mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 15:29:16 +00:00
[MTD] [CHIPS] Remove MTD_OBSOLETE_CHIPS (jedec, amd_flash, sharp)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
This commit is contained in:
parent
42f209d3c9
commit
b7aa48be1e
@ -1,5 +1,4 @@
|
||||
# drivers/mtd/chips/Kconfig
|
||||
# $Id: Kconfig,v 1.18 2005/11/07 11:14:22 gleixner Exp $
|
||||
|
||||
menu "RAM/ROM/Flash chip drivers"
|
||||
depends on MTD!=n
|
||||
@ -231,45 +230,6 @@ config MTD_ABSENT
|
||||
the system regardless of media presence. Device nodes created
|
||||
with this driver will return -ENODEV upon access.
|
||||
|
||||
config MTD_OBSOLETE_CHIPS
|
||||
bool "Older (theoretically obsoleted now) drivers for non-CFI chips"
|
||||
help
|
||||
This option does not enable any code directly, but will allow you to
|
||||
select some other chip drivers which are now considered obsolete,
|
||||
because the generic CONFIG_JEDECPROBE code above should now detect
|
||||
the chips which are supported by these drivers, and allow the generic
|
||||
CFI-compatible drivers to drive the chips. Say 'N' here unless you have
|
||||
already tried the CONFIG_JEDECPROBE method and reported its failure
|
||||
to the MTD mailing list at <linux-mtd@lists.infradead.org>
|
||||
|
||||
config MTD_AMDSTD
|
||||
tristate "AMD compatible flash chip support (non-CFI)"
|
||||
depends on MTD_OBSOLETE_CHIPS && BROKEN
|
||||
help
|
||||
This option enables support for flash chips using AMD-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_AMDSTD option.
|
||||
|
||||
It also works on AMD compatible chips that do conform to CFI.
|
||||
|
||||
config MTD_SHARP
|
||||
tristate "pre-CFI Sharp chip support"
|
||||
depends on MTD_OBSOLETE_CHIPS
|
||||
help
|
||||
This option enables support for flash chips using Sharp-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_INTELxxx options.
|
||||
|
||||
config MTD_JEDEC
|
||||
tristate "JEDEC device support"
|
||||
depends on MTD_OBSOLETE_CHIPS && BROKEN
|
||||
help
|
||||
Enable older JEDEC flash interface devices for self
|
||||
programming flash. It is commonly used in older AMD chips. It is
|
||||
only called JEDEC because the JEDEC association
|
||||
<http://www.jedec.org/> distributes the identification codes for the
|
||||
chips.
|
||||
|
||||
config MTD_XIP
|
||||
bool "XIP aware MTD support"
|
||||
depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP
|
||||
|
@ -1,19 +1,15 @@
|
||||
#
|
||||
# linux/drivers/chips/Makefile
|
||||
#
|
||||
# $Id: Makefile.common,v 1.5 2005/11/07 11:14:22 gleixner Exp $
|
||||
|
||||
obj-$(CONFIG_MTD) += chipreg.o
|
||||
obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o
|
||||
obj-$(CONFIG_MTD_CFI) += cfi_probe.o
|
||||
obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o
|
||||
obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o
|
||||
obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o
|
||||
obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o
|
||||
obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o
|
||||
obj-$(CONFIG_MTD_JEDEC) += jedec.o
|
||||
obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o
|
||||
obj-$(CONFIG_MTD_RAM) += map_ram.o
|
||||
obj-$(CONFIG_MTD_ROM) += map_rom.o
|
||||
obj-$(CONFIG_MTD_SHARP) += sharp.o
|
||||
obj-$(CONFIG_MTD_ABSENT) += map_absent.o
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,935 +0,0 @@
|
||||
|
||||
/* JEDEC Flash Interface.
|
||||
* This is an older type of interface for self programming flash. It is
|
||||
* commonly use in older AMD chips and is obsolete compared with CFI.
|
||||
* It is called JEDEC because the JEDEC association distributes the ID codes
|
||||
* for the chips.
|
||||
*
|
||||
* See the AMD flash databook for information on how to operate the interface.
|
||||
*
|
||||
* This code does not support anything wider than 8 bit flash chips, I am
|
||||
* not going to guess how to send commands to them, plus I expect they will
|
||||
* all speak CFI..
|
||||
*
|
||||
* $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mtd/jedec.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *);
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len);
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
|
||||
static unsigned long my_bank_size;
|
||||
|
||||
/* Listing of parts and sizes. We need this table to learn the sector
|
||||
size of the chip and the total length */
|
||||
static const struct JEDECTable JEDEC_table[] = {
|
||||
{
|
||||
.jedec = 0x013D,
|
||||
.name = "AMD Am29F017D",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01AD,
|
||||
.name = "AMD Am29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01D5,
|
||||
.name = "AMD Am29F080",
|
||||
.size = 1*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01A4,
|
||||
.name = "AMD Am29F040",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x20E3,
|
||||
.name = "AMD Am29W040B",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0xC2AD,
|
||||
.name = "Macronix MX29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{ .jedec = 0x0 }
|
||||
};
|
||||
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
|
||||
static void jedec_sync(struct mtd_info *mtd) {};
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map);
|
||||
|
||||
|
||||
|
||||
static struct mtd_chip_driver jedec_chipdrv = {
|
||||
.probe = jedec_probe,
|
||||
.name = "jedec",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
/* Probe entry point */
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *MTD;
|
||||
struct jedec_private *priv;
|
||||
unsigned long Base;
|
||||
unsigned long SectorSize;
|
||||
unsigned count;
|
||||
unsigned I,Uniq;
|
||||
char Part[200];
|
||||
memset(&priv,0,sizeof(priv));
|
||||
|
||||
MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
|
||||
if (!MTD)
|
||||
return NULL;
|
||||
|
||||
priv = (struct jedec_private *)&MTD[1];
|
||||
|
||||
my_bank_size = map->size;
|
||||
|
||||
if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (Base = 0; Base < map->size; Base += my_bank_size)
|
||||
{
|
||||
// Perhaps zero could designate all tests?
|
||||
if (map->buswidth == 0)
|
||||
map->buswidth = 1;
|
||||
|
||||
if (map->buswidth == 1){
|
||||
if (jedec_probe8(map,Base,priv) == 0) {
|
||||
printk("did recognize jedec chip\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
if (map->buswidth == 2)
|
||||
jedec_probe16(map,Base,priv);
|
||||
if (map->buswidth == 4)
|
||||
jedec_probe32(map,Base,priv);
|
||||
}
|
||||
|
||||
// Get the biggest sector size
|
||||
SectorSize = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
// printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
|
||||
// printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
|
||||
if (priv->chips[I].sectorsize > SectorSize)
|
||||
SectorSize = priv->chips[I].sectorsize;
|
||||
}
|
||||
|
||||
// Quickly ensure that the other sector sizes are factors of the largest
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
|
||||
{
|
||||
printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Generate a part name that includes the number of different chips and
|
||||
other configuration information */
|
||||
count = 1;
|
||||
strlcpy(Part,map->name,sizeof(Part)-10);
|
||||
strcat(Part," ");
|
||||
Uniq = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
if (priv->chips[I+1].jedec == priv->chips[I].jedec)
|
||||
{
|
||||
count++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Locate the chip in the jedec table
|
||||
JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Internal Error, JEDEC not set\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (Uniq != 0)
|
||||
strcat(Part,",");
|
||||
Uniq++;
|
||||
|
||||
if (count != 1)
|
||||
sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
|
||||
else
|
||||
sprintf(Part+strlen(Part),"%s",JEDEC->name);
|
||||
if (strlen(Part) > sizeof(Part)*2/3)
|
||||
break;
|
||||
count = 1;
|
||||
}
|
||||
|
||||
/* Determine if the chips are organized in a linear fashion, or if there
|
||||
are empty banks. Note, the last bank does not count here, only the
|
||||
first banks are important. Holes on non-bank boundaries can not exist
|
||||
due to the way the detection algorithm works. */
|
||||
if (priv->size < my_bank_size)
|
||||
my_bank_size = priv->size;
|
||||
priv->is_banked = 0;
|
||||
//printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
|
||||
//printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
|
||||
if (!priv->size) {
|
||||
printk("priv->size is zero\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
if (priv->size/my_bank_size) {
|
||||
if (priv->size/my_bank_size == 1) {
|
||||
priv->size = my_bank_size;
|
||||
}
|
||||
else {
|
||||
for (I = 0; I != priv->size/my_bank_size - 1; I++)
|
||||
{
|
||||
if (priv->bank_fill[I] != my_bank_size)
|
||||
priv->is_banked = 1;
|
||||
|
||||
/* This even could be eliminated, but new de-optimized read/write
|
||||
functions have to be written */
|
||||
printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
|
||||
if (priv->bank_fill[I] != priv->bank_fill[0])
|
||||
{
|
||||
printk("mtd: Failed. Cannot handle unsymmetric banking\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (priv->is_banked == 1)
|
||||
strcat(Part,", banked");
|
||||
|
||||
// printk("Part: '%s'\n",Part);
|
||||
|
||||
memset(MTD,0,sizeof(*MTD));
|
||||
// strlcpy(MTD->name,Part,sizeof(MTD->name));
|
||||
MTD->name = map->name;
|
||||
MTD->type = MTD_NORFLASH;
|
||||
MTD->flags = MTD_CAP_NORFLASH;
|
||||
MTD->writesize = 1;
|
||||
MTD->erasesize = SectorSize*(map->buswidth);
|
||||
// printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
|
||||
MTD->size = priv->size;
|
||||
// printk("MTD->size is %x\n",(unsigned int)MTD->size);
|
||||
//MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
|
||||
MTD->erase = flash_erase;
|
||||
if (priv->is_banked == 1)
|
||||
MTD->read = jedec_read_banked;
|
||||
else
|
||||
MTD->read = jedec_read;
|
||||
MTD->write = flash_write;
|
||||
MTD->sync = jedec_sync;
|
||||
MTD->priv = map;
|
||||
map->fldrv_priv = priv;
|
||||
map->fldrv = &jedec_chipdrv;
|
||||
__module_get(THIS_MODULE);
|
||||
return MTD;
|
||||
}
|
||||
|
||||
/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
|
||||
static int checkparity(u_char C)
|
||||
{
|
||||
u_char parity = 0;
|
||||
while (C != 0)
|
||||
{
|
||||
parity ^= C & 1;
|
||||
C >>= 1;
|
||||
}
|
||||
|
||||
return parity == 1;
|
||||
}
|
||||
|
||||
|
||||
/* Take an array of JEDEC numbers that represent interleved flash chips
|
||||
and process them. Check to make sure they are good JEDEC numbers, look
|
||||
them up and then add them to the chip list */
|
||||
static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
|
||||
unsigned long base,struct jedec_private *priv)
|
||||
{
|
||||
unsigned I,J;
|
||||
unsigned long Size;
|
||||
unsigned long SectorSize;
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
// Test #2 JEDEC numbers exhibit odd parity
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Finally, just make sure all the chip sizes are the same
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Size = JEDEC->size;
|
||||
SectorSize = JEDEC->sectorsize;
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
|
||||
{
|
||||
printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Load the Chips
|
||||
for (I = 0; I != MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if (priv->chips[I].jedec == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (I + Count > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Add them to the table
|
||||
for (J = 0; J != Count; J++)
|
||||
{
|
||||
unsigned long Bank;
|
||||
|
||||
JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
|
||||
priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
|
||||
priv->chips[I].size = JEDEC->size;
|
||||
priv->chips[I].sectorsize = JEDEC->sectorsize;
|
||||
priv->chips[I].base = base + J;
|
||||
priv->chips[I].datashift = J*8;
|
||||
priv->chips[I].capabilities = JEDEC->capabilities;
|
||||
priv->chips[I].offset = priv->size + J;
|
||||
|
||||
// log2 n :|
|
||||
priv->chips[I].addrshift = 0;
|
||||
for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
|
||||
|
||||
// Determine how filled this bank is.
|
||||
Bank = base & (~(my_bank_size-1));
|
||||
if (priv->bank_fill[Bank/my_bank_size] < base +
|
||||
(JEDEC->size << priv->chips[I].addrshift) - Bank)
|
||||
priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
|
||||
I++;
|
||||
}
|
||||
|
||||
priv->size += priv->chips[I-1].size*Count;
|
||||
|
||||
return priv->chips[I-1].size;
|
||||
}
|
||||
|
||||
/* Lookup the chip information from the JEDEC ID table. */
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
|
||||
{
|
||||
__u16 Id = (mfr << 8) | id;
|
||||
unsigned long I = 0;
|
||||
for (I = 0; JEDEC_table[I].jedec != 0; I++)
|
||||
if (JEDEC_table[I].jedec == Id)
|
||||
return JEDEC_table + I;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Look for flash using an 8 bit bus interface
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read8(map,base+x)
|
||||
#define flwrite(v,x) map_write8(map,v,base+x)
|
||||
|
||||
const unsigned long AutoSel1 = 0xAA;
|
||||
const unsigned long AutoSel2 = 0x55;
|
||||
const unsigned long AutoSel3 = 0x90;
|
||||
const unsigned long Reset = 0xF0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[1];
|
||||
__u8 Id[1];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Get the JEDEC numbers
|
||||
Mfg[0] = flread(0);
|
||||
Id[0] = flread(1);
|
||||
// printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,1,base,priv);
|
||||
// printk("handle_jedecs Size is %x\n",(unsigned int)Size);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Reset.
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read32(map,base+((x)<<2))
|
||||
#define flwrite(v,x) map_write32(map,v,base+((x)<<2))
|
||||
|
||||
const unsigned long AutoSel1 = 0xAAAAAAAA;
|
||||
const unsigned long AutoSel2 = 0x55555555;
|
||||
const unsigned long AutoSel3 = 0x90909090;
|
||||
const unsigned long Reset = 0xF0F0F0F0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[4];
|
||||
__u8 Id[4];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Test #1, JEDEC numbers are readable from 0x??00/0x??01
|
||||
if (flread(0) != flread(0x100) ||
|
||||
flread(1) != flread(0x101))
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Split up the JEDEC numbers
|
||||
OldVal = flread(0);
|
||||
for (I = 0; I != 4; I++)
|
||||
Mfg[I] = (OldVal >> (I*8));
|
||||
OldVal = flread(1);
|
||||
for (I = 0; I != 4; I++)
|
||||
Id[I] = (OldVal >> (I*8));
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,4,base,priv);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check if there is address wrap around within a single bank, if this
|
||||
returns JEDEC numbers then we assume that it is wrap around. Notice
|
||||
we call this routine with the JEDEC return still enabled, if two or
|
||||
more flashes have a truncated address space the probe test will still
|
||||
work */
|
||||
if (base + (Size<<2)+0x555 < map->size &&
|
||||
base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
|
||||
{
|
||||
if (flread(base+Size) != flread(base+Size + 0x100) ||
|
||||
flread(base+Size + 1) != flread(base+Size + 0x101))
|
||||
{
|
||||
jedec_probe32(map,base+Size,priv);
|
||||
}
|
||||
}
|
||||
|
||||
// Reset.
|
||||
flwrite(0xF0F0F0F0,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* Linear read. */
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_from(map, buf, from, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Banked read. Take special care to jump past the holes in the bank
|
||||
mapping. This version assumes symetry in the holes.. */
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
*retlen = 0;
|
||||
while (len > 0)
|
||||
{
|
||||
// Determine what bank and offset into that bank the first byte is
|
||||
unsigned long bank = from & (~(priv->bank_fill[0]-1));
|
||||
unsigned long offset = from & (priv->bank_fill[0]-1);
|
||||
unsigned long get = len;
|
||||
if (priv->bank_fill[0] - offset < len)
|
||||
get = priv->bank_fill[0] - offset;
|
||||
|
||||
bank /= priv->bank_fill[0];
|
||||
map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
|
||||
|
||||
len -= get;
|
||||
*retlen += get;
|
||||
from += get;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Pass the flags value that the flash return before it re-entered read
|
||||
mode. */
|
||||
static void jedec_flash_failed(unsigned char code)
|
||||
{
|
||||
/* Bit 5 being high indicates that there was an internal device
|
||||
failure, erasure time limits exceeded or something */
|
||||
if ((code & (1 << 5)) != 0)
|
||||
{
|
||||
printk("mtd: Internal Flash failure\n");
|
||||
return;
|
||||
}
|
||||
printk("mtd: Programming didn't take\n");
|
||||
}
|
||||
|
||||
/* This uses the erasure function described in the AMD Flash Handbook,
|
||||
it will work for flashes with a fixed sector size only. Flashes with
|
||||
a selection of sector sizes (ie the AMD Am29F800B) will need a different
|
||||
routine. This routine tries to parallize erasing multiple chips/sectors
|
||||
where possible */
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
// Does IO to the currently selected chip
|
||||
#define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
|
||||
|
||||
unsigned long Time = 0;
|
||||
unsigned long NoTime = 0;
|
||||
unsigned long start = instr->addr, len = instr->len;
|
||||
unsigned int I;
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
// Verify the arguments..
|
||||
if (start + len > mtd->size ||
|
||||
(start % mtd->erasesize) != 0 ||
|
||||
(len % mtd->erasesize) != 0 ||
|
||||
(len/mtd->erasesize) == 0)
|
||||
return -EINVAL;
|
||||
|
||||
jedec_flash_chip_scan(priv,start,len);
|
||||
|
||||
// Start the erase sequence on each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
unsigned long off;
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
if (chip->start + chip->length > chip->size)
|
||||
{
|
||||
printk("DIE\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
flwrite(0xF0,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
flwrite(0x80,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
|
||||
/* Once we start selecting the erase sectors the delay between each
|
||||
command must not exceed 50us or it will immediately start erasing
|
||||
and ignore the other sectors */
|
||||
for (off = 0; off < len; off += chip->sectorsize)
|
||||
{
|
||||
// Check to make sure we didn't timeout
|
||||
flwrite(0x30,chip->start + off);
|
||||
if (off == 0)
|
||||
continue;
|
||||
if ((flread(chip->start + off) & (1 << 3)) != 0)
|
||||
{
|
||||
printk("mtd: Ack! We timed out the erase timer!\n");
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We could split this into a timer routine and return early, performing
|
||||
background erasure.. Maybe later if the need warrents */
|
||||
|
||||
/* Poll the flash for erasure completion, specs say this can take as long
|
||||
as 480 seconds to do all the sectors (for a 2 meg flash).
|
||||
Erasure time is dependent on chip age, temp and wear.. */
|
||||
|
||||
/* This being a generic routine assumes a 32 bit bus. It does read32s
|
||||
and bundles interleved chips into the same grouping. This will work
|
||||
for all bus widths */
|
||||
Time = 0;
|
||||
NoTime = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long off = 0;
|
||||
unsigned todo[4] = {0,0,0,0};
|
||||
unsigned todo_left = 0;
|
||||
unsigned J;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
/* Find all chips in this data line, realistically this is all
|
||||
or nothing up to the interleve count */
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
{
|
||||
todo_left++;
|
||||
todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
|
||||
(short)todo[2],(short)todo[3]);
|
||||
*/
|
||||
while (1)
|
||||
{
|
||||
__u32 Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
/* During erase bit 7 is held low and bit 6 toggles, we watch this,
|
||||
should it stop toggling or go high then the erase is completed,
|
||||
or this is not really flash ;> */
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 3:
|
||||
Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count = 3;
|
||||
while (todo_left != 0)
|
||||
{
|
||||
for (J = 0; J != 4; J++)
|
||||
{
|
||||
__u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
|
||||
if (todo[J] == 0)
|
||||
continue;
|
||||
|
||||
if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
|
||||
{
|
||||
// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (Byte1 == Byte2)
|
||||
{
|
||||
jedec_flash_failed(Byte3);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
todo[J] = 0;
|
||||
todo_left--;
|
||||
}
|
||||
|
||||
/* if (NoTime == 0)
|
||||
Time += HZ/10 - schedule_timeout(HZ/10);*/
|
||||
NoTime = 0;
|
||||
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 4:
|
||||
Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count++;
|
||||
|
||||
/* // Count time, max of 15s per sector (according to AMD)
|
||||
if (Time > 15*len/mtd->erasesize*HZ)
|
||||
{
|
||||
printk("mtd: Flash Erase Timed out\n");
|
||||
return -EIO;
|
||||
} */
|
||||
}
|
||||
|
||||
// Skip to the next chip if we used chip erase
|
||||
if (chip->length == chip->size)
|
||||
off = chip->size;
|
||||
else
|
||||
off += chip->sectorsize;
|
||||
|
||||
if (off >= chip->length)
|
||||
break;
|
||||
NoTime = 1;
|
||||
}
|
||||
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
priv->chips[J].length = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//printk("done\n");
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
return 0;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* This is the simple flash writing function. It writes to every byte, in
|
||||
sequence. It takes care of how to properly address the flash if
|
||||
the flash is interleved. It can only be used if all the chips in the
|
||||
array are identical!*/
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
/* Does IO to the currently selected chip. It takes the bank addressing
|
||||
base (which is divisible by the chip size) adds the necessary lower bits
|
||||
of addrshift (interleave index) and then adds the control register index. */
|
||||
#define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
unsigned long base;
|
||||
unsigned long off;
|
||||
size_t save_len = len;
|
||||
|
||||
if (start + len > mtd->size)
|
||||
return -EIO;
|
||||
|
||||
//printk("Here");
|
||||
|
||||
//printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
|
||||
while (len != 0)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips;
|
||||
unsigned long bank;
|
||||
unsigned long boffset;
|
||||
|
||||
// Compute the base of the flash.
|
||||
off = ((unsigned long)start) % (chip->size << chip->addrshift);
|
||||
base = start - off;
|
||||
|
||||
// Perform banked addressing translation.
|
||||
bank = base & (~(priv->bank_fill[0]-1));
|
||||
boffset = base & (priv->bank_fill[0]-1);
|
||||
bank = (bank/priv->bank_fill[0])*my_bank_size;
|
||||
base = bank + boffset;
|
||||
|
||||
// printk("Flasing %X %X %X\n",base,chip->size,len);
|
||||
// printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
|
||||
|
||||
// Loop over this page
|
||||
for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
|
||||
{
|
||||
unsigned char oldbyte = map_read8(map,base+off);
|
||||
unsigned char Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
if (oldbyte == *buf) {
|
||||
// printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
|
||||
continue;
|
||||
}
|
||||
if (((~oldbyte) & *buf) != 0)
|
||||
printk("mtd: warn: Trying to set a 0 to a 1\n");
|
||||
|
||||
// Write
|
||||
flwrite(0xAA,0x555);
|
||||
flwrite(0x55,0x2AA);
|
||||
flwrite(0xA0,0x555);
|
||||
map_write8(map,*buf,base + off);
|
||||
Last[0] = map_read8(map,base + off);
|
||||
Last[1] = map_read8(map,base + off);
|
||||
Last[2] = map_read8(map,base + off);
|
||||
|
||||
/* Wait for the flash to finish the operation. We store the last 4
|
||||
status bytes that have been retrieved so we can determine why
|
||||
it failed. The toggle bits keep toggling when there is a
|
||||
failure */
|
||||
for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
|
||||
Count < 10000; Count++)
|
||||
Last[Count % 4] = map_read8(map,base + off);
|
||||
if (Last[(Count - 1) % 4] != *buf)
|
||||
{
|
||||
jedec_flash_failed(Last[(Count - 3) % 4]);
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
*retlen = save_len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This is used to enhance the speed of the erase routine,
|
||||
when things are being done to multiple chips it is possible to
|
||||
parallize the operations, particularly full memory erases of multi
|
||||
chip memories benifit */
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len)
|
||||
{
|
||||
unsigned int I;
|
||||
|
||||
// Zero the records
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
priv->chips[I].start = priv->chips[I].length = 0;
|
||||
|
||||
// Intersect the region with each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long ByteStart;
|
||||
unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
|
||||
|
||||
// End is before this chip or the start is after it
|
||||
if (start+len < chip->offset ||
|
||||
ChipEndByte - (1 << chip->addrshift) < start)
|
||||
continue;
|
||||
|
||||
if (start < chip->offset)
|
||||
{
|
||||
ByteStart = chip->offset;
|
||||
chip->start = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
ByteStart = start;
|
||||
}
|
||||
|
||||
if (start + len >= ChipEndByte)
|
||||
chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
|
||||
else
|
||||
chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
}
|
||||
}
|
||||
|
||||
int __init jedec_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&jedec_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit jedec_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&jedec_chipdrv);
|
||||
}
|
||||
|
||||
module_init(jedec_init);
|
||||
module_exit(jedec_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
|
@ -1,601 +0,0 @@
|
||||
/*
|
||||
* MTD chip driver for pre-CFI Sharp flash chips
|
||||
*
|
||||
* Copyright 2000,2001 David A. Schleef <ds@schleef.org>
|
||||
* 2000,2001 Lineo, Inc.
|
||||
*
|
||||
* $Id: sharp.c,v 1.17 2005/11/29 14:28:28 gleixner Exp $
|
||||
*
|
||||
* Devices supported:
|
||||
* LH28F016SCT Symmetrical block flash memory, 2Mx8
|
||||
* LH28F008SCT Symmetrical block flash memory, 1Mx8
|
||||
*
|
||||
* Documentation:
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf
|
||||
* 016sctl9.pdf
|
||||
*
|
||||
* Limitations:
|
||||
* This driver only supports 4x1 arrangement of chips.
|
||||
* Not tested on anything but PowerPC.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define CMD_RESET 0xffffffff
|
||||
#define CMD_READ_ID 0x90909090
|
||||
#define CMD_READ_STATUS 0x70707070
|
||||
#define CMD_CLEAR_STATUS 0x50505050
|
||||
#define CMD_BLOCK_ERASE_1 0x20202020
|
||||
#define CMD_BLOCK_ERASE_2 0xd0d0d0d0
|
||||
#define CMD_BYTE_WRITE 0x40404040
|
||||
#define CMD_SUSPEND 0xb0b0b0b0
|
||||
#define CMD_RESUME 0xd0d0d0d0
|
||||
#define CMD_SET_BLOCK_LOCK_1 0x60606060
|
||||
#define CMD_SET_BLOCK_LOCK_2 0x01010101
|
||||
#define CMD_SET_MASTER_LOCK_1 0x60606060
|
||||
#define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0
|
||||
|
||||
#define SR_READY 0x80808080 // 1 = ready
|
||||
#define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended
|
||||
#define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits
|
||||
#define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit
|
||||
#define SR_VPP 0x08080808 // 1 = Vpp is low
|
||||
#define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended
|
||||
#define SR_PROTECT 0x02020202 // 1 = lock bit set
|
||||
#define SR_RESERVED 0x01010101
|
||||
|
||||
#define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT)
|
||||
|
||||
/* Configuration options */
|
||||
|
||||
#undef AUTOUNLOCK /* automatically unlocks blocks before erasing */
|
||||
|
||||
static struct mtd_info *sharp_probe(struct map_info *);
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd);
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static void sharp_sync(struct mtd_info *mtd);
|
||||
static int sharp_suspend(struct mtd_info *mtd);
|
||||
static void sharp_resume(struct mtd_info *mtd);
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum);
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#endif
|
||||
|
||||
|
||||
struct sharp_info{
|
||||
struct flchip *chip;
|
||||
int bogus;
|
||||
int chipshift;
|
||||
int numchips;
|
||||
struct flchip chips[1];
|
||||
};
|
||||
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static struct mtd_chip_driver sharp_chipdrv = {
|
||||
.probe = sharp_probe,
|
||||
.destroy = sharp_destroy,
|
||||
.name = "sharp",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
|
||||
static struct mtd_info *sharp_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd = NULL;
|
||||
struct sharp_info *sharp = NULL;
|
||||
int width;
|
||||
|
||||
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if(!mtd)
|
||||
return NULL;
|
||||
|
||||
sharp = kzalloc(sizeof(*sharp), GFP_KERNEL);
|
||||
if(!sharp) {
|
||||
kfree(mtd);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
width = sharp_probe_map(map,mtd);
|
||||
if(!width){
|
||||
kfree(mtd);
|
||||
kfree(sharp);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mtd->priv = map;
|
||||
mtd->type = MTD_NORFLASH;
|
||||
mtd->erase = sharp_erase;
|
||||
mtd->read = sharp_read;
|
||||
mtd->write = sharp_write;
|
||||
mtd->sync = sharp_sync;
|
||||
mtd->suspend = sharp_suspend;
|
||||
mtd->resume = sharp_resume;
|
||||
mtd->flags = MTD_CAP_NORFLASH;
|
||||
mtd->writesize = 1;
|
||||
mtd->name = map->name;
|
||||
|
||||
sharp->chipshift = 23;
|
||||
sharp->numchips = 1;
|
||||
sharp->chips[0].start = 0;
|
||||
sharp->chips[0].state = FL_READY;
|
||||
sharp->chips[0].mutex = &sharp->chips[0]._spinlock;
|
||||
sharp->chips[0].word_write_time = 0;
|
||||
init_waitqueue_head(&sharp->chips[0].wq);
|
||||
spin_lock_init(&sharp->chips[0]._spinlock);
|
||||
|
||||
map->fldrv = &sharp_chipdrv;
|
||||
map->fldrv_priv = sharp;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
static inline void sharp_send_cmd(struct map_info *map, unsigned long cmd, unsigned long adr)
|
||||
{
|
||||
map_word map_cmd;
|
||||
map_cmd.x[0] = cmd;
|
||||
map_write(map, map_cmd, adr);
|
||||
}
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd)
|
||||
{
|
||||
map_word tmp, read0, read4;
|
||||
unsigned long base = 0;
|
||||
int width = 4;
|
||||
|
||||
tmp = map_read(map, base+0);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_ID, base+0);
|
||||
|
||||
read0 = map_read(map, base+0);
|
||||
read4 = map_read(map, base+4);
|
||||
if(read0.x[0] == 0x89898989){
|
||||
printk("Looks like sharp flash\n");
|
||||
switch(read4.x[0]){
|
||||
case 0xaaaaaaaa:
|
||||
case 0xa0a0a0a0:
|
||||
/* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/
|
||||
/* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x200000 * width;
|
||||
return width;
|
||||
case 0xa6a6a6a6:
|
||||
/* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/
|
||||
/* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x100000 * width;
|
||||
return width;
|
||||
#if 0
|
||||
case 0x00000000: /* unknown */
|
||||
/* XX - LH28F004SCT 512kx8, 8 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x80000 * width;
|
||||
return width;
|
||||
#endif
|
||||
default:
|
||||
printk("Sort-of looks like sharp flash, 0x%08lx 0x%08lx\n",
|
||||
read0.x[0], read4.x[0]);
|
||||
}
|
||||
}else if((map_read(map, base+0).x[0] == CMD_READ_ID)){
|
||||
/* RAM, probably */
|
||||
printk("Looks like RAM\n");
|
||||
map_write(map, tmp, base+0);
|
||||
}else{
|
||||
printk("Doesn't look like sharp flash, 0x%08lx 0x%08lx\n",
|
||||
read0.x[0], read4.x[0]);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This function returns with the chip->mutex lock held. */
|
||||
static int sharp_wait(struct map_info *map, struct flchip *chip)
|
||||
{
|
||||
int i;
|
||||
map_word status;
|
||||
unsigned long timeo = jiffies + HZ;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
int adr = 0;
|
||||
|
||||
retry:
|
||||
spin_lock_bh(chip->mutex);
|
||||
|
||||
switch(chip->state){
|
||||
case FL_READY:
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
chip->state = FL_STATUS;
|
||||
case FL_STATUS:
|
||||
for(i=0;i<100;i++){
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY)==SR_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
printk("Waiting for chip\n");
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
if(signal_pending(current))
|
||||
return -EINTR;
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
goto retry;
|
||||
}
|
||||
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
|
||||
chip->state = FL_READY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void sharp_release(struct flchip *chip)
|
||||
{
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
}
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int chipnum;
|
||||
int ret = 0;
|
||||
int ofs = 0;
|
||||
|
||||
chipnum = (from >> sharp->chipshift);
|
||||
ofs = from & ((1 << sharp->chipshift)-1);
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
unsigned long thislen;
|
||||
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
|
||||
thislen = len;
|
||||
if(ofs+thislen >= (1<<sharp->chipshift))
|
||||
thislen = (1<<sharp->chipshift) - ofs;
|
||||
|
||||
ret = sharp_wait(map,&sharp->chips[chipnum]);
|
||||
if(ret<0)
|
||||
break;
|
||||
|
||||
map_copy_from(map,buf,ofs,thislen);
|
||||
|
||||
sharp_release(&sharp->chips[chipnum]);
|
||||
|
||||
*retlen += thislen;
|
||||
len -= thislen;
|
||||
buf += thislen;
|
||||
|
||||
ofs = 0;
|
||||
chipnum++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int ret = 0;
|
||||
int i,j;
|
||||
int chipnum;
|
||||
unsigned long ofs;
|
||||
union { u32 l; unsigned char uc[4]; } tbuf;
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
tbuf.l = 0xffffffff;
|
||||
chipnum = to >> sharp->chipshift;
|
||||
ofs = to & ((1<<sharp->chipshift)-1);
|
||||
|
||||
j=0;
|
||||
for(i=ofs&3;i<4 && len;i++){
|
||||
tbuf.uc[i] = *buf;
|
||||
buf++;
|
||||
to++;
|
||||
len--;
|
||||
j++;
|
||||
}
|
||||
sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l);
|
||||
if(ret<0)
|
||||
return ret;
|
||||
(*retlen)+=j;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum)
|
||||
{
|
||||
int ret;
|
||||
int timeo;
|
||||
int try;
|
||||
int i;
|
||||
map_word data, status;
|
||||
|
||||
status.x[0] = 0;
|
||||
ret = sharp_wait(map,chip);
|
||||
|
||||
for(try=0;try<10;try++){
|
||||
sharp_send_cmd(map, CMD_BYTE_WRITE, adr);
|
||||
/* cpu_to_le32 -> hack to fix the writel be->le conversion */
|
||||
data.x[0] = cpu_to_le32(datum);
|
||||
map_write(map, data, adr);
|
||||
|
||||
chip->state = FL_WRITING;
|
||||
|
||||
timeo = jiffies + (HZ/2);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
for(i=0;i<100;i++){
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY) == SR_READY)
|
||||
break;
|
||||
}
|
||||
if(i==100){
|
||||
printk("sharp: timed out writing\n");
|
||||
}
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS))
|
||||
break;
|
||||
|
||||
printk("sharp: error writing byte at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
}
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
unsigned long adr,len;
|
||||
int chipnum, ret=0;
|
||||
|
||||
//printk("sharp_erase()\n");
|
||||
if(instr->addr & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len + instr->addr > mtd->size)
|
||||
return -EINVAL;
|
||||
|
||||
chipnum = instr->addr >> sharp->chipshift;
|
||||
adr = instr->addr & ((1<<sharp->chipshift)-1);
|
||||
len = instr->len;
|
||||
|
||||
while(len){
|
||||
ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr);
|
||||
if(ret)return ret;
|
||||
|
||||
adr += mtd->erasesize;
|
||||
len -= mtd->erasesize;
|
||||
if(adr >> sharp->chipshift){
|
||||
adr = 0;
|
||||
chipnum++;
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
unsigned long timeo;
|
||||
map_word status;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
while(time_before(jiffies, timeo)){
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY)==SR_READY){
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule_timeout(1);
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_lock_bh(chip->mutex);
|
||||
|
||||
if (signal_pending(current)){
|
||||
ret = -EINTR;
|
||||
goto out;
|
||||
}
|
||||
|
||||
}
|
||||
ret = -ETIME;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
//int timeo;
|
||||
map_word status;
|
||||
//int i;
|
||||
|
||||
//printk("sharp_erase_oneblock()\n");
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
/* This seems like a good place to do an unlock */
|
||||
sharp_unlock_oneblock(map,chip,adr);
|
||||
#endif
|
||||
|
||||
sharp_send_cmd(map, CMD_BLOCK_ERASE_1, adr);
|
||||
sharp_send_cmd(map, CMD_BLOCK_ERASE_2, adr);
|
||||
|
||||
chip->state = FL_ERASING;
|
||||
|
||||
ret = sharp_do_wait_for_ready(map,chip,adr);
|
||||
if(ret<0)return ret;
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS)){
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
printk("sharp: error erasing block at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int i;
|
||||
map_word status;
|
||||
|
||||
sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_1, adr);
|
||||
sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_2, adr);
|
||||
|
||||
udelay(100);
|
||||
|
||||
status = map_read(map, adr);
|
||||
printk("status=%08lx\n", status.x[0]);
|
||||
|
||||
for(i=0;i<1000;i++){
|
||||
//sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY) == SR_READY)
|
||||
break;
|
||||
udelay(100);
|
||||
}
|
||||
if(i==1000){
|
||||
printk("sharp: timed out unlocking block\n");
|
||||
}
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS)){
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
return;
|
||||
}
|
||||
|
||||
printk("sharp: error unlocking block at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void sharp_sync(struct mtd_info *mtd)
|
||||
{
|
||||
//printk("sharp_sync()\n");
|
||||
}
|
||||
|
||||
static int sharp_suspend(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_suspend()\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static void sharp_resume(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_resume()\n");
|
||||
|
||||
}
|
||||
|
||||
static void sharp_destroy(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_destroy()\n");
|
||||
|
||||
}
|
||||
|
||||
static int __init sharp_probe_init(void)
|
||||
{
|
||||
printk("MTD Sharp chip driver <ds@lineo.com>\n");
|
||||
|
||||
register_mtd_chip_driver(&sharp_chipdrv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit sharp_probe_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&sharp_chipdrv);
|
||||
}
|
||||
|
||||
module_init(sharp_probe_init);
|
||||
module_exit(sharp_probe_exit);
|
||||
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Schleef <ds@schleef.org>");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips");
|
Loading…
x
Reference in New Issue
Block a user