* 申请一个 GPIO 信号, 同时通过特定的'flags'初始化配置,
* 其他和 gpio_request()的参数和返回值相同
*
*/
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
这里 'flags' 当前定义可指定以下属性:
* GPIOF_DIR_IN - 配置方向为输入
* GPIOF_DIR_OUT - 配置方向为输出
* GPIOF_INIT_LOW - 在作为输出时,初始值为低电平
* GPIOF_INIT_HIGH - 在作为输出时,初始值为高电平
因为 GPIOF_INIT_* 仅有在配置为输出的时候才存在,所以有效的组合为:
* GPIOF_IN - 配置为输入
* GPIOF_OUT_INIT_LOW - 配置为输出,并初始化为低电平
* GPIOF_OUT_INIT_HIGH - 配置为输出,并初始化为高电平
更进一步,为了更简单地声明/释放多个 GPIO,'struct gpio'被引进来封装所有
这三个领域::
struct gpio {
unsigned gpio;
unsigned long flags;
const char *label;
};
一个典型的用例::
static struct gpio leds_gpios[] = {
{ 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* 默认开启 */
{ 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* 默认关闭 */
{ 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* 默认关闭 */
{ 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* 默认关闭 */
{ ... },
};
err = gpio_request_one(31, GPIOF_IN, "Reset Button");
if (err)
...
GPIO 映射到 IRQ
----------------
GPIO 编号是无符号整数;IRQ 编号也是。这些构成了两个逻辑上不同的命名空间
(GPIO 0 不一定使用 IRQ 0)。你可以通过以下函数在它们之间实现映射::
/* 映射 GPIO 编号到 IRQ 编号 */
int gpio_to_irq(unsigned gpio);
它们的返回值为对应命名空间的相关编号,或是负的错误代码(如果无法映射)。
(例如,某些 GPIO 无法做为 IRQ 使用。)以下的编号错误是未经检测的:使用一个
未通过 gpio_direction_input()配置为输入的 GPIO 编号,或者使用一个
并非来源于gpio_to_irq()的 IRQ 编号。
这两个映射函数可能会在信号编号的加减计算过程上花些时间。它们不可休眠。
gpio_to_irq()返回的非错误值可以传递给 request_irq()或者 free_irq()。
它们通常通过板级特定的初始化代码存放到平台设备的 IRQ 资源中。注意:IRQ
触发选项是 IRQ 接口的一部分,如 IRQF_TRIGGER_FALLING系统唤醒能力
也是如此。
模拟开漏信号
------------
有时在只有低电平信号作为实际驱动结果(译者注:多个输出连接于一点,逻辑电平
结果为所有输出的逻辑与)的时候,共享的信号线需要使用“开漏”信号。(该术语
适用于 CMOS 管;而 TTL 用“集电极开路”。)一个上拉电阻使信号为高电平。这
有时被称为“线与”。实际上,从负逻辑(低电平为真)的角度来看,这是一个“线或”。
一个开漏信号的常见例子是共享的低电平使能 IRQ 信号线。此外,有时双向数据总线
信号也使用漏极开路信号。
某些 GPIO 控制器直接支持开漏输出,还有许多不支持。当你需要开漏信号,但
硬件又不直接支持的时候,一个常用的方法是用任何即可作输入也可作输出的 GPIO
引脚来模拟:
LOW: gpio_direction_output(gpio, 0) ... 这代码驱动信号并覆盖
上拉配置。
HIGH: gpio_direction_input(gpio) ... 这代码关闭输出,所以上拉电阻
(或其他的一些器件)控制了信号。
如果你将信号线“驱动”为高电平,但是 gpio_get_value(gpio)报告了一个
低电平(在适当的上升时间后),你就可以知道是其他的一些组件将共享信号线拉低了。
这不一定是错误的。一个常见的例子就是 I2C 时钟的延长:一个需要较慢时钟的
从设备延迟 SCK 的上升沿,而 I2C 主设备相应地调整其信号传输速率。
GPIO控制器和引脚控制子系统
--------------------------
SOC上的GPIO控制器可能与引脚控制子系统紧密结合即引脚可以与可选的gpio功
能一起被其他功能使用。我们已经涵盖了这样的情况例如一个GPIO控制器需要保
留一个引脚或通过调用以下任何一个引脚来设置其方向::
pinctrl_gpio_request()
pinctrl_gpio_free()
pinctrl_gpio_direction_input()
pinctrl_gpio_direction_output()
但是引脚控制子系统是如何将GPIO号码这是一个全局事项与某个引脚控制器
上的某个引脚交叉关联的?
这是通过注册引脚的“范围”来实现的,这基本上是交叉参考表。这些描述是在
Documentation/driver-api/pin-control.rst
虽然引脚分配完全由引脚控制子系统管理但gpio在gpiolib下仍由gpio驱动
维护。可能发生的情况是SoC中的不同引脚范围由不同的gpio驱动器管理。
这使得在调用 "pinctrl_gpio_request" 之前让gpio驱动向pin ctrl子系
统宣布它们的引脚范围是合理的以便在使用任何gpio之前要求引脚控制子系统准
备相应的引脚。
为此gpio控制器可以用引脚控制子系统注册其引脚范围。目前有两种方法有或
无DT。
关于对DT的支持请参考 Documentation/devicetree/bindings/gpio/gpio.txt.
对于非DT支持用户可以用适当的参数调用gpiochip_add_pin_range(),将一
系列的gpio引脚注册到引脚控制驱动上。为此必须将引脚控制设备的名称字符串
作为参数之一传给这个程序。
这些公约忽略了什么?
====================
这些公约忽略的最大一件事就是引脚复用,因为这属于高度芯片特定的属性且
没有可移植性。某个平台可能不需要明确的复用信息;有的对于任意给定的引脚
可能只有两个功能选项;有的可能每个引脚有八个功能选项;有的可能可以将
几个引脚中的任何一个作为给定的 GPIO。(是的,这些例子都来自于当前运行
Linux 的系统。)
在某些系统中,与引脚复用相关的是配置和使能集成的上、下拉模式。并不是所有
平台都支持这种模式,或者不会以相同的方式来支持这种模式;且任何给定的电路板
可能使用外置的上拉(或下拉)电阻,这时芯片上的就不应该使用。(当一个电路需要
5kOhm 的拉动电阻,芯片上的 100 kOhm 电阻就不能做到。)同样的,驱动能力
(2 mA vs 20 mA)和电压(1.8V vs 3.3V)是平台特定问题,就像模型一样在
可配置引脚和 GPIO 之间(没)有一一对应的关系。
还有其他一些系统特定的机制没有在这里指出,例如上述的输入去毛刺和线与输出
选项。硬件可能支持批量读或写 GPIO但是那一般是配置相关的对于处于同一
块区(bank)的GPIO。(GPIO 通常以 16 或 32 个组成一个区块,一个给定的
片上系统一般有几个这样的区块。)某些系统可以通过输出 GPIO 触发 IRQ
或者从并非以 GPIO 管理的引脚取值。这些机制的相关代码没有必要具有可移植性。
当前,动态定义 GPIO 并不是标准的,例如作为配置一个带有某些 GPIO 扩展器的
附加电路板的副作用。
GPIO 实现者的框架(可选)
=========================
前面提到了,有一个可选的实现框架,让平台使用相同的编程接口,更加简单地支持
不同种类的 GPIO 控制器。这个框架称为"gpiolib"。
作为一个辅助调试功能,如果 debugfs 可用,就会有一个 /sys/kernel/debug/gpio
文件。通过这个框架,它可以列出所有注册的控制器,以及当前正在使用中的 GPIO
的状态。
控制器驱动: gpio_chip
---------------------
在框架中每个 GPIO 控制器都包装为一个 "struct gpio_chip",他包含了
该类型的每个控制器的常用信息:
- 设置 GPIO 方向的方法
- 用于访问 GPIO 值的方法
- 告知调用其方法是否可能休眠的标志
- 可选的 debugfs 信息导出方法 (显示类似上拉配置一样的额外状态)
- 诊断标签
也包含了来自 device.platform_data 的每个实例的数据:它第一个 GPIO 的
编号和它可用的 GPIO 的数量。
实现 gpio_chip 的代码应支持多控制器实例,这可能使用驱动模型。那些代码要
配置每个 gpio_chip并发起gpiochip_add()。卸载一个 GPIO 控制器很少见,
但在必要的时候可以使用 gpiochip_remove()。
大部分 gpio_chip 是一个实例特定结构体的一部分,而并不将 GPIO 接口单独
暴露出来,比如编址、电源管理等。类似编解码器这样的芯片会有复杂的非 GPIO
状态。
任何一个 debugfs 信息导出方法通常应该忽略还未申请作为 GPIO 的信号线。
他们可以使用 gpiochip_is_requested()测试,当这个 GPIO 已经申请过了
就返回相关的标签,否则返回 NULL。
平台支持
--------
为了支持这个框架,一个平台的 Kconfig 文件将会 "select"(选择)
ARCH_REQUIRE_GPIOLIB 或 ARCH_WANT_OPTIONAL_GPIOLIB并让它的
<asm/gpio.h> 包含 <asm-generic/gpio.h>,同时定义两个方法:
gpio_get_value()、gpio_set_value()。
它也应提供一个 ARCH_NR_GPIOS 的定义值,这样可以更好地反映该平台 GPIO
的实际数量,节省静态表的空间。(这个定义值应该包含片上系统内建 GPIO 和
GPIO 扩展器中的数据。)
ARCH_REQUIRE_GPIOLIB 意味着 gpiolib 核心在这个构架中将总是编译进内核。
ARCH_WANT_OPTIONAL_GPIOLIB 意味着 gpiolib 核心默认关闭,且用户可以
使能它,并将其编译进内核(可选)。
如果这些选项都没被选择,该平台就不通过 GPIO-lib 支持 GPIO,且代码不可以
被用户使能。
以下这些方法的实现可以直接使用框架代码,并总是通过 gpio_chip 调度::
#define gpio_get_value __gpio_get_value
#define gpio_set_value __gpio_set_value
这些定义可以用更理想的实现方法替代,那就是使用经过逻辑优化的内联函数来访问
基于特定片上系统的 GPIO。例如,若引用的 GPIO (寄存器位偏移)是常量“12”
读取或设置它可能只需少则两或三个指令,且不会休眠。当这样的优化无法实现时,
那些函数必须使用框架提供的代码,那就至少要几十条指令才可以实现。对于用 GPIO
模拟的 I/O 接口, 如此精简指令是很有意义的。
对于片上系统,平台特定代码为片上 GPIO 每个区(bank)定义并注册 gpio_chip
实例。那些 GPIO 应该根据芯片厂商的文档进行编码/标签,并直接和电路板原理图
对应。他们应该开始于零并终止于平台特定的限制。这些 GPIO(代码)通常从
arch_initcall()或者更早的地方集成进平台初始化代码,使这些 GPIO 总是可用,
且他们通常可以作为 IRQ 使用。
板级支持
--------
对于外部 GPIO 控制器(例如 I2C 或 SPI 扩展器、专用芯片、多功能器件、FPGA
或 CPLD),大多数常用板级特定代码都可以注册控制器设备,并保证他们的驱动知道
gpiochip_add()所使用的 GPIO 编号。他们的起始编号通常跟在平台特定的 GPIO
编号之后。
例如板级启动代码应该创建结构体指明芯片公开的 GPIO 范围,并使用 platform_data
将其传递给每个 GPIO 扩展器芯片。然后芯片驱动中的 probe()例程可以将这个
数据传递给 gpiochip_add()。
初始化顺序很重要。例如,如果一个设备依赖基于 I2C 的(扩展)GPIO那么它的
probe()例程就应该在那个 GPIO 有效以后才可以被调用。这意味着设备应该在
GPIO 可以工作之后才可被注册。解决这类依赖的的一种方法是让这种 gpio_chip
控制器向板级特定代码提供 setup()和 teardown()回调函数。一旦所有必须的
资源可用之后,这些板级特定的回调函数将会注册设备,并可以在这些 GPIO 控制器
设备变成无效时移除它们。
用户空间的 Sysfs 接口(可选)
=============================
使用“gpiolib”实现框架的平台可以选择配置一个 GPIO 的 sysfs 用户接口。
这不同于 debugfs 接口,因为它提供的是对 GPIO方向和值的控制而不只显示
一个GPIO 的状态摘要。此外,它可以出现在没有调试支持的产品级系统中。
例如,通过适当的系统硬件文档,用户空间可以知道 GIOP #23 控制 Flash
存储器的写保护(用于保护其中 Bootloader 分区)。产品的系统升级可能需要
临时解除这个保护:首先导入一个 GPIO改变其输出状态然后在重新使能写保护
前升级代码。通常情况下,GPIO #23 是不会被触及的,并且内核也不需要知道他。
根据适当的硬件文档,某些系统的用户空间 GPIO 可以用于确定系统配置数据,
这些数据是标准内核不知道的。在某些任务中,简单的用户空间 GPIO 驱动可能是
系统真正需要的。
注意标准内核驱动中已经存在通用的“LED 和按键”GPIO 任务,分别是:
"leds-gpio" 和 "gpio_keys"。请使用这些来替代直接访问 GPIO因为集成在
内核框架中的这类驱动比你在用户空间的代码更好。
Sysfs 中的路径
--------------
在/sys/class/gpio 中有 3 类入口:
- 用于在用户空间控制 GPIO 的控制接口;
- GPIOs 本身;以及
- GPIO 控制器 ("gpio_chip" 实例)。
除了这些标准的文件,还包含“device”符号链接。
控制接口是只写的:
/sys/class/gpio/
"export" ... 用户空间可以通过写其编号到这个文件,要求内核导出
一个 GPIO 的控制到用户空间。
例如: 如果内核代码没有申请 GPIO #19,"echo 19 > export"
将会为 GPIO #19 创建一个 "gpio19" 节点。
"unexport" ... 导出到用户空间的逆操作。
例如: "echo 19 > unexport" 将会移除使用"export"文件导出的
"gpio19" 节点。
GPIO 信号的路径类似 /sys/class/gpio/gpio42/ (对于 GPIO #42 来说)
并有如下的读/写属性:
/sys/class/gpio/gpioN/
"direction" ... 读取得到 "in" 或 "out"。这个值通常运行写入。
写入"out" 时,其引脚的默认输出为低电平。为了确保无故障运行,
"low" 或 "high" 的电平值应该写入 GPIO 的配置,作为初始输出值。
注意:如果内核不支持改变 GPIO 的方向,或者在导出时内核代码没有
明确允许用户空间可以重新配置 GPIO 方向,那么这个属性将不存在。
"value" ... 读取得到 0 (低电平) 或 1 (高电平)。如果 GPIO 配置为
输出,这个值允许写操作。任何非零值都以高电平看待。
如果引脚可以配置为中断信号,且如果已经配置了产生中断的模式
(见"edge"的描述),你可以对这个文件使用轮询操作(poll(2))
且轮询操作会在任何中断触发时返回。如果你使用轮询操作(poll(2))
请在 events 中设置 POLLPRI 和 POLLERR。如果你使用轮询操作
(select(2)),请在 exceptfds 设置你期望的文件描述符。在
轮询操作(poll(2))返回之后,既可以通过 lseek(2)操作读取
sysfs 文件的开始部分,也可以关闭这个文件并重新打开它来读取数据。
"edge" ... 读取得到“none”、“rising”、“falling”或者“both”。
将这些字符串写入这个文件可以选择沿触发模式,会使得轮询操作
(select(2))在"value"文件中返回。
这个文件仅有在这个引脚可以配置为可产生中断输入引脚时,才存在。
"active_low" ... 读取得到 0 (假) 或 1 (真)。写入任何非零值可以
翻转这个属性的(读写)值。已存在或之后通过"edge"属性设置了"rising"
和 "falling" 沿触发模式的轮询操作(poll(2))将会遵循这个设置。
GPIO 控制器的路径类似 /sys/class/gpio/gpiochip42/ (对于从#42 GPIO
开始实现控制的控制器),并有着以下只读属性:
/sys/class/gpio/gpiochipN/
"base" ... 与以上的 N 相同,代表此芯片管理的第一个 GPIO 的编号
"label" ... 用于诊断 (并不总是只有唯一值)
"ngpio" ... 此控制器所管理的 GPIO 数量(而 GPIO 编号从 N 到
N + ngpio - 1)
大多数情况下,电路板的文档应当标明每个 GPIO 的使用目的。但是那些编号并不总是
固定的,例如在扩展卡上的 GPIO会根据所使用的主板或所在堆叠架构中其他的板子而
有所不同。在这种情况下,你可能需要使用 gpiochip 节点(尽可能地结合电路图)来
确定给定信号所用的 GPIO 编号。
API参考
=======
本节中列出的函数已被废弃。在新的代码中应该使用基于GPIO描述符的API。

View File

@ -1,574 +0,0 @@
Chinese translated version of Documentation/admin-guide/gpio
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
communicating in English you can also ask the Chinese maintainer for
help. Contact the Chinese maintainer if this translation is outdated
or if there is a problem with the translation.
Maintainer: Grant Likely <grant.likely@secretlab.ca>
Linus Walleij <linus.walleij@linaro.org>
Traditional Chinese maintainer: Hu Haowen <2023002089@link.tyut.edu.cn>
---------------------------------------------------------------------
Documentation/admin-guide/gpio 的繁體中文翻譯
如果想評論或更新本文的內容,請直接聯繫原文檔的維護者。如果你使用英文
交流有困難的話,也可以向繁體中文版維護者求助。如果本翻譯更新不及時或
者翻譯存在問題,請聯繫繁體中文版維護者。
英文版維護者: Grant Likely <grant.likely@secretlab.ca>
Linus Walleij <linus.walleij@linaro.org>
繁體中文版維護者: 胡皓文 Hu Haowen <2023002089@link.tyut.edu.cn>
繁體中文版翻譯者: 胡皓文 Hu Haowen <2023002089@link.tyut.edu.cn>
繁體中文版校譯者: 胡皓文 Hu Haowen <2023002089@link.tyut.edu.cn>
以下爲正文
---------------------------------------------------------------------
GPIO 接口
本文檔提供了一個在Linux下訪問GPIO的公約概述。
這些函數以 gpio_* 作爲前綴。其他的函數不允許使用這樣的前綴或相關的
__gpio_* 前綴。
什麼是GPIO?
==========
"通用輸入/輸出口"(GPIO)是一個靈活的由軟體控制的數位訊號。他們可
由多種晶片提供,且對於從事嵌入式和定製硬體的 Linux 開發者來說是
比較熟悉。每個GPIO 都代表一個連接到特定引腳或球柵陣列(BGA)封裝中
「球珠」的一個位。電路板原理圖顯示了 GPIO 與外部硬體的連接關係。
驅動可以編寫成通用代碼,以使板級啓動代碼可傳遞引腳配置數據給驅動。
片上系統 (SOC) 處理器對 GPIO 有很大的依賴。在某些情況下,每個
非專用引腳都可配置爲 GPIO,且大多數晶片都最少有一些 GPIO。
可編程邏輯器件(類似 FPGA) 可以方便地提供 GPIO。像電源管理和
音頻編解碼器這樣的多功能晶片經常留有一些這樣的引腳來幫助那些引腳
匱乏的 SOC。同時還有通過 I2C 或 SPI 串行總線連接的「GPIO擴展器」
晶片。大多數 PC 的南橋有一些擁有 GPIO 能力的引腳 (只有BIOS
固件才知道如何使用他們)。
GPIO 的實際功能因系統而異。通常用法有:
- 輸出值可寫 (高電平=1低電平=0)。一些晶片也有如何驅動這些值的選項,
例如只允許輸出一個值、支持「線與」及其他取值類似的模式(值得注意的是
「開漏」信號)
- 輸入值可讀(1、0)。一些晶片支持引腳在配置爲「輸出」時回讀,這對於類似
「線與」的情況(以支持雙向信號)是非常有用的。GPIO 控制器可能有輸入
去毛刺/消抖邏輯,這有時需要軟體控制。
- 輸入通常可作爲 IRQ 信號,一般是沿觸發,但有時是電平觸發。這樣的 IRQ
可能配置爲系統喚醒事件,以將系統從低功耗狀態下喚醒。
- 通常一個 GPIO 根據不同產品電路板的需求,可以配置爲輸入或輸出,也有僅
支持單向的。
- 大部分 GPIO 可以在持有自旋鎖時訪問,但是通常由串行總線擴展的 GPIO
不允許持有自旋鎖。但某些系統也支持這種類型。
對於給定的電路板,每個 GPIO 都用於某個特定的目的,如監控 MMC/SD 卡的
插入/移除、檢測卡的防寫狀態、驅動 LED、配置收發器、模擬串行總線、
復位硬體看門狗、感知開關狀態等等。
GPIO 公約
=========
注意,這個叫做「公約」,因爲這不是強制性的,不遵循這個公約是無傷大雅的,
因爲此時可移植性並不重要。GPIO 常用於板級特定的電路邏輯,甚至可能
隨著電路板的版本而改變,且不可能在不同走線的電路板上使用。僅有在少數
功能上才具有可移植性,其他功能是平台特定。這也是由於「膠合」的邏輯造成的。
此外,這不需要任何的執行框架,只是一個接口。某個平台可能通過一個簡單地
訪問晶片寄存器的內聯函數來實現它其他平台可能通過委託一系列不同的GPIO
控制器的抽象函數來實現它。(有一些可選的代碼能支持這種策略的實現,本文檔
後面會介紹,但作爲 GPIO 接口的客戶端驅動程序必須與它的實現無關。)
也就是說,如果在他們的平台上支持這個公約,驅動應儘可能的使用它。同時,平台
必須在 Kconfig 中選擇 ARCH_REQUIRE_GPIOLIB 或者 ARCH_WANT_OPTIONAL_GPIOLIB
選項。那些調用標準 GPIO 函數的驅動應該在 Kconfig 入口中聲明依賴GENERIC_GPIO。
當驅動包含文件:
#include <linux/gpio.h>
則 GPIO 函數是可用,無論是「真實代碼」還是經優化過的語句。如果你遵守
這個公約,當你的代碼完成後,對其他的開發者來說會更容易看懂和維護。
注意,這些操作包含所用平台的 I/O 屏障代碼,驅動無須顯式地調用他們。
標識 GPIO
---------
GPIO 是通過無符號整型來標識的,範圍是 0 到 MAX_INT。保留「負」數
用於其他目的,例如標識信號「在這個板子上不可用」或指示錯誤。未接觸底層
硬體的代碼會忽略這些整數。
平台會定義這些整數的用法,且通常使用 #define 來定義 GPIO這樣
板級特定的啓動代碼可以直接關聯相應的原理圖。相對來說,驅動應該僅使用
啓動代碼傳遞過來的 GPIO 編號,使用 platform_data 保存板級特定
引腳配置數據 (同時還有其他須要的板級特定數據),避免可能出現的問題。
例如一個平台使用編號 32-159 來標識 GPIO,而在另一個平台使用編號0-63
標識一組 GPIO 控制器,64-79標識另一類 GPIO 控制器,且在一個含有
FPGA 的特定板子上使用 80-95。編號不一定要連續,那些平台中,也可以
使用編號2000-2063來標識一個 I2C 接口的 GPIO 擴展器中的 GPIO。
如果你要初始化一個帶有無效 GPIO 編號的結構體,可以使用一些負編碼
(如"-EINVAL"),那將使其永遠不會是有效。來測試這樣一個結構體中的編號
是否關聯一個 GPIO你可使用以下斷言:
int gpio_is_valid(int number);
如果編號不存在,則請求和釋放 GPIO 的函數將拒絕執行相關操作(見下文)。
其他編號也可能被拒絕,比如一個編號可能存在,但暫時在給定的電路上不可用。
一個平台是否支持多個 GPIO 控制器爲平台特定的實現問題,就像是否可以
在 GPIO 編號空間中有「空洞」和是否可以在運行時添加新的控制器一樣。
這些問題會影響其他事情,包括相鄰的 GPIO 編號是否存在等。
使用 GPIO
---------
對於一個 GPIO系統應該做的第一件事情就是通過 gpio_request()
函數分配它,見下文。
接下來是設置I/O方向這通常是在板級啓動代碼中爲所使用的 GPIO 設置
platform_device 時完成。
/* 設置爲輸入或輸出, 返回 0 或負的錯誤代碼 */
int gpio_direction_input(unsigned gpio);
int gpio_direction_output(unsigned gpio, int value);
返回值爲零代表成功,否則返回一個負的錯誤代碼。這個返回值需要檢查,因爲
get/set(獲取/設置)函數調用沒法返回錯誤,且有可能是配置錯誤。通常,
你應該在進程上下文中調用這些函數。然而,對於自旋鎖安全的 GPIO在板子
啓動的早期、進程啓動前使用他們也是可以的。
對於作爲輸出的 GPIO爲其提供初始輸出值對於避免在系統啓動期間出現
信號毛刺是很有幫助的。
爲了與傳統的 GPIO 接口兼容, 在設置一個 GPIO 方向時,如果它還未被申請,
則隱含了申請那個 GPIO 的操作(見下文)。這種兼容性正在從可選的 gpiolib
框架中移除。
如果這個 GPIO 編碼不存在,或者特定的 GPIO 不能用於那種模式,則方向
設置可能失敗。依賴啓動固件來正確地設置方向通常是一個壞主意,因爲它可能
除了啓動Linux並沒有做更多的驗證工作。(同理, 板子的啓動代碼可能需要
將這個復用的引腳設置爲 GPIO並正確地配置上拉/下拉電阻。)
訪問自旋鎖安全的 GPIO
-------------------
大多數 GPIO 控制器可以通過內存讀/寫指令來訪問。這些指令不會休眠,可以
安全地在硬(非線程)中斷例程和類似的上下文中完成。
對於那些 GPIO使用以下的函數訪問:
/* GPIO 輸入:返回零或非零 */
int gpio_get_value(unsigned gpio);
/* GPIO 輸出 */
void gpio_set_value(unsigned gpio, int value);
GPIO值是布爾值零表示低電平非零表示高電平。當讀取一個輸出引腳的值時
返回值應該是引腳上的值。這個值不總是和輸出值相符,因爲存在開漏輸出信號和
輸出延遲問題。
以上的 get/set 函數無錯誤返回值,因爲之前 gpio_direction_*()應已檢查過
其是否爲「無效GPIO」。此外還需要注意的是並不是所有平台都可以從輸出引腳
中讀取數據,對於不能讀取的引腳應總返回零。另外,對那些在原子上下文中無法
安全訪問的 GPIO (譯者註:因爲訪問可能導致休眠)使用這些函數是不合適的
(見下文)。
在 GPIO 編號(還有輸出、值)爲常數的情況下,鼓勵通過平台特定的實現來優化
這兩個函數來訪問 GPIO 值。這種情況(讀寫一個硬體寄存器)下只需要幾條指令
是很正常的,且無須自旋鎖。這種優化函數比起那些在子程序上花費許多指令的
函數可以使得模擬接口(譯者注:例如 GPIO 模擬 I2C、1-wire 或 SPI)的
應用(在空間和時間上都)更具效率。
訪問可能休眠的 GPIO
-----------------
某些 GPIO 控制器必須通過基於總線(如 I2C 或 SPI)的消息訪問。讀或寫這些
GPIO 值的命令需要等待其信息排到隊首才發送命令,再獲得其反饋。期間需要
休眠,這不能在 IRQ 例程(中斷上下文)中執行。
爲了訪問這種 GPIO,內核定義了一套不同的函數:
/* GPIO 輸入:返回零或非零 ,可能會休眠 */
int gpio_get_value_cansleep(unsigned gpio);
/* GPIO 輸出,可能會休眠 */
void gpio_set_value_cansleep(unsigned gpio, int value);
訪問這樣的 GPIO 需要一個允許休眠的上下文,例如線程 IRQ 處理例程,並用以上的
訪問函數替換那些沒有 cansleep()後綴的自旋鎖安全訪問函數。
除了這些訪問函數可能休眠,且它們操作的 GPIO 不能在硬體 IRQ 處理例程中訪問的
事實,這些處理例程實際上和自旋鎖安全的函數是一樣的。
** 除此之外 ** 調用設置和配置此類 GPIO 的函數也必須在允許休眠的上下文中,
因爲它們可能也需要訪問 GPIO 控制器晶片: (這些設置函數通常在板級啓動代碼或者
驅動探測/斷開代碼中,所以這是一個容易滿足的約束條件。)
gpio_direction_input()
gpio_direction_output()
gpio_request()
## gpio_request_one()
gpio_free()
聲明和釋放 GPIO
----------------------------
爲了有助於捕獲系統配置錯誤,定義了兩個函數。
/* 申請 GPIO, 返回 0 或負的錯誤代碼.
* 非空標籤可能有助於診斷.
*/
int gpio_request(unsigned gpio, const char *label);
/* 釋放之前聲明的 GPIO */
void gpio_free(unsigned gpio);
將無效的 GPIO 編碼傳遞給 gpio_request()會導致失敗,申請一個已使用這個
函數聲明過的 GPIO 也會失敗。gpio_request()的返回值必須檢查。你應該在
進程上下文中調用這些函數。然而,對於自旋鎖安全的 GPIO,在板子啓動的早期、
進入進程之前是可以申請的。
這個函數完成兩個基本的目標。一是標識那些實際上已作爲 GPIO 使用的信號線,
這樣便於更好地診斷;系統可能需要服務幾百個可用的 GPIO但是對於任何一個
給定的電路板通常只有一些被使用。另一個目的是捕獲衝突,查明錯誤:如兩個或
更多驅動錯誤地認爲他們已經獨占了某個信號線,或是錯誤地認爲移除一個管理著
某個已激活信號的驅動是安全的。也就是說,申請 GPIO 的作用類似一種鎖機制。
某些平台可能也使用 GPIO 作爲電源管理激活信號(例如通過關閉未使用晶片區和
簡單地關閉未使用時鐘)。
對於 GPIO 使用 pinctrl 子系統已知的引腳,子系統應該被告知其使用情況;
一個 gpiolib 驅動的 .request()操作應調用 pinctrl_gpio_request()
而 gpiolib 驅動的 .free()操作應調用 pinctrl_gpio_free()。pinctrl
子系統允許 pinctrl_gpio_request()在某個引腳或引腳組以復用形式「屬於」
一個設備時都成功返回。
任何須將 GPIO 信號導向適當引腳的引腳復用硬體的編程應該發生在 GPIO
驅動的 .direction_input()或 .direction_output()函數中,以及
任何輸出 GPIO 值的設置之後。這樣可使從引腳特殊功能到 GPIO 的轉換
不會在引腳產生毛刺波形。有時當用一個 GPIO 實現其信號驅動一個非 GPIO
硬體模塊的解決方案時,就需要這種機制。
某些平台允許部分或所有 GPIO 信號使用不同的引腳。類似的GPIO 或引腳的
其他方面也需要配置,如上拉/下拉。平台軟體應該在對這些 GPIO 調用
gpio_request()前將這類細節配置好,例如使用 pinctrl 子系統的映射表,
使得 GPIO 的用戶無須關注這些細節。
還有一個值得注意的是在釋放 GPIO 前,你必須停止使用它。
注意:申請一個 GPIO 並沒有以任何方式配置它,只不過標識那個 GPIO 處於使用
狀態。必須有另外的代碼來處理引腳配置(如控制 GPIO 使用的引腳、上拉/下拉)。
考慮到大多數情況下聲明 GPIO 之後就會立即配置它們,所以定義了以下三個輔助函數:
/* 申請一個 GPIO 信號, 同時通過特定的'flags'初始化配置,
* 其他和 gpio_request()的參數和返回值相同
*
*/
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
這裡 'flags' 當前定義可指定以下屬性:
* GPIOF_DIR_IN - 配置方向爲輸入
* GPIOF_DIR_OUT - 配置方向爲輸出
* GPIOF_INIT_LOW - 在作爲輸出時,初始值爲低電平
* GPIOF_INIT_HIGH - 在作爲輸出時,初始值爲高電平
因爲 GPIOF_INIT_* 僅有在配置爲輸出的時候才存在,所以有效的組合爲:
* GPIOF_IN - 配置爲輸入
* GPIOF_OUT_INIT_LOW - 配置爲輸出,並初始化爲低電平
* GPIOF_OUT_INIT_HIGH - 配置爲輸出,並初始化爲高電平
更進一步,爲了更簡單地聲明/釋放多個 GPIO,'struct gpio'被引進來封裝所有
這三個領域:
struct gpio {
unsigned gpio;
unsigned long flags;
const char *label;
};
一個典型的用例:
static struct gpio leds_gpios[] = {
{ 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* 默認開啓 */
{ 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* 默認關閉 */
{ 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* 默認關閉 */
{ 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* 默認關閉 */
{ ... },
};
err = gpio_request_one(31, GPIOF_IN, "Reset Button");
if (err)
...
GPIO 映射到 IRQ
--------------------
GPIO 編號是無符號整數;IRQ 編號也是。這些構成了兩個邏輯上不同的命名空間
(GPIO 0 不一定使用 IRQ 0)。你可以通過以下函數在它們之間實現映射:
/* 映射 GPIO 編號到 IRQ 編號 */
int gpio_to_irq(unsigned gpio);
它們的返回值爲對應命名空間的相關編號,或是負的錯誤代碼(如果無法映射)。
(例如,某些 GPIO 無法做爲 IRQ 使用。)以下的編號錯誤是未經檢測的:使用一個
未通過 gpio_direction_input()配置爲輸入的 GPIO 編號,或者使用一個
並非來源於gpio_to_irq()的 IRQ 編號。
這兩個映射函數可能會在信號編號的加減計算過程上花些時間。它們不可休眠。
gpio_to_irq()返回的非錯誤值可以傳遞給 request_irq()或者 free_irq()。
它們通常通過板級特定的初始化代碼存放到平台設備的 IRQ 資源中。注意:IRQ
觸發選項是 IRQ 接口的一部分,如 IRQF_TRIGGER_FALLING系統喚醒能力
也是如此。
模擬開漏信號
----------------------------
有時在只有低電平信號作爲實際驅動結果(譯者注:多個輸出連接於一點,邏輯電平
結果爲所有輸出的邏輯與)的時候,共享的信號線需要使用「開漏」信號。(該術語
適用於 CMOS 管;而 TTL 用「集電極開路」。)一個上拉電阻使信號爲高電平。這
有時被稱爲「線與」。實際上,從負邏輯(低電平爲真)的角度來看,這是一個「線或」。
一個開漏信號的常見例子是共享的低電平使能 IRQ 信號線。此外,有時雙向數據總線
信號也使用漏極開路信號。
某些 GPIO 控制器直接支持開漏輸出,還有許多不支持。當你需要開漏信號,但
硬體又不直接支持的時候,一個常用的方法是用任何即可作輸入也可作輸出的 GPIO
引腳來模擬:
LOW: gpio_direction_output(gpio, 0) ... 這代碼驅動信號並覆蓋
上拉配置。
HIGH: gpio_direction_input(gpio) ... 這代碼關閉輸出,所以上拉電阻
(或其他的一些器件)控制了信號。
如果你將信號線「驅動」爲高電平,但是 gpio_get_value(gpio)報告了一個
低電平(在適當的上升時間後),你就可以知道是其他的一些組件將共享信號線拉低了。
這不一定是錯誤的。一個常見的例子就是 I2C 時鐘的延長:一個需要較慢時鐘的
從設備延遲 SCK 的上升沿,而 I2C 主設備相應地調整其信號傳輸速率。
這些公約忽略了什麼?
================
這些公約忽略的最大一件事就是引腳復用,因爲這屬於高度晶片特定的屬性且
沒有可移植性。某個平台可能不需要明確的復用信息;有的對於任意給定的引腳
可能只有兩個功能選項;有的可能每個引腳有八個功能選項;有的可能可以將
幾個引腳中的任何一個作爲給定的 GPIO。(是的,這些例子都來自於當前運行
Linux 的系統。)
在某些系統中,與引腳復用相關的是配置和使能集成的上、下拉模式。並不是所有
平台都支持這種模式,或者不會以相同的方式來支持這種模式;且任何給定的電路板
可能使用外置的上拉(或下拉)電阻,這時晶片上的就不應該使用。(當一個電路需要
5kOhm 的拉動電阻,晶片上的 100 kOhm 電阻就不能做到。)同樣的,驅動能力
(2 mA vs 20 mA)和電壓(1.8V vs 3.3V)是平台特定問題,就像模型一樣在
可配置引腳和 GPIO 之間(沒)有一一對應的關係。
還有其他一些系統特定的機制沒有在這裡指出,例如上述的輸入去毛刺和線與輸出
選項。硬體可能支持批量讀或寫 GPIO但是那一般是配置相關的對於處於同一
塊區(bank)的GPIO。(GPIO 通常以 16 或 32 個組成一個區塊,一個給定的
片上系統一般有幾個這樣的區塊。)某些系統可以通過輸出 GPIO 觸發 IRQ
或者從並非以 GPIO 管理的引腳取值。這些機制的相關代碼沒有必要具有可移植性。
當前,動態定義 GPIO 並不是標準的,例如作爲配置一個帶有某些 GPIO 擴展器的
附加電路板的副作用。
GPIO 實現者的框架 (可選)
=====================
前面提到了,有一個可選的實現框架,讓平台使用相同的編程接口,更加簡單地支持
不同種類的 GPIO 控制器。這個框架稱爲"gpiolib"。
作爲一個輔助調試功能,如果 debugfs 可用,就會有一個 /sys/kernel/debug/gpio
文件。通過這個框架,它可以列出所有註冊的控制器,以及當前正在使用中的 GPIO
的狀態。
控制器驅動: gpio_chip
-------------------
在框架中每個 GPIO 控制器都包裝爲一個 "struct gpio_chip",他包含了
該類型的每個控制器的常用信息:
- 設置 GPIO 方向的方法
- 用於訪問 GPIO 值的方法
- 告知調用其方法是否可能休眠的標誌
- 可選的 debugfs 信息導出方法 (顯示類似上拉配置一樣的額外狀態)
- 診斷標籤
也包含了來自 device.platform_data 的每個實例的數據:它第一個 GPIO 的
編號和它可用的 GPIO 的數量。
實現 gpio_chip 的代碼應支持多控制器實例,這可能使用驅動模型。那些代碼要
配置每個 gpio_chip並發起gpiochip_add()。卸載一個 GPIO 控制器很少見,
但在必要的時候可以使用 gpiochip_remove()。
大部分 gpio_chip 是一個實例特定結構體的一部分,而並不將 GPIO 接口單獨
暴露出來,比如編址、電源管理等。類似編解碼器這樣的晶片會有複雜的非 GPIO
狀態。
任何一個 debugfs 信息導出方法通常應該忽略還未申請作爲 GPIO 的信號線。
他們可以使用 gpiochip_is_requested()測試,當這個 GPIO 已經申請過了
就返回相關的標籤,否則返回 NULL。
平台支持
-------
爲了支持這個框架,一個平台的 Kconfig 文件將會 "select"(選擇)
ARCH_REQUIRE_GPIOLIB 或 ARCH_WANT_OPTIONAL_GPIOLIB並讓它的
<asm/gpio.h> 包含 <asm-generic/gpio.h>,同時定義二個方法:
gpio_get_value()、gpio_set_value()。
它也應提供一個 ARCH_NR_GPIOS 的定義值,這樣可以更好地反映該平台 GPIO
的實際數量,節省靜態表的空間。(這個定義值應該包含片上系統內建 GPIO 和
GPIO 擴展器中的數據。)
ARCH_REQUIRE_GPIOLIB 意味著 gpiolib 核心在這個構架中將總是編譯進內核。
ARCH_WANT_OPTIONAL_GPIOLIB 意味著 gpiolib 核心默認關閉,且用戶可以
使能它,並將其編譯進內核(可選)。
如果這些選項都沒被選擇,該平台就不通過 GPIO-lib 支持 GPIO,且代碼不可以
被用戶使能。
以下這些方法的實現可以直接使用框架代碼,並總是通過 gpio_chip 調度:
#define gpio_get_value __gpio_get_value
#define gpio_set_value __gpio_set_value
這些定義可以用更理想的實現方法替代,那就是使用經過邏輯優化的內聯函數來訪問
基於特定片上系統的 GPIO。例如,若引用的 GPIO (寄存器位偏移)是常量「12」
讀取或設置它可能只需少則兩或三個指令,且不會休眠。當這樣的優化無法實現時,
那些函數必須使用框架提供的代碼,那就至少要幾十條指令才可以實現。對於用 GPIO
模擬的 I/O 接口, 如此精簡指令是很有意義的。
對於片上系統,平台特定代碼爲片上 GPIO 每個區(bank)定義並註冊 gpio_chip
實例。那些 GPIO 應該根據晶片廠商的文檔進行編碼/標籤,並直接和電路板原理圖
對應。他們應該開始於零並終止於平台特定的限制。這些 GPIO(代碼)通常從
arch_initcall()或者更早的地方集成進平台初始化代碼,使這些 GPIO 總是可用,
且他們通常可以作爲 IRQ 使用。
板級支持
-------
對於外部 GPIO 控制器(例如 I2C 或 SPI 擴展器、專用晶片、多功能器件、FPGA
或 CPLD),大多數常用板級特定代碼都可以註冊控制器設備,並保證他們的驅動知道
gpiochip_add()所使用的 GPIO 編號。他們的起始編號通常跟在平台特定的 GPIO
編號之後。
例如板級啓動代碼應該創建結構體指明晶片公開的 GPIO 範圍,並使用 platform_data
將其傳遞給每個 GPIO 擴展器晶片。然後晶片驅動中的 probe()例程可以將這個
數據傳遞給 gpiochip_add()。
初始化順序很重要。例如,如果一個設備依賴基於 I2C 的(擴展)GPIO那麼它的
probe()例程就應該在那個 GPIO 有效以後才可以被調用。這意味著設備應該在
GPIO 可以工作之後才可被註冊。解決這類依賴的的一種方法是讓這種 gpio_chip
控制器向板級特定代碼提供 setup()和 teardown()回調函數。一旦所有必須的
資源可用之後,這些板級特定的回調函數將會註冊設備,並可以在這些 GPIO 控制器
設備變成無效時移除它們。
用戶空間的 Sysfs 接口(可選)
========================
使用「gpiolib」實現框架的平台可以選擇配置一個 GPIO 的 sysfs 用戶接口。
這不同於 debugfs 接口,因爲它提供的是對 GPIO方向和值的控制而不只顯示
一個GPIO 的狀態摘要。此外,它可以出現在沒有調試支持的產品級系統中。
例如,通過適當的系統硬體文檔,用戶空間可以知道 GIOP #23 控制 Flash
存儲器的防寫(用於保護其中 Bootloader 分區)。產品的系統升級可能需要
臨時解除這個保護:首先導入一個 GPIO改變其輸出狀態然後在重新使能防寫
前升級代碼。通常情況下,GPIO #23 是不會被觸及的,並且內核也不需要知道他。
根據適當的硬體文檔,某些系統的用戶空間 GPIO 可以用於確定系統配置數據,
這些數據是標準內核不知道的。在某些任務中,簡單的用戶空間 GPIO 驅動可能是
系統真正需要的。
注意標準內核驅動中已經存在通用的「LED 和按鍵」GPIO 任務,分別是:
"leds-gpio" 和 "gpio_keys"。請使用這些來替代直接訪問 GPIO因爲集成在
內核框架中的這類驅動比你在用戶空間的代碼更好。
Sysfs 中的路徑
--------------
在/sys/class/gpio 中有 3 類入口:
- 用於在用戶空間控制 GPIO 的控制接口;
- GPIOs 本身;以及
- GPIO 控制器 ("gpio_chip" 實例)。
除了這些標準的文件,還包含「device」符號連結。
控制接口是只寫的:
/sys/class/gpio/
"export" ... 用戶空間可以通過寫其編號到這個文件,要求內核導出
一個 GPIO 的控制到用戶空間。
例如: 如果內核代碼沒有申請 GPIO #19,"echo 19 > export"
將會爲 GPIO #19 創建一個 "gpio19" 節點。
"unexport" ... 導出到用戶空間的逆操作。
例如: "echo 19 > unexport" 將會移除使用"export"文件導出的
"gpio19" 節點。
GPIO 信號的路徑類似 /sys/class/gpio/gpio42/ (對於 GPIO #42 來說)
並有如下的讀/寫屬性:
/sys/class/gpio/gpioN/
"direction" ... 讀取得到 "in" 或 "out"。這個值通常運行寫入。
寫入"out" 時,其引腳的默認輸出爲低電平。爲了確保無故障運行,
"low" 或 "high" 的電平值應該寫入 GPIO 的配置,作爲初始輸出值。
注意:如果內核不支持改變 GPIO 的方向,或者在導出時內核代碼沒有
明確允許用戶空間可以重新配置 GPIO 方向,那麼這個屬性將不存在。
"value" ... 讀取得到 0 (低電平) 或 1 (高電平)。如果 GPIO 配置爲
輸出,這個值允許寫操作。任何非零值都以高電平看待。
如果引腳可以配置爲中斷信號,且如果已經配置了產生中斷的模式
(見"edge"的描述),你可以對這個文件使用輪詢操作(poll(2))
且輪詢操作會在任何中斷觸發時返回。如果你使用輪詢操作(poll(2))
請在 events 中設置 POLLPRI 和 POLLERR。如果你使用輪詢操作
(select(2)),請在 exceptfds 設置你期望的文件描述符。在
輪詢操作(poll(2))返回之後,既可以通過 lseek(2)操作讀取
sysfs 文件的開始部分,也可以關閉這個文件並重新打開它來讀取數據。
"edge" ... 讀取得到「none」、「rising」、「falling」或者「both」。
將這些字符串寫入這個文件可以選擇沿觸發模式,會使得輪詢操作
(select(2))在"value"文件中返回。
這個文件僅有在這個引腳可以配置爲可產生中斷輸入引腳時,才存在。
"active_low" ... 讀取得到 0 (假) 或 1 (真)。寫入任何非零值可以
翻轉這個屬性的(讀寫)值。已存在或之後通過"edge"屬性設置了"rising"
和 "falling" 沿觸發模式的輪詢操作(poll(2))將會遵循這個設置。
GPIO 控制器的路徑類似 /sys/class/gpio/gpiochip42/ (對於從#42 GPIO
開始實現控制的控制器),並有著以下只讀屬性:
/sys/class/gpio/gpiochipN/
"base" ... 與以上的 N 相同,代表此晶片管理的第一個 GPIO 的編號
"label" ... 用於診斷 (並不總是只有唯一值)
"ngpio" ... 此控制器所管理的 GPIO 數量(而 GPIO 編號從 N 到
N + ngpio - 1)
大多數情況下,電路板的文檔應當標明每個 GPIO 的使用目的。但是那些編號並不總是
固定的,例如在擴展卡上的 GPIO會根據所使用的主板或所在堆疊架構中其他的板子而
有所不同。在這種情況下,你可能需要使用 gpiochip 節點(儘可能地結合電路圖)來
確定給定信號所用的 GPIO 編號。

View File

@ -36,6 +36,13 @@ Description
Get the values of all requested lines.
The values returned are logical, indicating if the line is active or inactive.
The ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` flag controls the mapping between physical
values (high/low) and logical values (active/inactive).
If ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` is not set then high is active and
low is inactive. If ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` is set then low is active
and high is inactive.
The values of both input and output lines may be read.
For output lines, the value returned is driver and configuration dependent and

View File

@ -43,7 +43,10 @@ The configuration applies to all requested lines.
The same :ref:`gpio-get-linehandle-config-rules` and
:ref:`gpio-get-linehandle-config-support` that apply when requesting the
lines also apply when updating the line configuration.
lines also apply when updating the line configuration, with the additional
restriction that a direction flag must be set. Requesting an invalid
configuration, including without a direction flag set, is an error
(**EINVAL**).
The motivating use case for this command is changing direction of
bi-directional lines between input and output, but it may be used more

View File

@ -36,6 +36,13 @@ Description
Set the values of all requested output lines.
The values set are logical, indicating if the line is to be active or inactive.
The ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` flag controls the mapping between logical
values (active/inactive) and physical values (high/low).
If ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` is not set then active is high and
inactive is low. If ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` is set then active is low
and inactive is high.
Only the values of output lines may be set.
Attempting to set the value of input lines is an error (**EPERM**).

View File

@ -44,6 +44,11 @@ Edge detection must be enabled for the input line using either
both. Edge events are then generated whenever edge interrupts are detected on
the input line.
Edges are defined in terms of changes to the logical line value, so an inactive
to active transition is a rising edge. If ``GPIOHANDLE_REQUEST_ACTIVE_LOW`` is
set then logical polarity is the opposite of physical polarity, and
``GPIOEVENT_REQUEST_RISING_EDGE`` then corresponds to a falling physical edge.
The kernel captures and timestamps edge events as close as possible to their
occurrence and stores them in a buffer from where they can be read by
userspace at its convenience using `read()`.

View File

@ -40,6 +40,11 @@ Edge detection must be enabled for the input line using either
both. Edge events are then generated whenever edge interrupts are detected on
the input line.
Edges are defined in terms of changes to the logical line value, so an inactive
to active transition is a rising edge. If ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` is
set then logical polarity is the opposite of physical polarity, and
``GPIO_V2_LINE_FLAG_EDGE_RISING`` then corresponds to a falling physical edge.
The kernel captures and timestamps edge events as close as possible to their
occurrence and stores them in a buffer from where they can be read by
userspace at its convenience using `read()`.

View File

@ -34,6 +34,13 @@ Description
Get the values of requested lines.
The values returned are logical, indicating if the line is active or inactive.
The ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` flag controls the mapping between physical
values (high/low) and logical values (active/inactive).
If ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` is not set then high is active and low is
inactive. If ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` is set then low is active and
high is inactive.
The values of both input and output lines may be read.
For output lines, the value returned is driver and configuration dependent and

View File

@ -35,11 +35,14 @@ Description
Update the configuration of previously requested lines, without releasing the
line or introducing potential glitches.
The new configuration must specify the configuration of all requested lines.
The new configuration must specify a configuration for all requested lines.
The same :ref:`gpio-v2-get-line-config-rules` and
:ref:`gpio-v2-get-line-config-support` that apply when requesting the lines
also apply when updating the line configuration.
also apply when updating the line configuration, with the additional
restriction that a direction flag must be set to enable reconfiguration.
If no direction flag is set in the configuration for a given line then the
configuration for that line is left unchanged.
The motivating use case for this command is changing direction of
bi-directional lines between input and output, but it may also be used to

View File

@ -35,6 +35,13 @@ Description
Set the values of requested output lines.
The values set are logical, indicating if the line is to be active or inactive.
The ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` flag controls the mapping between logical
values (active/inactive) and physical values (high/low).
If ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` is not set then active is high and inactive
is low. If ``GPIO_V2_LINE_FLAG_ACTIVE_LOW`` is set then active is low and
inactive is high.
Only the values of output lines may be set.
Attempting to set the value of an input line is an error (**EPERM**).

View File

@ -97,9 +97,10 @@ and have the following read/write attributes:
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI and POLLERR. If you
use select(2), set the file descriptor in exceptfds. After
poll(2) returns, either lseek(2) to the beginning of the sysfs
file and read the new value or close the file and re-open it
to read the value.
poll(2) returns, use pread(2) to read the value at offset
zero. Alternatively, either lseek(2) to the beginning of the
sysfs file and read the new value or close the file and
re-open it to read the value.
"edge" ...
reads as either "none", "rising", "falling", or

View File

@ -219,7 +219,7 @@ config GPIO_BCM_XGS_IPROC
config GPIO_BRCMSTB
tristate "BRCMSTB GPIO support"
default y if (ARCH_BRCMSTB || BMIPS_GENERIC)
depends on OF_GPIO && (ARCH_BRCMSTB || BMIPS_GENERIC || COMPILE_TEST)
depends on OF_GPIO && (ARCH_BRCMSTB || ARCH_BCM2835 || BMIPS_GENERIC || COMPILE_TEST)
select GPIO_GENERIC
select IRQ_DOMAIN
help
@ -1891,4 +1891,35 @@ config GPIO_SIM
endmenu
menu "GPIO Debugging utilities"
config GPIO_SLOPPY_LOGIC_ANALYZER
tristate "Sloppy GPIO logic analyzer"
depends on (GPIOLIB || COMPILE_TEST) && CPUSETS && DEBUG_FS && EXPERT
help
This option enables support for a sloppy logic analyzer using polled
GPIOs. Use the 'tools/gpio/gpio-sloppy-logic-analyzer' script with
this driver. The script will make it easier to use and will also
isolate a CPU for the polling task. Note that this is a last resort
analyzer which can be affected by latencies, non-deterministic code
paths, or NMIs. However, for e.g. remote development, it may be useful
to get a first view and aid further debugging.
If this driver is built as a module it will be called
'gpio-sloppy-logic-analyzer'.
config GPIO_VIRTUSER
tristate "GPIO Virtual User Testing Module"
select DEBUG_FS
select CONFIGFS_FS
select IRQ_WORK
help
Say Y here to enable the configurable, configfs-based virtual GPIO
consumer testing driver.
This driver is aimed as a helper in spotting any regressions in
hot-unplug handling in GPIOLIB.
endmenu
endif

View File

@ -150,6 +150,7 @@ obj-$(CONFIG_GPIO_SIFIVE) += gpio-sifive.o
obj-$(CONFIG_GPIO_SIM) += gpio-sim.o
obj-$(CONFIG_GPIO_SIOX) += gpio-siox.o
obj-$(CONFIG_GPIO_SL28CPLD) += gpio-sl28cpld.o
obj-$(CONFIG_GPIO_SLOPPY_LOGIC_ANALYZER) += gpio-sloppy-logic-analyzer.o
obj-$(CONFIG_GPIO_SODAVILLE) += gpio-sodaville.o
obj-$(CONFIG_GPIO_SPEAR_SPICS) += gpio-spear-spics.o
obj-$(CONFIG_GPIO_SPRD) += gpio-sprd.o
@ -181,6 +182,7 @@ obj-$(CONFIG_GPIO_TWL6040) += gpio-twl6040.o
obj-$(CONFIG_GPIO_UNIPHIER) += gpio-uniphier.o
obj-$(CONFIG_GPIO_VF610) += gpio-vf610.o
obj-$(CONFIG_GPIO_VIPERBOARD) += gpio-viperboard.o
obj-$(CONFIG_GPIO_VIRTUSER) += gpio-virtuser.o
obj-$(CONFIG_GPIO_VIRTIO) += gpio-virtio.o
obj-$(CONFIG_GPIO_VISCONTI) += gpio-visconti.o
obj-$(CONFIG_GPIO_VX855) += gpio-vx855.o

View File

@ -195,8 +195,10 @@ static int __init amd_gpio_init(void)
found:
err = pci_read_config_dword(pdev, 0x58, &gp.pmbase);
if (err)
if (err) {
err = pcibios_err_to_errno(err);
goto out;
}
err = -EIO;
gp.pmbase &= 0x0000FF00;
if (gp.pmbase == 0)

View File

@ -273,8 +273,6 @@ static int ath79_gpio_probe(struct platform_device *pdev)
dev_err(dev, "bgpio_init failed\n");
return err;
}
/* Use base 0 to stay compatible with legacy platforms */
ctrl->gc.base = 0;
/* Optional interrupt setup */
if (!np || of_property_read_bool(np, "interrupt-controller")) {

View File

@ -99,7 +99,7 @@ static int mc33880_probe(struct spi_device *spi)
mc->spi = spi;
mc->chip.label = DRIVER_NAME,
mc->chip.label = DRIVER_NAME;
mc->chip.set = mc33880_set;
mc->chip.base = pdata->base;
mc->chip.ngpio = PIN_NUMBER;

View File

@ -1315,6 +1315,7 @@ static const struct of_device_id pca953x_dt_ids[] = {
{ .compatible = "ti,tca6408", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "ti,tca6416", .data = OF_953X(16, PCA_INT), },
{ .compatible = "ti,tca6424", .data = OF_953X(24, PCA_INT), },
{ .compatible = "ti,tca9535", .data = OF_953X(16, PCA_INT), },
{ .compatible = "ti,tca9538", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "ti,tca9539", .data = OF_953X(16, PCA_INT), },

View File

@ -102,7 +102,7 @@ static int rdc_gpio_config(struct gpio_chip *chip,
unlock:
spin_unlock(&gpch->lock);
return err;
return pcibios_err_to_errno(err);
}
/* configure GPIO pin as input */
@ -170,13 +170,13 @@ static int rdc321x_gpio_probe(struct platform_device *pdev)
rdc321x_gpio_dev->reg1_data_base,
&rdc321x_gpio_dev->data_reg[0]);
if (err)
return err;
return pcibios_err_to_errno(err);
err = pci_read_config_dword(rdc321x_gpio_dev->sb_pdev,
rdc321x_gpio_dev->reg2_data_base,
&rdc321x_gpio_dev->data_reg[1]);
if (err)
return err;
return pcibios_err_to_errno(err);
dev_info(&pdev->dev, "registering %d GPIOs\n",
rdc321x_gpio_dev->chip.ngpio);

View File

@ -7,6 +7,7 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/array_size.h>
#include <linux/bitmap.h>
#include <linux/cleanup.h>
#include <linux/completion.h>
@ -20,7 +21,6 @@
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irq_sim.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/minmax.h>
@ -227,6 +227,27 @@ static void gpio_sim_free(struct gpio_chip *gc, unsigned int offset)
}
}
static int gpio_sim_irq_requested(struct irq_domain *domain,
irq_hw_number_t hwirq, void *data)
{
struct gpio_sim_chip *chip = data;
return gpiochip_lock_as_irq(&chip->gc, hwirq);
}
static void gpio_sim_irq_released(struct irq_domain *domain,
irq_hw_number_t hwirq, void *data)
{
struct gpio_sim_chip *chip = data;
gpiochip_unlock_as_irq(&chip->gc, hwirq);
}
static const struct irq_sim_ops gpio_sim_irq_sim_ops = {
.irq_sim_irq_requested = gpio_sim_irq_requested,
.irq_sim_irq_released = gpio_sim_irq_released,
};
static void gpio_sim_dbg_show(struct seq_file *seq, struct gpio_chip *gc)
{
struct gpio_sim_chip *chip = gpiochip_get_data(gc);
@ -308,13 +329,6 @@ static ssize_t gpio_sim_sysfs_pull_store(struct device *dev,
return len;
}
static void gpio_sim_mutex_destroy(void *data)
{
struct mutex *lock = data;
mutex_destroy(lock);
}
static void gpio_sim_put_device(void *data)
{
struct device *dev = data;
@ -450,7 +464,9 @@ static int gpio_sim_add_bank(struct fwnode_handle *swnode, struct device *dev)
if (!chip->pull_map)
return -ENOMEM;
chip->irq_sim = devm_irq_domain_create_sim(dev, swnode, num_lines);
chip->irq_sim = devm_irq_domain_create_sim_full(dev, swnode, num_lines,
&gpio_sim_irq_sim_ops,
chip);
if (IS_ERR(chip->irq_sim))
return PTR_ERR(chip->irq_sim);
@ -458,9 +474,7 @@ static int gpio_sim_add_bank(struct fwnode_handle *swnode, struct device *dev)
if (ret)
return ret;
mutex_init(&chip->lock);
ret = devm_add_action_or_reset(dev, gpio_sim_mutex_destroy,
&chip->lock);
ret = devm_mutex_init(dev, &chip->lock);
if (ret)
return ret;
@ -581,7 +595,9 @@ static int gpio_sim_bus_notifier_call(struct notifier_block *nb,
snprintf(devname, sizeof(devname), "gpio-sim.%u", simdev->id);
if (strcmp(dev_name(dev), devname) == 0) {
if (!device_match_name(dev, devname))
return NOTIFY_DONE;
if (action == BUS_NOTIFY_BOUND_DRIVER)
simdev->driver_bound = true;
else if (action == BUS_NOTIFY_DRIVER_NOT_BOUND)
@ -590,10 +606,8 @@ static int gpio_sim_bus_notifier_call(struct notifier_block *nb,
return NOTIFY_DONE;
complete(&simdev->probe_completion);
return NOTIFY_OK;
}
return NOTIFY_DONE;
return NOTIFY_OK;
}
static struct gpio_sim_device *to_gpio_sim_device(struct config_item *item)

View File

@ -0,0 +1,344 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Sloppy logic analyzer using GPIOs (to be run on an isolated CPU)
*
* Use the 'gpio-sloppy-logic-analyzer' script in the 'tools/gpio' folder for
* easier usage and further documentation. Note that this is a last resort
* analyzer which can be affected by latencies and non-deterministic code
* paths. However, for e.g. remote development, it may be useful to get a first
* view and aid further debugging.
*
* Copyright (C) Wolfram Sang <wsa@sang-engineering.com>
* Copyright (C) Renesas Electronics Corporation
*/
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/init.h>
#include <linux/ktime.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/sizes.h>
#include <linux/timekeeping.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#define GPIO_LA_NAME "gpio-sloppy-logic-analyzer"
#define GPIO_LA_DEFAULT_BUF_SIZE SZ_256K
/* can be increased but then we need to extend the u8 buffers */
#define GPIO_LA_MAX_PROBES 8
#define GPIO_LA_NUM_TESTS 1024
struct gpio_la_poll_priv {
struct mutex blob_lock; /* serialize access to the blob (data) */
u32 buf_idx;
struct gpio_descs *descs;
unsigned long delay_ns;
unsigned long acq_delay;
struct debugfs_blob_wrapper blob;
struct dentry *debug_dir;
struct dentry *blob_dent;
struct debugfs_blob_wrapper meta;
struct device *dev;
unsigned int trig_len;
u8 *trig_data;
};
static struct dentry *gpio_la_poll_debug_dir;
static __always_inline int gpio_la_get_array(struct gpio_descs *d, unsigned long *sptr)
{
int ret;
ret = gpiod_get_array_value(d->ndescs, d->desc, d->info, sptr);
if (ret == 0 && fatal_signal_pending(current))
ret = -EINTR;
return ret;
}
static int fops_capture_set(void *data, u64 val)
{
struct gpio_la_poll_priv *priv = data;
u8 *la_buf = priv->blob.data;
unsigned long state = 0; /* zeroed because GPIO arrays are bitfields */
unsigned long delay;
ktime_t start_time;
unsigned int i;
int ret;
if (!val)
return 0;
if (!la_buf)
return -ENOMEM;
if (!priv->delay_ns)
return -EINVAL;
mutex_lock(&priv->blob_lock);
if (priv->blob_dent) {
debugfs_remove(priv->blob_dent);
priv->blob_dent = NULL;
}
priv->buf_idx = 0;
local_irq_disable();
preempt_disable_notrace();
/* Measure delay of reading GPIOs */
start_time = ktime_get();
for (i = 0; i < GPIO_LA_NUM_TESTS; i++) {
ret = gpio_la_get_array(priv->descs, &state);
if (ret)
goto out;
}
priv->acq_delay = ktime_sub(ktime_get(), start_time) / GPIO_LA_NUM_TESTS;
if (priv->delay_ns < priv->acq_delay) {
ret = -ERANGE;
goto out;
}
delay = priv->delay_ns - priv->acq_delay;
/* Wait for triggers */
for (i = 0; i < priv->trig_len; i += 2) {
do {
ret = gpio_la_get_array(priv->descs, &state);
if (ret)
goto out;
ndelay(delay);
} while ((state & priv->trig_data[i]) != priv->trig_data[i + 1]);
}
/* With triggers, final state is also the first sample */
if (priv->trig_len)
la_buf[priv->buf_idx++] = state;
/* Sample */
while (priv->buf_idx < priv->blob.size) {
ret = gpio_la_get_array(priv->descs, &state);
if (ret)
goto out;
la_buf[priv->buf_idx++] = state;
ndelay(delay);
}
out:
preempt_enable_notrace();
local_irq_enable();
if (ret)
dev_err(priv->dev, "couldn't read GPIOs: %d\n", ret);
kfree(priv->trig_data);
priv->trig_data = NULL;
priv->trig_len = 0;
priv->blob_dent = debugfs_create_blob("sample_data", 0400, priv->debug_dir, &priv->blob);
mutex_unlock(&priv->blob_lock);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_capture, NULL, fops_capture_set, "%llu\n");
static int fops_buf_size_get(void *data, u64 *val)
{
struct gpio_la_poll_priv *priv = data;
*val = priv->blob.size;
return 0;
}
static int fops_buf_size_set(void *data, u64 val)
{
struct gpio_la_poll_priv *priv = data;
int ret = 0;
void *p;
if (!val)
return -EINVAL;
mutex_lock(&priv->blob_lock);
vfree(priv->blob.data);
p = vzalloc(val);
if (!p) {
val = 0;
ret = -ENOMEM;
}
priv->blob.data = p;
priv->blob.size = val;
mutex_unlock(&priv->blob_lock);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_buf_size, fops_buf_size_get, fops_buf_size_set, "%llu\n");
static int trigger_open(struct inode *inode, struct file *file)
{
return single_open(file, NULL, inode->i_private);
}
static ssize_t trigger_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *offset)
{
struct seq_file *m = file->private_data;
struct gpio_la_poll_priv *priv = m->private;
char *buf;
/* upper limit is arbitrary but should be less than PAGE_SIZE */
if (count > 2048 || count & 1)
return -EINVAL;
buf = memdup_user(ubuf, count);
if (IS_ERR(buf))
return PTR_ERR(buf);
priv->trig_data = buf;
priv->trig_len = count;
return count;
}
static const struct file_operations fops_trigger = {
.owner = THIS_MODULE,
.open = trigger_open,
.write = trigger_write,
.llseek = no_llseek,
.release = single_release,
};
static int gpio_la_poll_probe(struct platform_device *pdev)
{
struct gpio_la_poll_priv *priv;
struct device *dev = &pdev->dev;
const char *devname = dev_name(dev);
const char *gpio_names[GPIO_LA_MAX_PROBES];
char *meta = NULL;
unsigned int i, meta_len = 0;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
devm_mutex_init(dev, &priv->blob_lock);
fops_buf_size_set(priv, GPIO_LA_DEFAULT_BUF_SIZE);
priv->descs = devm_gpiod_get_array(dev, "probe", GPIOD_IN);
if (IS_ERR(priv->descs))
return PTR_ERR(priv->descs);
/* artificial limit to keep 1 byte per sample for now */
if (priv->descs->ndescs > GPIO_LA_MAX_PROBES)
return -EFBIG;
ret = device_property_read_string_array(dev, "probe-names", gpio_names,
priv->descs->ndescs);
if (ret >= 0 && ret != priv->descs->ndescs)
ret = -EBADR;
if (ret < 0)
return dev_err_probe(dev, ret, "error naming the GPIOs");
for (i = 0; i < priv->descs->ndescs; i++) {
unsigned int add_len;
char *new_meta, *consumer_name;
if (gpiod_cansleep(priv->descs->desc[i]))
return -EREMOTE;
consumer_name = kasprintf(GFP_KERNEL, "%s: %s", devname, gpio_names[i]);
if (!consumer_name)
return -ENOMEM;
gpiod_set_consumer_name(priv->descs->desc[i], consumer_name);
kfree(consumer_name);
/* '10' is length of 'probe00=\n\0' */
add_len = strlen(gpio_names[i]) + 10;
new_meta = devm_krealloc(dev, meta, meta_len + add_len, GFP_KERNEL);
if (!new_meta)
return -ENOMEM;
meta = new_meta;
meta_len += snprintf(meta + meta_len, add_len, "probe%02u=%s\n",
i + 1, gpio_names[i]);
}
platform_set_drvdata(pdev, priv);
priv->dev = dev;
priv->meta.data = meta;
priv->meta.size = meta_len;
priv->debug_dir = debugfs_create_dir(devname, gpio_la_poll_debug_dir);
debugfs_create_blob("meta_data", 0400, priv->debug_dir, &priv->meta);
debugfs_create_ulong("delay_ns", 0600, priv->debug_dir, &priv->delay_ns);
debugfs_create_ulong("delay_ns_acquisition", 0400, priv->debug_dir, &priv->acq_delay);
debugfs_create_file_unsafe("buf_size", 0600, priv->debug_dir, priv, &fops_buf_size);
debugfs_create_file_unsafe("capture", 0200, priv->debug_dir, priv, &fops_capture);
debugfs_create_file_unsafe("trigger", 0200, priv->debug_dir, priv, &fops_trigger);
return 0;
}
static void gpio_la_poll_remove(struct platform_device *pdev)
{
struct gpio_la_poll_priv *priv = platform_get_drvdata(pdev);
mutex_lock(&priv->blob_lock);
debugfs_remove_recursive(priv->debug_dir);
mutex_unlock(&priv->blob_lock);
}
static const struct of_device_id gpio_la_poll_of_match[] = {
{ .compatible = GPIO_LA_NAME },
{ }
};
MODULE_DEVICE_TABLE(of, gpio_la_poll_of_match);
static struct platform_driver gpio_la_poll_device_driver = {
.probe = gpio_la_poll_probe,
.remove_new = gpio_la_poll_remove,
.driver = {
.name = GPIO_LA_NAME,
.of_match_table = gpio_la_poll_of_match,
}
};
static int __init gpio_la_poll_init(void)
{
gpio_la_poll_debug_dir = debugfs_create_dir(GPIO_LA_NAME, NULL);
return platform_driver_register(&gpio_la_poll_device_driver);
}
/*
* Non-strict pin controllers can read GPIOs while being muxed to something else.
* To support that, we need to claim GPIOs before further pinmuxing happens. So,
* we probe early using 'late_initcall'
*/
late_initcall(gpio_la_poll_init);
static void __exit gpio_la_poll_exit(void)
{
platform_driver_unregister(&gpio_la_poll_device_driver);
debugfs_remove_recursive(gpio_la_poll_debug_dir);
}
module_exit(gpio_la_poll_exit);
MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
MODULE_DESCRIPTION("Sloppy logic analyzer using GPIOs");
MODULE_LICENSE("GPL");

View File

@ -208,6 +208,7 @@ static int syscon_gpio_probe(struct platform_device *pdev)
struct syscon_gpio_priv *priv;
struct device_node *np = dev->of_node;
int ret;
bool use_parent_regmap = false;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
@ -216,11 +217,14 @@ static int syscon_gpio_probe(struct platform_device *pdev)
priv->data = of_device_get_match_data(dev);
priv->syscon = syscon_regmap_lookup_by_phandle(np, "gpio,syscon-dev");
if (IS_ERR(priv->syscon) && np->parent)
if (IS_ERR(priv->syscon) && np->parent) {
priv->syscon = syscon_node_to_regmap(np->parent);
use_parent_regmap = true;
}
if (IS_ERR(priv->syscon))
return PTR_ERR(priv->syscon);
if (!use_parent_regmap) {
ret = of_property_read_u32_index(np, "gpio,syscon-dev", 1,
&priv->dreg_offset);
if (ret)
@ -234,6 +238,7 @@ static int syscon_gpio_probe(struct platform_device *pdev)
dev_dbg(dev, "can't read the dir register offset!\n");
priv->dir_reg_offset <<= 3;
}
priv->chip.parent = dev;
priv->chip.owner = THIS_MODULE;

1807
drivers/gpio/gpio-virtuser.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -976,7 +976,7 @@ __acpi_find_gpio(struct fwnode_handle *fwnode, const char *con_id, unsigned int
int i;
/* Try first from _DSD */
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
for (i = 0; i < gpio_suffix_count; i++) {
if (con_id) {
snprintf(propname, sizeof(propname), "%s-%s",
con_id, gpio_suffixes[i]);
@ -1453,7 +1453,7 @@ int acpi_gpio_count(const struct fwnode_handle *fwnode, const char *con_id)
unsigned int i;
/* Try first from _DSD */
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
for (i = 0; i < gpio_suffix_count; i++) {
if (con_id)
snprintf(propname, sizeof(propname), "%s-%s",
con_id, gpio_suffixes[i]);

View File

@ -1132,6 +1132,14 @@ static void edge_detector_stop(struct line *line)
/* do not change line->level - see comment in debounced_value() */
}
static int edge_detector_fifo_init(struct linereq *req)
{
if (kfifo_initialized(&req->events))
return 0;
return kfifo_alloc(&req->events, req->event_buffer_size, GFP_KERNEL);
}
static int edge_detector_setup(struct line *line,
struct gpio_v2_line_config *lc,
unsigned int line_idx, u64 edflags)
@ -1143,9 +1151,8 @@ static int edge_detector_setup(struct line *line,
char *label;
eflags = edflags & GPIO_V2_LINE_EDGE_FLAGS;
if (eflags && !kfifo_initialized(&line->req->events)) {
ret = kfifo_alloc(&line->req->events,
line->req->event_buffer_size, GFP_KERNEL);
if (eflags) {
ret = edge_detector_fifo_init(line->req);
if (ret)
return ret;
}
@ -1197,8 +1204,6 @@ static int edge_detector_update(struct line *line,
struct gpio_v2_line_config *lc,
unsigned int line_idx, u64 edflags)
{
u64 eflags;
int ret;
u64 active_edflags = READ_ONCE(line->edflags);
unsigned int debounce_period_us =
gpio_v2_line_config_debounce_period(lc, line_idx);
@ -1214,14 +1219,9 @@ static int edge_detector_update(struct line *line,
* ensure event fifo is initialised if edge detection
* is now enabled.
*/
eflags = edflags & GPIO_V2_LINE_EDGE_FLAGS;
if (eflags && !kfifo_initialized(&line->req->events)) {
ret = kfifo_alloc(&line->req->events,
line->req->event_buffer_size,
GFP_KERNEL);
if (ret)
return ret;
}
if (edflags & GPIO_V2_LINE_EDGE_FLAGS)
return edge_detector_fifo_init(line->req);
return 0;
}
@ -1648,16 +1648,15 @@ static ssize_t linereq_read(struct file *file, char __user *buf,
return ret;
}
ret = kfifo_out(&lr->events, &le, 1);
}
if (ret != 1) {
if (kfifo_out(&lr->events, &le, 1) != 1) {
/*
* This should never happen - we were holding the
* lock from the moment we learned the fifo is no
* longer empty until now.
* This should never happen - we hold the
* lock from the moment we learned the fifo
* is no longer empty until now.
*/
ret = -EIO;
break;
WARN(1, "failed to read from non-empty kfifo");
return -EIO;
}
}
if (copy_to_user(buf + bytes_read, &le, sizeof(le)))
@ -1780,6 +1779,7 @@ static int linereq_create(struct gpio_device *gdev, void __user *ip)
mutex_init(&lr->config_mutex);
init_waitqueue_head(&lr->wait);
INIT_KFIFO(lr->events);
lr->event_buffer_size = ulr.event_buffer_size;
if (lr->event_buffer_size == 0)
lr->event_buffer_size = ulr.num_lines * 16;
@ -2000,16 +2000,15 @@ static ssize_t lineevent_read(struct file *file, char __user *buf,
return ret;
}
ret = kfifo_out(&le->events, &ge, 1);
}
if (ret != 1) {
if (kfifo_out(&le->events, &ge, 1) != 1) {
/*
* This should never happen - we were holding the lock
* from the moment we learned the fifo is no longer
* empty until now.
* This should never happen - we hold the
* lock from the moment we learned the fifo
* is no longer empty until now.
*/
ret = -EIO;
break;
WARN(1, "failed to read from non-empty kfifo");
return -EIO;
}
}
if (copy_to_user(buf + bytes_read, &ge, ge_size))
@ -2712,12 +2711,15 @@ static ssize_t lineinfo_watch_read(struct file *file, char __user *buf,
if (count < event_size)
return -EINVAL;
#endif
ret = kfifo_out(&cdev->events, &event, 1);
if (kfifo_out(&cdev->events, &event, 1) != 1) {
/*
* This should never happen - we hold the
* lock from the moment we learned the fifo
* is no longer empty until now.
*/
WARN(1, "failed to read from non-empty kfifo");
return -EIO;
}
if (ret != 1) {
ret = -EIO;
break;
/* We should never get here. See lineevent_read(). */
}
#ifdef CONFIG_GPIO_CDEV_V1

View File

@ -103,7 +103,7 @@ int of_gpio_count(const struct fwnode_handle *fwnode, const char *con_id)
if (ret > 0)
return ret;
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
for (i = 0; i < gpio_suffix_count; i++) {
if (con_id)
snprintf(propname, sizeof(propname), "%s-%s",
con_id, gpio_suffixes[i]);
@ -694,7 +694,7 @@ struct gpio_desc *of_find_gpio(struct device_node *np, const char *con_id,
unsigned int i;
/* Try GPIO property "foo-gpios" and "foo-gpio" */
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
for (i = 0; i < gpio_suffix_count; i++) {
if (con_id)
snprintf(prop_name, sizeof(prop_name), "%s-%s", con_id,
gpio_suffixes[i]);

View File

@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/acpi.h>
#include <linux/array_size.h>
#include <linux/bitmap.h>
#include <linux/cleanup.h>
#include <linux/compat.h>
@ -17,6 +18,7 @@
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/module.h>
#include <linux/nospec.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/seq_file.h>
@ -88,6 +90,9 @@ DEFINE_STATIC_SRCU(gpio_devices_srcu);
static DEFINE_MUTEX(gpio_machine_hogs_mutex);
static LIST_HEAD(gpio_machine_hogs);
const char *const gpio_suffixes[] = { "gpios", "gpio" };
const size_t gpio_suffix_count = ARRAY_SIZE(gpio_suffixes);
static void gpiochip_free_hogs(struct gpio_chip *gc);
static int gpiochip_add_irqchip(struct gpio_chip *gc,
struct lock_class_key *lock_key,
@ -105,16 +110,16 @@ const char *gpiod_get_label(struct gpio_desc *desc)
unsigned long flags;
flags = READ_ONCE(desc->flags);
if (test_bit(FLAG_USED_AS_IRQ, &flags) &&
!test_bit(FLAG_REQUESTED, &flags))
return "interrupt";
if (!test_bit(FLAG_REQUESTED, &flags))
return NULL;
label = srcu_dereference_check(desc->label, &desc->gdev->desc_srcu,
srcu_read_lock_held(&desc->gdev->desc_srcu));
if (test_bit(FLAG_USED_AS_IRQ, &flags))
return label->str ?: "interrupt";
if (!test_bit(FLAG_REQUESTED, &flags))
return NULL;
return label->str;
}
@ -174,7 +179,6 @@ struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc,
{
return gpio_device_get_desc(gc->gpiodev, hwnum);
}
EXPORT_SYMBOL_GPL(gpiochip_get_desc);
/**
* gpio_device_get_desc() - get the GPIO descriptor corresponding to the given
@ -198,7 +202,7 @@ gpio_device_get_desc(struct gpio_device *gdev, unsigned int hwnum)
if (hwnum >= gdev->ngpio)
return ERR_PTR(-EINVAL);
return &gdev->descs[hwnum];
return &gdev->descs[array_index_nospec(hwnum, gdev->ngpio)];
}
EXPORT_SYMBOL_GPL(gpio_device_get_desc);
@ -485,7 +489,7 @@ static struct gpio_desc *gpio_name_to_desc(const char * const name)
* 1. Non-unique names are still accepted,
* 2. Name collisions within the same GPIO chip are not reported.
*/
static int gpiochip_set_desc_names(struct gpio_chip *gc)
static void gpiochip_set_desc_names(struct gpio_chip *gc)
{
struct gpio_device *gdev = gc->gpiodev;
int i;
@ -504,8 +508,6 @@ static int gpiochip_set_desc_names(struct gpio_chip *gc)
/* Then add all names to the GPIO descriptors */
for (i = 0; i != gc->ngpio; ++i)
gdev->descs[i].name = gc->names[i];
return 0;
}
/*
@ -999,11 +1001,9 @@ int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data,
INIT_LIST_HEAD(&gdev->pin_ranges);
#endif
if (gc->names) {
ret = gpiochip_set_desc_names(gc);
if (ret)
goto err_cleanup_desc_srcu;
}
if (gc->names)
gpiochip_set_desc_names(gc);
ret = gpiochip_set_names(gc);
if (ret)
goto err_cleanup_desc_srcu;
@ -4798,11 +4798,11 @@ static void gpiolib_dbg_show(struct seq_file *s, struct gpio_device *gdev)
for_each_gpio_desc(gc, desc) {
guard(srcu)(&desc->gdev->desc_srcu);
if (test_bit(FLAG_REQUESTED, &desc->flags)) {
is_irq = test_bit(FLAG_USED_AS_IRQ, &desc->flags);
if (is_irq || test_bit(FLAG_REQUESTED, &desc->flags)) {
gpiod_get_direction(desc);
is_out = test_bit(FLAG_IS_OUT, &desc->flags);
value = gpio_chip_get_value(gc, desc);
is_irq = test_bit(FLAG_USED_AS_IRQ, &desc->flags);
active_low = test_bit(FLAG_ACTIVE_LOW, &desc->flags);
seq_printf(s, " gpio-%-3u (%-20.20s|%-20.20s) %s %s %s%s\n",
gpio, desc->name ?: "", gpiod_get_label(desc),

View File

@ -90,7 +90,8 @@ static inline struct gpio_device *to_gpio_device(struct device *dev)
}
/* gpio suffixes used for ACPI and device tree lookup */
static __maybe_unused const char * const gpio_suffixes[] = { "gpios", "gpio" };
extern const char *const gpio_suffixes[];
extern const size_t gpio_suffix_count;
/**
* struct gpio_array - Opaque descriptor for a structure of GPIO array attributes
@ -242,6 +243,7 @@ int gpio_set_debounce_timeout(struct gpio_desc *desc, unsigned int debounce);
int gpiod_hog(struct gpio_desc *desc, const char *name,
unsigned long lflags, enum gpiod_flags dflags);
int gpiochip_get_ngpios(struct gpio_chip *gc, struct device *dev);
struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc, unsigned int hwnum);
const char *gpiod_get_label(struct gpio_desc *desc);
/*

View File

@ -139,7 +139,7 @@ static int da9062_gpio_direction_input(struct gpio_chip *gc,
{
struct da9062_pctl *pctl = gpiochip_get_data(gc);
struct regmap *regmap = pctl->da9062->regmap;
struct gpio_desc *desc = gpiochip_get_desc(gc, offset);
struct gpio_desc *desc = gpio_device_get_desc(gc->gpiodev, offset);
unsigned int gpi_type;
int ret;

View File

@ -579,7 +579,7 @@ static int gb_gpio_probe(struct gbphy_device *gbphy_dev,
if (ret)
goto exit_line_free;
ret = gpiochip_add(gpio);
ret = gpiochip_add_data(gpio, NULL);
if (ret) {
dev_err(&gbphy_dev->dev, "failed to add gpio chip: %d\n", ret);
goto exit_line_free;

View File

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* <linux/gpio.h>
* NOTE: This header *must not* be included.
*
* This is the LEGACY GPIO bulk include file, including legacy APIs. It is
* used for GPIO drivers still referencing the global GPIO numberspace,
@ -16,8 +16,6 @@
struct device;
/* see Documentation/driver-api/gpio/legacy.rst */
/* make these flag values available regardless of GPIO kconfig options */
#define GPIOF_DIR_OUT (0 << 0)
#define GPIOF_DIR_IN (1 << 0)
@ -121,8 +119,6 @@ static inline int gpio_to_irq(unsigned gpio)
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
/* CONFIG_GPIOLIB: bindings for managed devices that want to request gpios */
int devm_gpio_request(struct device *dev, unsigned gpio, const char *label);
int devm_gpio_request_one(struct device *dev, unsigned gpio,
unsigned long flags, const char *label);

View File

@ -632,10 +632,6 @@ int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data,
devm_gpiochip_add_data_with_key(dev, gc, data, NULL, NULL)
#endif /* CONFIG_LOCKDEP */
static inline int gpiochip_add(struct gpio_chip *gc)
{
return gpiochip_add_data(gc, NULL);
}
void gpiochip_remove(struct gpio_chip *gc);
int devm_gpiochip_add_data_with_key(struct device *dev, struct gpio_chip *gc,
void *data, struct lock_class_key *lock_key,
@ -791,7 +787,6 @@ struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *gc,
enum gpiod_flags dflags);
void gpiochip_free_own_desc(struct gpio_desc *desc);
struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc, unsigned int hwnum);
struct gpio_desc *
gpio_device_get_desc(struct gpio_device *gdev, unsigned int hwnum);

View File

@ -16,11 +16,28 @@
* requested like normal irqs and enqueued from process context.
*/
struct irq_sim_ops {
int (*irq_sim_irq_requested)(struct irq_domain *domain,
irq_hw_number_t hwirq, void *data);
void (*irq_sim_irq_released)(struct irq_domain *domain,
irq_hw_number_t hwirq, void *data);
};
struct irq_domain *irq_domain_create_sim(struct fwnode_handle *fwnode,
unsigned int num_irqs);
struct irq_domain *devm_irq_domain_create_sim(struct device *dev,
struct fwnode_handle *fwnode,
unsigned int num_irqs);
struct irq_domain *irq_domain_create_sim_full(struct fwnode_handle *fwnode,
unsigned int num_irqs,
const struct irq_sim_ops *ops,
void *data);
struct irq_domain *
devm_irq_domain_create_sim_full(struct device *dev,
struct fwnode_handle *fwnode,
unsigned int num_irqs,
const struct irq_sim_ops *ops,
void *data);
void irq_domain_remove_sim(struct irq_domain *domain);
#endif /* _LINUX_IRQ_SIM_H */

View File

@ -17,6 +17,8 @@ struct irq_sim_work_ctx {
unsigned int irq_count;
unsigned long *pending;
struct irq_domain *domain;
struct irq_sim_ops ops;
void *user_data;
};
struct irq_sim_irq_ctx {
@ -88,6 +90,31 @@ static int irq_sim_set_irqchip_state(struct irq_data *data,
return 0;
}
static int irq_sim_request_resources(struct irq_data *data)
{
struct irq_sim_irq_ctx *irq_ctx = irq_data_get_irq_chip_data(data);
struct irq_sim_work_ctx *work_ctx = irq_ctx->work_ctx;
irq_hw_number_t hwirq = irqd_to_hwirq(data);
if (work_ctx->ops.irq_sim_irq_requested)
return work_ctx->ops.irq_sim_irq_requested(work_ctx->domain,
hwirq,
work_ctx->user_data);
return 0;
}
static void irq_sim_release_resources(struct irq_data *data)
{
struct irq_sim_irq_ctx *irq_ctx = irq_data_get_irq_chip_data(data);
struct irq_sim_work_ctx *work_ctx = irq_ctx->work_ctx;
irq_hw_number_t hwirq = irqd_to_hwirq(data);
if (work_ctx->ops.irq_sim_irq_released)
work_ctx->ops.irq_sim_irq_released(work_ctx->domain, hwirq,
work_ctx->user_data);
}
static struct irq_chip irq_sim_irqchip = {
.name = "irq_sim",
.irq_mask = irq_sim_irqmask,
@ -95,6 +122,8 @@ static struct irq_chip irq_sim_irqchip = {
.irq_set_type = irq_sim_set_type,
.irq_get_irqchip_state = irq_sim_get_irqchip_state,
.irq_set_irqchip_state = irq_sim_set_irqchip_state,
.irq_request_resources = irq_sim_request_resources,
.irq_release_resources = irq_sim_release_resources,
};
static void irq_sim_handle_irq(struct irq_work *work)
@ -163,6 +192,15 @@ static const struct irq_domain_ops irq_sim_domain_ops = {
*/
struct irq_domain *irq_domain_create_sim(struct fwnode_handle *fwnode,
unsigned int num_irqs)
{
return irq_domain_create_sim_full(fwnode, num_irqs, NULL, NULL);
}
EXPORT_SYMBOL_GPL(irq_domain_create_sim);
struct irq_domain *irq_domain_create_sim_full(struct fwnode_handle *fwnode,
unsigned int num_irqs,
const struct irq_sim_ops *ops,
void *data)
{
struct irq_sim_work_ctx *work_ctx __free(kfree) =
kmalloc(sizeof(*work_ctx), GFP_KERNEL);
@ -183,10 +221,14 @@ struct irq_domain *irq_domain_create_sim(struct fwnode_handle *fwnode,
work_ctx->irq_count = num_irqs;
work_ctx->work = IRQ_WORK_INIT_HARD(irq_sim_handle_irq);
work_ctx->pending = no_free_ptr(pending);
work_ctx->user_data = data;
if (ops)
memcpy(&work_ctx->ops, ops, sizeof(*ops));
return no_free_ptr(work_ctx)->domain;
}
EXPORT_SYMBOL_GPL(irq_domain_create_sim);
EXPORT_SYMBOL_GPL(irq_domain_create_sim_full);
/**
* irq_domain_remove_sim - Deinitialize the interrupt simulator domain: free
@ -227,11 +269,23 @@ static void devm_irq_domain_remove_sim(void *data)
struct irq_domain *devm_irq_domain_create_sim(struct device *dev,
struct fwnode_handle *fwnode,
unsigned int num_irqs)
{
return devm_irq_domain_create_sim_full(dev, fwnode, num_irqs,
NULL, NULL);
}
EXPORT_SYMBOL_GPL(devm_irq_domain_create_sim);
struct irq_domain *
devm_irq_domain_create_sim_full(struct device *dev,
struct fwnode_handle *fwnode,
unsigned int num_irqs,
const struct irq_sim_ops *ops,
void *data)
{
struct irq_domain *domain;
int ret;
domain = irq_domain_create_sim(fwnode, num_irqs);
domain = irq_domain_create_sim_full(fwnode, num_irqs, ops, data);
if (IS_ERR(domain))
return domain;
@ -241,4 +295,4 @@ struct irq_domain *devm_irq_domain_create_sim(struct device *dev,
return domain;
}
EXPORT_SYMBOL_GPL(devm_irq_domain_create_sim);
EXPORT_SYMBOL_GPL(devm_irq_domain_create_sim_full);

View File

@ -0,0 +1,246 @@
#!/bin/sh -eu
# SPDX-License-Identifier: GPL-2.0
#
# Helper script for the Linux Kernel GPIO sloppy logic analyzer
#
# Copyright (C) Wolfram Sang <wsa@sang-engineering.com>
# Copyright (C) Renesas Electronics Corporation
samplefreq=1000000
numsamples=250000
cpusetdefaultdir='/sys/fs/cgroup'
cpusetprefix='cpuset.'
debugdir='/sys/kernel/debug'
ladirname='gpio-sloppy-logic-analyzer'
outputdir="$PWD"
neededcmds='taskset zip'
max_chans=8
duration=
initcpu=
listinstances=0
lainstance=
lasysfsdir=
triggerdat=
trigger_bindat=
progname="${0##*/}"
print_help()
{
cat << EOF
$progname - helper script for the Linux Kernel Sloppy GPIO Logic Analyzer
Available options:
-c|--cpu <n>: which CPU to isolate for sampling. Only needed once. Default <1>.
Remember that a more powerful CPU gives you higher sampling speeds.
Also CPU0 is not recommended as it usually does extra bookkeeping.
-d|--duration-us <SI-n>: number of microseconds to sample. Overrides -n, no default value.
-h|--help: print this help
-i|--instance <str>: name of the logic analyzer in case you have multiple instances. Default
to first instance found
-k|--kernel-debug-dir <str>: path to the kernel debugfs mountpoint. Default: <$debugdir>
-l|--list-instances: list all available instances
-n|--num_samples <SI-n>: number of samples to acquire. Default <$numsamples>
-o|--output-dir <str>: directory to put the result files. Default: current dir
-s|--sample_freq <SI-n>: desired sampling frequency. Might be capped if too large.
Default: <1000000>
-t|--trigger <str>: pattern to use as trigger. <str> consists of two-char pairs. First
char is channel number starting at "1". Second char is trigger level:
"L" - low; "H" - high; "R" - rising; "F" - falling
These pairs can be combined with "+", so "1H+2F" triggers when probe 1
is high while probe 2 has a falling edge. You can have multiple triggers
combined with ",". So, "1H+2F,1H+2R" is like the example before but it
waits for a rising edge on probe 2 while probe 1 is still high after the
first trigger has been met.
Trigger data will only be used for the next capture and then be erased.
<SI-n> is an integer value where SI units "T", "G", "M", "K" are recognized, e.g. '1M500K' is 1500000.
Examples:
Samples $numsamples values at 1MHz with an already prepared CPU or automatically prepares CPU1 if needed,
use the first logic analyzer instance found:
'$progname'
Samples 50us at 2MHz waiting for a falling edge on channel 2. CPU and instance as above:
'$progname -d 50 -s 2M -t "2F"'
Note that the process exits after checking all parameters but a sub-process still works in
the background. The result is only available once the sub-process finishes.
Result is a .sr file to be consumed with PulseView from the free Sigrok project. It is
a zip file which also contains the binary sample data which may be consumed by others.
The filename is the logic analyzer instance name plus a since-epoch timestamp.
EOF
}
fail()
{
echo "$1"
exit 1
}
parse_si()
{
conv_si="$(printf $1 | sed 's/[tT]+\?/*1000G+/g; s/[gG]+\?/*1000M+/g; s/[mM]+\?/*1000K+/g; s/[kK]+\?/*1000+/g; s/+$//')"
si_val="$((conv_si))"
}
set_newmask()
{
for f in $(find "$1" -iname "$2"); do echo "$newmask" > "$f" 2>/dev/null || true; done
}
init_cpu()
{
isol_cpu="$1"
[ -d "$lacpusetdir" ] || mkdir "$lacpusetdir"
cur_cpu=$(cat "${lacpusetfile}cpus")
[ "$cur_cpu" = "$isol_cpu" ] && return
[ -z "$cur_cpu" ] || fail "CPU$isol_cpu requested but CPU$cur_cpu already isolated"
echo "$isol_cpu" > "${lacpusetfile}cpus" || fail "Could not isolate CPU$isol_cpu. Does it exist?"
echo 1 > "${lacpusetfile}cpu_exclusive"
echo 0 > "${lacpusetfile}mems"
oldmask=$(cat /proc/irq/default_smp_affinity)
newmask=$(printf "%x" $((0x$oldmask & ~(1 << isol_cpu))))
set_newmask '/proc/irq' '*smp_affinity'
set_newmask '/sys/devices/virtual/workqueue/' 'cpumask'
# Move tasks away from isolated CPU
for p in $(ps -o pid | tail -n +2); do
mask=$(taskset -p "$p") || continue
# Ignore tasks with a custom mask, i.e. not equal $oldmask
[ "${mask##*: }" = "$oldmask" ] || continue
taskset -p "$newmask" "$p" || continue
done 2>/dev/null >/dev/null
# Big hammer! Working with 'rcu_momentary_dyntick_idle()' for a more fine-grained solution
# still printed warnings. Same for re-enabling the stall detector after sampling.
echo 1 > /sys/module/rcupdate/parameters/rcu_cpu_stall_suppress
cpufreqgov="/sys/devices/system/cpu/cpu$isol_cpu/cpufreq/scaling_governor"
[ -w "$cpufreqgov" ] && echo 'performance' > "$cpufreqgov" || true
}
parse_triggerdat()
{
oldifs="$IFS"
IFS=','; for trig in $1; do
mask=0; val1=0; val2=0
IFS='+'; for elem in $trig; do
chan=${elem%[lhfrLHFR]}
mode=${elem#$chan}
# Check if we could parse something and the channel number fits
[ "$chan" != "$elem" ] && [ "$chan" -le $max_chans ] || fail "Trigger syntax error: $elem"
bit=$((1 << (chan - 1)))
mask=$((mask | bit))
case $mode in
[hH]) val1=$((val1 | bit)); val2=$((val2 | bit));;
[fF]) val1=$((val1 | bit));;
[rR]) val2=$((val2 | bit));;
esac
done
trigger_bindat="$trigger_bindat$(printf '\\%o\\%o' $mask $val1)"
[ $val1 -ne $val2 ] && trigger_bindat="$trigger_bindat$(printf '\\%o\\%o' $mask $val2)"
done
IFS="$oldifs"
}
do_capture()
{
taskset "$1" echo 1 > "$lasysfsdir"/capture || fail "Capture error! Check kernel log"
srtmp=$(mktemp -d)
echo 1 > "$srtmp"/version
cp "$lasysfsdir"/sample_data "$srtmp"/logic-1-1
cat > "$srtmp"/metadata << EOF
[global]
sigrok version=0.2.0
[device 1]
capturefile=logic-1
total probes=$(wc -l < "$lasysfsdir"/meta_data)
samplerate=${samplefreq}Hz
unitsize=1
EOF
cat "$lasysfsdir"/meta_data >> "$srtmp"/metadata
zipname="$outputdir/${lasysfsdir##*/}-$(date +%s).sr"
zip -jq "$zipname" "$srtmp"/*
rm -rf "$srtmp"
delay_ack=$(cat "$lasysfsdir"/delay_ns_acquisition)
[ "$delay_ack" -eq 0 ] && delay_ack=1
echo "Logic analyzer done. Saved '$zipname'"
echo "Max sample frequency this time: $((1000000000 / delay_ack))Hz."
}
rep=$(getopt -a -l cpu:,duration-us:,help,instance:,list-instances,kernel-debug-dir:,num_samples:,output-dir:,sample_freq:,trigger: -o c:d:hi:k:ln:o:s:t: -- "$@") || exit 1
eval set -- "$rep"
while true; do
case "$1" in
-c|--cpu) initcpu="$2"; shift;;
-d|--duration-us) parse_si $2; duration=$si_val; shift;;
-h|--help) print_help; exit 0;;
-i|--instance) lainstance="$2"; shift;;
-k|--kernel-debug-dir) debugdir="$2"; shift;;
-l|--list-instances) listinstances=1;;
-n|--num_samples) parse_si $2; numsamples=$si_val; shift;;
-o|--output-dir) outputdir="$2"; shift;;
-s|--sample_freq) parse_si $2; samplefreq=$si_val; shift;;
-t|--trigger) triggerdat="$2"; shift;;
--) break;;
*) fail "error parsing command line: $*";;
esac
shift
done
for f in $neededcmds; do
command -v "$f" >/dev/null || fail "Command '$f' not found"
done
# print cpuset mountpoint if any, errorcode > 0 if noprefix option was found
cpusetdir=$(awk '$3 == "cgroup" && $4 ~ /cpuset/ { print $2; exit (match($4, /noprefix/) > 0) }' /proc/self/mounts) || cpusetprefix=''
if [ -z "$cpusetdir" ]; then
cpusetdir="$cpusetdefaultdir"
[ -d $cpusetdir ] || mkdir $cpusetdir
mount -t cgroup -o cpuset none $cpusetdir || fail "Couldn't mount cpusets. Not in kernel or already in use?"
fi
lacpusetdir="$cpusetdir/$ladirname"
lacpusetfile="$lacpusetdir/$cpusetprefix"
sysfsdir="$debugdir/$ladirname"
[ "$samplefreq" -ne 0 ] || fail "Invalid sample frequency"
[ -d "$sysfsdir" ] || fail "Could not find logic analyzer root dir '$sysfsdir'. Module loaded?"
[ -x "$sysfsdir" ] || fail "Could not access logic analyzer root dir '$sysfsdir'. Need root?"
[ $listinstances -gt 0 ] && find "$sysfsdir" -mindepth 1 -type d | sed 's|.*/||' && exit 0
if [ -n "$lainstance" ]; then
lasysfsdir="$sysfsdir/$lainstance"
else
lasysfsdir=$(find "$sysfsdir" -mindepth 1 -type d -print -quit)
fi
[ -d "$lasysfsdir" ] || fail "Logic analyzer directory '$lasysfsdir' not found!"
[ -d "$outputdir" ] || fail "Output directory '$outputdir' not found!"
[ -n "$initcpu" ] && init_cpu "$initcpu"
[ -d "$lacpusetdir" ] || { echo "Auto-Isolating CPU1"; init_cpu 1; }
ndelay=$((1000000000 / samplefreq))
echo "$ndelay" > "$lasysfsdir"/delay_ns
[ -n "$duration" ] && numsamples=$((samplefreq * duration / 1000000))
echo $numsamples > "$lasysfsdir"/buf_size
if [ -n "$triggerdat" ]; then
parse_triggerdat "$triggerdat"
printf "$trigger_bindat" > "$lasysfsdir"/trigger 2>/dev/null || fail "Trigger data '$triggerdat' rejected"
fi
workcpu=$(cat "${lacpusetfile}effective_cpus")
[ -n "$workcpu" ] || fail "No isolated CPU found"
cpumask=$(printf '%x' $((1 << workcpu)))
instance=${lasysfsdir##*/}
echo "Setting up '$instance': $numsamples samples at ${samplefreq}Hz with ${triggerdat:-no} trigger using CPU$workcpu"
do_capture "$cpumask" &