mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 07:50:04 +00:00
Merge git://git.infradead.org/mtd-2.6
* git://git.infradead.org/mtd-2.6: (21 commits) [MTD] [CHIPS] Remove MTD_OBSOLETE_CHIPS (jedec, amd_flash, sharp) [MTD] Delete allegedly obsolete "bank_size" field of mtd_info. [MTD] Remove unnecessary user space check from mtd.h. [MTD] [MAPS] Remove flash maps for no longer supported 405LP boards [MTD] [MAPS] Fix missing printk() parameter in physmap_of.c MTD driver [MTD] [NAND] platform NAND driver: add driver [MTD] [NAND] platform NAND driver: update header [JFFS2] Simplify and clean up jffs2_add_tn_to_tree() some more. [JFFS2] Remove another bogus optimisation in jffs2_add_tn_to_tree() [JFFS2] Remove broken insert_point optimisation in jffs2_add_tn_to_tree() [JFFS2] Remember to calculate overlap on nodes which replace older nodes [JFFS2] Don't advance c->wbuf_ofs to next eraseblock after wbuf flush [MTD] [NAND] at91_nand.c: CMDLINE_PARTS support [MTD] [NAND] Tidy up handling of page number in nand_block_bad() [MTD] block2mtd_paramline[] mustn't be __initdata [MTD] [NAND] Support multiple chips in CAFÉ driver [MTD] [NAND] Rename cafe.c to cafe_nand.c and remove the multi-obj magic [MTD] [NAND] Use rslib for CAFÉ ECC [RSLIB] Support non-canonical GF representations [JFFS2] Remove dead file histo_mips.h ...
This commit is contained in:
commit
ba7cc09c9c
@ -2648,6 +2648,12 @@ M: corbet@lwn.net
|
||||
L: video4linux-list@redhat.com
|
||||
S: Maintained
|
||||
|
||||
ONENAND FLASH DRIVER
|
||||
P: Kyungmin Park
|
||||
M: kyungmin.park@samsung.com
|
||||
L: linux-mtd@lists.infradead.org
|
||||
S: Maintained
|
||||
|
||||
ONSTREAM SCSI TAPE DRIVER
|
||||
P: Willem Riede
|
||||
M: osst@riede.org
|
||||
|
@ -1,5 +1,4 @@
|
||||
# drivers/mtd/chips/Kconfig
|
||||
# $Id: Kconfig,v 1.18 2005/11/07 11:14:22 gleixner Exp $
|
||||
|
||||
menu "RAM/ROM/Flash chip drivers"
|
||||
depends on MTD!=n
|
||||
@ -231,45 +230,6 @@ config MTD_ABSENT
|
||||
the system regardless of media presence. Device nodes created
|
||||
with this driver will return -ENODEV upon access.
|
||||
|
||||
config MTD_OBSOLETE_CHIPS
|
||||
bool "Older (theoretically obsoleted now) drivers for non-CFI chips"
|
||||
help
|
||||
This option does not enable any code directly, but will allow you to
|
||||
select some other chip drivers which are now considered obsolete,
|
||||
because the generic CONFIG_JEDECPROBE code above should now detect
|
||||
the chips which are supported by these drivers, and allow the generic
|
||||
CFI-compatible drivers to drive the chips. Say 'N' here unless you have
|
||||
already tried the CONFIG_JEDECPROBE method and reported its failure
|
||||
to the MTD mailing list at <linux-mtd@lists.infradead.org>
|
||||
|
||||
config MTD_AMDSTD
|
||||
tristate "AMD compatible flash chip support (non-CFI)"
|
||||
depends on MTD_OBSOLETE_CHIPS && BROKEN
|
||||
help
|
||||
This option enables support for flash chips using AMD-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_AMDSTD option.
|
||||
|
||||
It also works on AMD compatible chips that do conform to CFI.
|
||||
|
||||
config MTD_SHARP
|
||||
tristate "pre-CFI Sharp chip support"
|
||||
depends on MTD_OBSOLETE_CHIPS
|
||||
help
|
||||
This option enables support for flash chips using Sharp-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_INTELxxx options.
|
||||
|
||||
config MTD_JEDEC
|
||||
tristate "JEDEC device support"
|
||||
depends on MTD_OBSOLETE_CHIPS && BROKEN
|
||||
help
|
||||
Enable older JEDEC flash interface devices for self
|
||||
programming flash. It is commonly used in older AMD chips. It is
|
||||
only called JEDEC because the JEDEC association
|
||||
<http://www.jedec.org/> distributes the identification codes for the
|
||||
chips.
|
||||
|
||||
config MTD_XIP
|
||||
bool "XIP aware MTD support"
|
||||
depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP
|
||||
|
@ -1,19 +1,15 @@
|
||||
#
|
||||
# linux/drivers/chips/Makefile
|
||||
#
|
||||
# $Id: Makefile.common,v 1.5 2005/11/07 11:14:22 gleixner Exp $
|
||||
|
||||
obj-$(CONFIG_MTD) += chipreg.o
|
||||
obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o
|
||||
obj-$(CONFIG_MTD_CFI) += cfi_probe.o
|
||||
obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o
|
||||
obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o
|
||||
obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o
|
||||
obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o
|
||||
obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o
|
||||
obj-$(CONFIG_MTD_JEDEC) += jedec.o
|
||||
obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o
|
||||
obj-$(CONFIG_MTD_RAM) += map_ram.o
|
||||
obj-$(CONFIG_MTD_ROM) += map_rom.o
|
||||
obj-$(CONFIG_MTD_SHARP) += sharp.o
|
||||
obj-$(CONFIG_MTD_ABSENT) += map_absent.o
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,935 +0,0 @@
|
||||
|
||||
/* JEDEC Flash Interface.
|
||||
* This is an older type of interface for self programming flash. It is
|
||||
* commonly use in older AMD chips and is obsolete compared with CFI.
|
||||
* It is called JEDEC because the JEDEC association distributes the ID codes
|
||||
* for the chips.
|
||||
*
|
||||
* See the AMD flash databook for information on how to operate the interface.
|
||||
*
|
||||
* This code does not support anything wider than 8 bit flash chips, I am
|
||||
* not going to guess how to send commands to them, plus I expect they will
|
||||
* all speak CFI..
|
||||
*
|
||||
* $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mtd/jedec.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *);
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len);
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
|
||||
static unsigned long my_bank_size;
|
||||
|
||||
/* Listing of parts and sizes. We need this table to learn the sector
|
||||
size of the chip and the total length */
|
||||
static const struct JEDECTable JEDEC_table[] = {
|
||||
{
|
||||
.jedec = 0x013D,
|
||||
.name = "AMD Am29F017D",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01AD,
|
||||
.name = "AMD Am29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01D5,
|
||||
.name = "AMD Am29F080",
|
||||
.size = 1*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01A4,
|
||||
.name = "AMD Am29F040",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x20E3,
|
||||
.name = "AMD Am29W040B",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0xC2AD,
|
||||
.name = "Macronix MX29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{ .jedec = 0x0 }
|
||||
};
|
||||
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
|
||||
static void jedec_sync(struct mtd_info *mtd) {};
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map);
|
||||
|
||||
|
||||
|
||||
static struct mtd_chip_driver jedec_chipdrv = {
|
||||
.probe = jedec_probe,
|
||||
.name = "jedec",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
/* Probe entry point */
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *MTD;
|
||||
struct jedec_private *priv;
|
||||
unsigned long Base;
|
||||
unsigned long SectorSize;
|
||||
unsigned count;
|
||||
unsigned I,Uniq;
|
||||
char Part[200];
|
||||
memset(&priv,0,sizeof(priv));
|
||||
|
||||
MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
|
||||
if (!MTD)
|
||||
return NULL;
|
||||
|
||||
priv = (struct jedec_private *)&MTD[1];
|
||||
|
||||
my_bank_size = map->size;
|
||||
|
||||
if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (Base = 0; Base < map->size; Base += my_bank_size)
|
||||
{
|
||||
// Perhaps zero could designate all tests?
|
||||
if (map->buswidth == 0)
|
||||
map->buswidth = 1;
|
||||
|
||||
if (map->buswidth == 1){
|
||||
if (jedec_probe8(map,Base,priv) == 0) {
|
||||
printk("did recognize jedec chip\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
if (map->buswidth == 2)
|
||||
jedec_probe16(map,Base,priv);
|
||||
if (map->buswidth == 4)
|
||||
jedec_probe32(map,Base,priv);
|
||||
}
|
||||
|
||||
// Get the biggest sector size
|
||||
SectorSize = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
// printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
|
||||
// printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
|
||||
if (priv->chips[I].sectorsize > SectorSize)
|
||||
SectorSize = priv->chips[I].sectorsize;
|
||||
}
|
||||
|
||||
// Quickly ensure that the other sector sizes are factors of the largest
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
|
||||
{
|
||||
printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Generate a part name that includes the number of different chips and
|
||||
other configuration information */
|
||||
count = 1;
|
||||
strlcpy(Part,map->name,sizeof(Part)-10);
|
||||
strcat(Part," ");
|
||||
Uniq = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
if (priv->chips[I+1].jedec == priv->chips[I].jedec)
|
||||
{
|
||||
count++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Locate the chip in the jedec table
|
||||
JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Internal Error, JEDEC not set\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (Uniq != 0)
|
||||
strcat(Part,",");
|
||||
Uniq++;
|
||||
|
||||
if (count != 1)
|
||||
sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
|
||||
else
|
||||
sprintf(Part+strlen(Part),"%s",JEDEC->name);
|
||||
if (strlen(Part) > sizeof(Part)*2/3)
|
||||
break;
|
||||
count = 1;
|
||||
}
|
||||
|
||||
/* Determine if the chips are organized in a linear fashion, or if there
|
||||
are empty banks. Note, the last bank does not count here, only the
|
||||
first banks are important. Holes on non-bank boundaries can not exist
|
||||
due to the way the detection algorithm works. */
|
||||
if (priv->size < my_bank_size)
|
||||
my_bank_size = priv->size;
|
||||
priv->is_banked = 0;
|
||||
//printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
|
||||
//printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
|
||||
if (!priv->size) {
|
||||
printk("priv->size is zero\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
if (priv->size/my_bank_size) {
|
||||
if (priv->size/my_bank_size == 1) {
|
||||
priv->size = my_bank_size;
|
||||
}
|
||||
else {
|
||||
for (I = 0; I != priv->size/my_bank_size - 1; I++)
|
||||
{
|
||||
if (priv->bank_fill[I] != my_bank_size)
|
||||
priv->is_banked = 1;
|
||||
|
||||
/* This even could be eliminated, but new de-optimized read/write
|
||||
functions have to be written */
|
||||
printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
|
||||
if (priv->bank_fill[I] != priv->bank_fill[0])
|
||||
{
|
||||
printk("mtd: Failed. Cannot handle unsymmetric banking\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (priv->is_banked == 1)
|
||||
strcat(Part,", banked");
|
||||
|
||||
// printk("Part: '%s'\n",Part);
|
||||
|
||||
memset(MTD,0,sizeof(*MTD));
|
||||
// strlcpy(MTD->name,Part,sizeof(MTD->name));
|
||||
MTD->name = map->name;
|
||||
MTD->type = MTD_NORFLASH;
|
||||
MTD->flags = MTD_CAP_NORFLASH;
|
||||
MTD->writesize = 1;
|
||||
MTD->erasesize = SectorSize*(map->buswidth);
|
||||
// printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
|
||||
MTD->size = priv->size;
|
||||
// printk("MTD->size is %x\n",(unsigned int)MTD->size);
|
||||
//MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
|
||||
MTD->erase = flash_erase;
|
||||
if (priv->is_banked == 1)
|
||||
MTD->read = jedec_read_banked;
|
||||
else
|
||||
MTD->read = jedec_read;
|
||||
MTD->write = flash_write;
|
||||
MTD->sync = jedec_sync;
|
||||
MTD->priv = map;
|
||||
map->fldrv_priv = priv;
|
||||
map->fldrv = &jedec_chipdrv;
|
||||
__module_get(THIS_MODULE);
|
||||
return MTD;
|
||||
}
|
||||
|
||||
/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
|
||||
static int checkparity(u_char C)
|
||||
{
|
||||
u_char parity = 0;
|
||||
while (C != 0)
|
||||
{
|
||||
parity ^= C & 1;
|
||||
C >>= 1;
|
||||
}
|
||||
|
||||
return parity == 1;
|
||||
}
|
||||
|
||||
|
||||
/* Take an array of JEDEC numbers that represent interleved flash chips
|
||||
and process them. Check to make sure they are good JEDEC numbers, look
|
||||
them up and then add them to the chip list */
|
||||
static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
|
||||
unsigned long base,struct jedec_private *priv)
|
||||
{
|
||||
unsigned I,J;
|
||||
unsigned long Size;
|
||||
unsigned long SectorSize;
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
// Test #2 JEDEC numbers exhibit odd parity
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Finally, just make sure all the chip sizes are the same
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Size = JEDEC->size;
|
||||
SectorSize = JEDEC->sectorsize;
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
|
||||
{
|
||||
printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Load the Chips
|
||||
for (I = 0; I != MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if (priv->chips[I].jedec == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (I + Count > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Add them to the table
|
||||
for (J = 0; J != Count; J++)
|
||||
{
|
||||
unsigned long Bank;
|
||||
|
||||
JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
|
||||
priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
|
||||
priv->chips[I].size = JEDEC->size;
|
||||
priv->chips[I].sectorsize = JEDEC->sectorsize;
|
||||
priv->chips[I].base = base + J;
|
||||
priv->chips[I].datashift = J*8;
|
||||
priv->chips[I].capabilities = JEDEC->capabilities;
|
||||
priv->chips[I].offset = priv->size + J;
|
||||
|
||||
// log2 n :|
|
||||
priv->chips[I].addrshift = 0;
|
||||
for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
|
||||
|
||||
// Determine how filled this bank is.
|
||||
Bank = base & (~(my_bank_size-1));
|
||||
if (priv->bank_fill[Bank/my_bank_size] < base +
|
||||
(JEDEC->size << priv->chips[I].addrshift) - Bank)
|
||||
priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
|
||||
I++;
|
||||
}
|
||||
|
||||
priv->size += priv->chips[I-1].size*Count;
|
||||
|
||||
return priv->chips[I-1].size;
|
||||
}
|
||||
|
||||
/* Lookup the chip information from the JEDEC ID table. */
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
|
||||
{
|
||||
__u16 Id = (mfr << 8) | id;
|
||||
unsigned long I = 0;
|
||||
for (I = 0; JEDEC_table[I].jedec != 0; I++)
|
||||
if (JEDEC_table[I].jedec == Id)
|
||||
return JEDEC_table + I;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Look for flash using an 8 bit bus interface
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read8(map,base+x)
|
||||
#define flwrite(v,x) map_write8(map,v,base+x)
|
||||
|
||||
const unsigned long AutoSel1 = 0xAA;
|
||||
const unsigned long AutoSel2 = 0x55;
|
||||
const unsigned long AutoSel3 = 0x90;
|
||||
const unsigned long Reset = 0xF0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[1];
|
||||
__u8 Id[1];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Get the JEDEC numbers
|
||||
Mfg[0] = flread(0);
|
||||
Id[0] = flread(1);
|
||||
// printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,1,base,priv);
|
||||
// printk("handle_jedecs Size is %x\n",(unsigned int)Size);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Reset.
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read32(map,base+((x)<<2))
|
||||
#define flwrite(v,x) map_write32(map,v,base+((x)<<2))
|
||||
|
||||
const unsigned long AutoSel1 = 0xAAAAAAAA;
|
||||
const unsigned long AutoSel2 = 0x55555555;
|
||||
const unsigned long AutoSel3 = 0x90909090;
|
||||
const unsigned long Reset = 0xF0F0F0F0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[4];
|
||||
__u8 Id[4];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Test #1, JEDEC numbers are readable from 0x??00/0x??01
|
||||
if (flread(0) != flread(0x100) ||
|
||||
flread(1) != flread(0x101))
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Split up the JEDEC numbers
|
||||
OldVal = flread(0);
|
||||
for (I = 0; I != 4; I++)
|
||||
Mfg[I] = (OldVal >> (I*8));
|
||||
OldVal = flread(1);
|
||||
for (I = 0; I != 4; I++)
|
||||
Id[I] = (OldVal >> (I*8));
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,4,base,priv);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check if there is address wrap around within a single bank, if this
|
||||
returns JEDEC numbers then we assume that it is wrap around. Notice
|
||||
we call this routine with the JEDEC return still enabled, if two or
|
||||
more flashes have a truncated address space the probe test will still
|
||||
work */
|
||||
if (base + (Size<<2)+0x555 < map->size &&
|
||||
base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
|
||||
{
|
||||
if (flread(base+Size) != flread(base+Size + 0x100) ||
|
||||
flread(base+Size + 1) != flread(base+Size + 0x101))
|
||||
{
|
||||
jedec_probe32(map,base+Size,priv);
|
||||
}
|
||||
}
|
||||
|
||||
// Reset.
|
||||
flwrite(0xF0F0F0F0,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* Linear read. */
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_from(map, buf, from, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Banked read. Take special care to jump past the holes in the bank
|
||||
mapping. This version assumes symetry in the holes.. */
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
*retlen = 0;
|
||||
while (len > 0)
|
||||
{
|
||||
// Determine what bank and offset into that bank the first byte is
|
||||
unsigned long bank = from & (~(priv->bank_fill[0]-1));
|
||||
unsigned long offset = from & (priv->bank_fill[0]-1);
|
||||
unsigned long get = len;
|
||||
if (priv->bank_fill[0] - offset < len)
|
||||
get = priv->bank_fill[0] - offset;
|
||||
|
||||
bank /= priv->bank_fill[0];
|
||||
map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
|
||||
|
||||
len -= get;
|
||||
*retlen += get;
|
||||
from += get;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Pass the flags value that the flash return before it re-entered read
|
||||
mode. */
|
||||
static void jedec_flash_failed(unsigned char code)
|
||||
{
|
||||
/* Bit 5 being high indicates that there was an internal device
|
||||
failure, erasure time limits exceeded or something */
|
||||
if ((code & (1 << 5)) != 0)
|
||||
{
|
||||
printk("mtd: Internal Flash failure\n");
|
||||
return;
|
||||
}
|
||||
printk("mtd: Programming didn't take\n");
|
||||
}
|
||||
|
||||
/* This uses the erasure function described in the AMD Flash Handbook,
|
||||
it will work for flashes with a fixed sector size only. Flashes with
|
||||
a selection of sector sizes (ie the AMD Am29F800B) will need a different
|
||||
routine. This routine tries to parallize erasing multiple chips/sectors
|
||||
where possible */
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
// Does IO to the currently selected chip
|
||||
#define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
|
||||
|
||||
unsigned long Time = 0;
|
||||
unsigned long NoTime = 0;
|
||||
unsigned long start = instr->addr, len = instr->len;
|
||||
unsigned int I;
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
// Verify the arguments..
|
||||
if (start + len > mtd->size ||
|
||||
(start % mtd->erasesize) != 0 ||
|
||||
(len % mtd->erasesize) != 0 ||
|
||||
(len/mtd->erasesize) == 0)
|
||||
return -EINVAL;
|
||||
|
||||
jedec_flash_chip_scan(priv,start,len);
|
||||
|
||||
// Start the erase sequence on each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
unsigned long off;
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
if (chip->start + chip->length > chip->size)
|
||||
{
|
||||
printk("DIE\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
flwrite(0xF0,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
flwrite(0x80,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
|
||||
/* Once we start selecting the erase sectors the delay between each
|
||||
command must not exceed 50us or it will immediately start erasing
|
||||
and ignore the other sectors */
|
||||
for (off = 0; off < len; off += chip->sectorsize)
|
||||
{
|
||||
// Check to make sure we didn't timeout
|
||||
flwrite(0x30,chip->start + off);
|
||||
if (off == 0)
|
||||
continue;
|
||||
if ((flread(chip->start + off) & (1 << 3)) != 0)
|
||||
{
|
||||
printk("mtd: Ack! We timed out the erase timer!\n");
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We could split this into a timer routine and return early, performing
|
||||
background erasure.. Maybe later if the need warrents */
|
||||
|
||||
/* Poll the flash for erasure completion, specs say this can take as long
|
||||
as 480 seconds to do all the sectors (for a 2 meg flash).
|
||||
Erasure time is dependent on chip age, temp and wear.. */
|
||||
|
||||
/* This being a generic routine assumes a 32 bit bus. It does read32s
|
||||
and bundles interleved chips into the same grouping. This will work
|
||||
for all bus widths */
|
||||
Time = 0;
|
||||
NoTime = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long off = 0;
|
||||
unsigned todo[4] = {0,0,0,0};
|
||||
unsigned todo_left = 0;
|
||||
unsigned J;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
/* Find all chips in this data line, realistically this is all
|
||||
or nothing up to the interleve count */
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
{
|
||||
todo_left++;
|
||||
todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
|
||||
(short)todo[2],(short)todo[3]);
|
||||
*/
|
||||
while (1)
|
||||
{
|
||||
__u32 Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
/* During erase bit 7 is held low and bit 6 toggles, we watch this,
|
||||
should it stop toggling or go high then the erase is completed,
|
||||
or this is not really flash ;> */
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 3:
|
||||
Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count = 3;
|
||||
while (todo_left != 0)
|
||||
{
|
||||
for (J = 0; J != 4; J++)
|
||||
{
|
||||
__u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
|
||||
if (todo[J] == 0)
|
||||
continue;
|
||||
|
||||
if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
|
||||
{
|
||||
// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (Byte1 == Byte2)
|
||||
{
|
||||
jedec_flash_failed(Byte3);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
todo[J] = 0;
|
||||
todo_left--;
|
||||
}
|
||||
|
||||
/* if (NoTime == 0)
|
||||
Time += HZ/10 - schedule_timeout(HZ/10);*/
|
||||
NoTime = 0;
|
||||
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 4:
|
||||
Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count++;
|
||||
|
||||
/* // Count time, max of 15s per sector (according to AMD)
|
||||
if (Time > 15*len/mtd->erasesize*HZ)
|
||||
{
|
||||
printk("mtd: Flash Erase Timed out\n");
|
||||
return -EIO;
|
||||
} */
|
||||
}
|
||||
|
||||
// Skip to the next chip if we used chip erase
|
||||
if (chip->length == chip->size)
|
||||
off = chip->size;
|
||||
else
|
||||
off += chip->sectorsize;
|
||||
|
||||
if (off >= chip->length)
|
||||
break;
|
||||
NoTime = 1;
|
||||
}
|
||||
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
priv->chips[J].length = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//printk("done\n");
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
return 0;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* This is the simple flash writing function. It writes to every byte, in
|
||||
sequence. It takes care of how to properly address the flash if
|
||||
the flash is interleved. It can only be used if all the chips in the
|
||||
array are identical!*/
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
/* Does IO to the currently selected chip. It takes the bank addressing
|
||||
base (which is divisible by the chip size) adds the necessary lower bits
|
||||
of addrshift (interleave index) and then adds the control register index. */
|
||||
#define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
unsigned long base;
|
||||
unsigned long off;
|
||||
size_t save_len = len;
|
||||
|
||||
if (start + len > mtd->size)
|
||||
return -EIO;
|
||||
|
||||
//printk("Here");
|
||||
|
||||
//printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
|
||||
while (len != 0)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips;
|
||||
unsigned long bank;
|
||||
unsigned long boffset;
|
||||
|
||||
// Compute the base of the flash.
|
||||
off = ((unsigned long)start) % (chip->size << chip->addrshift);
|
||||
base = start - off;
|
||||
|
||||
// Perform banked addressing translation.
|
||||
bank = base & (~(priv->bank_fill[0]-1));
|
||||
boffset = base & (priv->bank_fill[0]-1);
|
||||
bank = (bank/priv->bank_fill[0])*my_bank_size;
|
||||
base = bank + boffset;
|
||||
|
||||
// printk("Flasing %X %X %X\n",base,chip->size,len);
|
||||
// printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
|
||||
|
||||
// Loop over this page
|
||||
for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
|
||||
{
|
||||
unsigned char oldbyte = map_read8(map,base+off);
|
||||
unsigned char Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
if (oldbyte == *buf) {
|
||||
// printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
|
||||
continue;
|
||||
}
|
||||
if (((~oldbyte) & *buf) != 0)
|
||||
printk("mtd: warn: Trying to set a 0 to a 1\n");
|
||||
|
||||
// Write
|
||||
flwrite(0xAA,0x555);
|
||||
flwrite(0x55,0x2AA);
|
||||
flwrite(0xA0,0x555);
|
||||
map_write8(map,*buf,base + off);
|
||||
Last[0] = map_read8(map,base + off);
|
||||
Last[1] = map_read8(map,base + off);
|
||||
Last[2] = map_read8(map,base + off);
|
||||
|
||||
/* Wait for the flash to finish the operation. We store the last 4
|
||||
status bytes that have been retrieved so we can determine why
|
||||
it failed. The toggle bits keep toggling when there is a
|
||||
failure */
|
||||
for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
|
||||
Count < 10000; Count++)
|
||||
Last[Count % 4] = map_read8(map,base + off);
|
||||
if (Last[(Count - 1) % 4] != *buf)
|
||||
{
|
||||
jedec_flash_failed(Last[(Count - 3) % 4]);
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
*retlen = save_len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This is used to enhance the speed of the erase routine,
|
||||
when things are being done to multiple chips it is possible to
|
||||
parallize the operations, particularly full memory erases of multi
|
||||
chip memories benifit */
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len)
|
||||
{
|
||||
unsigned int I;
|
||||
|
||||
// Zero the records
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
priv->chips[I].start = priv->chips[I].length = 0;
|
||||
|
||||
// Intersect the region with each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long ByteStart;
|
||||
unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
|
||||
|
||||
// End is before this chip or the start is after it
|
||||
if (start+len < chip->offset ||
|
||||
ChipEndByte - (1 << chip->addrshift) < start)
|
||||
continue;
|
||||
|
||||
if (start < chip->offset)
|
||||
{
|
||||
ByteStart = chip->offset;
|
||||
chip->start = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
ByteStart = start;
|
||||
}
|
||||
|
||||
if (start + len >= ChipEndByte)
|
||||
chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
|
||||
else
|
||||
chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
}
|
||||
}
|
||||
|
||||
int __init jedec_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&jedec_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit jedec_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&jedec_chipdrv);
|
||||
}
|
||||
|
||||
module_init(jedec_init);
|
||||
module_exit(jedec_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
|
@ -1,601 +0,0 @@
|
||||
/*
|
||||
* MTD chip driver for pre-CFI Sharp flash chips
|
||||
*
|
||||
* Copyright 2000,2001 David A. Schleef <ds@schleef.org>
|
||||
* 2000,2001 Lineo, Inc.
|
||||
*
|
||||
* $Id: sharp.c,v 1.17 2005/11/29 14:28:28 gleixner Exp $
|
||||
*
|
||||
* Devices supported:
|
||||
* LH28F016SCT Symmetrical block flash memory, 2Mx8
|
||||
* LH28F008SCT Symmetrical block flash memory, 1Mx8
|
||||
*
|
||||
* Documentation:
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf
|
||||
* 016sctl9.pdf
|
||||
*
|
||||
* Limitations:
|
||||
* This driver only supports 4x1 arrangement of chips.
|
||||
* Not tested on anything but PowerPC.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define CMD_RESET 0xffffffff
|
||||
#define CMD_READ_ID 0x90909090
|
||||
#define CMD_READ_STATUS 0x70707070
|
||||
#define CMD_CLEAR_STATUS 0x50505050
|
||||
#define CMD_BLOCK_ERASE_1 0x20202020
|
||||
#define CMD_BLOCK_ERASE_2 0xd0d0d0d0
|
||||
#define CMD_BYTE_WRITE 0x40404040
|
||||
#define CMD_SUSPEND 0xb0b0b0b0
|
||||
#define CMD_RESUME 0xd0d0d0d0
|
||||
#define CMD_SET_BLOCK_LOCK_1 0x60606060
|
||||
#define CMD_SET_BLOCK_LOCK_2 0x01010101
|
||||
#define CMD_SET_MASTER_LOCK_1 0x60606060
|
||||
#define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0
|
||||
|
||||
#define SR_READY 0x80808080 // 1 = ready
|
||||
#define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended
|
||||
#define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits
|
||||
#define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit
|
||||
#define SR_VPP 0x08080808 // 1 = Vpp is low
|
||||
#define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended
|
||||
#define SR_PROTECT 0x02020202 // 1 = lock bit set
|
||||
#define SR_RESERVED 0x01010101
|
||||
|
||||
#define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT)
|
||||
|
||||
/* Configuration options */
|
||||
|
||||
#undef AUTOUNLOCK /* automatically unlocks blocks before erasing */
|
||||
|
||||
static struct mtd_info *sharp_probe(struct map_info *);
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd);
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static void sharp_sync(struct mtd_info *mtd);
|
||||
static int sharp_suspend(struct mtd_info *mtd);
|
||||
static void sharp_resume(struct mtd_info *mtd);
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum);
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#endif
|
||||
|
||||
|
||||
struct sharp_info{
|
||||
struct flchip *chip;
|
||||
int bogus;
|
||||
int chipshift;
|
||||
int numchips;
|
||||
struct flchip chips[1];
|
||||
};
|
||||
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static struct mtd_chip_driver sharp_chipdrv = {
|
||||
.probe = sharp_probe,
|
||||
.destroy = sharp_destroy,
|
||||
.name = "sharp",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
|
||||
static struct mtd_info *sharp_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd = NULL;
|
||||
struct sharp_info *sharp = NULL;
|
||||
int width;
|
||||
|
||||
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if(!mtd)
|
||||
return NULL;
|
||||
|
||||
sharp = kzalloc(sizeof(*sharp), GFP_KERNEL);
|
||||
if(!sharp) {
|
||||
kfree(mtd);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
width = sharp_probe_map(map,mtd);
|
||||
if(!width){
|
||||
kfree(mtd);
|
||||
kfree(sharp);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mtd->priv = map;
|
||||
mtd->type = MTD_NORFLASH;
|
||||
mtd->erase = sharp_erase;
|
||||
mtd->read = sharp_read;
|
||||
mtd->write = sharp_write;
|
||||
mtd->sync = sharp_sync;
|
||||
mtd->suspend = sharp_suspend;
|
||||
mtd->resume = sharp_resume;
|
||||
mtd->flags = MTD_CAP_NORFLASH;
|
||||
mtd->writesize = 1;
|
||||
mtd->name = map->name;
|
||||
|
||||
sharp->chipshift = 23;
|
||||
sharp->numchips = 1;
|
||||
sharp->chips[0].start = 0;
|
||||
sharp->chips[0].state = FL_READY;
|
||||
sharp->chips[0].mutex = &sharp->chips[0]._spinlock;
|
||||
sharp->chips[0].word_write_time = 0;
|
||||
init_waitqueue_head(&sharp->chips[0].wq);
|
||||
spin_lock_init(&sharp->chips[0]._spinlock);
|
||||
|
||||
map->fldrv = &sharp_chipdrv;
|
||||
map->fldrv_priv = sharp;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
static inline void sharp_send_cmd(struct map_info *map, unsigned long cmd, unsigned long adr)
|
||||
{
|
||||
map_word map_cmd;
|
||||
map_cmd.x[0] = cmd;
|
||||
map_write(map, map_cmd, adr);
|
||||
}
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd)
|
||||
{
|
||||
map_word tmp, read0, read4;
|
||||
unsigned long base = 0;
|
||||
int width = 4;
|
||||
|
||||
tmp = map_read(map, base+0);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_ID, base+0);
|
||||
|
||||
read0 = map_read(map, base+0);
|
||||
read4 = map_read(map, base+4);
|
||||
if(read0.x[0] == 0x89898989){
|
||||
printk("Looks like sharp flash\n");
|
||||
switch(read4.x[0]){
|
||||
case 0xaaaaaaaa:
|
||||
case 0xa0a0a0a0:
|
||||
/* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/
|
||||
/* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x200000 * width;
|
||||
return width;
|
||||
case 0xa6a6a6a6:
|
||||
/* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/
|
||||
/* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x100000 * width;
|
||||
return width;
|
||||
#if 0
|
||||
case 0x00000000: /* unknown */
|
||||
/* XX - LH28F004SCT 512kx8, 8 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x80000 * width;
|
||||
return width;
|
||||
#endif
|
||||
default:
|
||||
printk("Sort-of looks like sharp flash, 0x%08lx 0x%08lx\n",
|
||||
read0.x[0], read4.x[0]);
|
||||
}
|
||||
}else if((map_read(map, base+0).x[0] == CMD_READ_ID)){
|
||||
/* RAM, probably */
|
||||
printk("Looks like RAM\n");
|
||||
map_write(map, tmp, base+0);
|
||||
}else{
|
||||
printk("Doesn't look like sharp flash, 0x%08lx 0x%08lx\n",
|
||||
read0.x[0], read4.x[0]);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This function returns with the chip->mutex lock held. */
|
||||
static int sharp_wait(struct map_info *map, struct flchip *chip)
|
||||
{
|
||||
int i;
|
||||
map_word status;
|
||||
unsigned long timeo = jiffies + HZ;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
int adr = 0;
|
||||
|
||||
retry:
|
||||
spin_lock_bh(chip->mutex);
|
||||
|
||||
switch(chip->state){
|
||||
case FL_READY:
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
chip->state = FL_STATUS;
|
||||
case FL_STATUS:
|
||||
for(i=0;i<100;i++){
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY)==SR_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
printk("Waiting for chip\n");
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
if(signal_pending(current))
|
||||
return -EINTR;
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
goto retry;
|
||||
}
|
||||
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
|
||||
chip->state = FL_READY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void sharp_release(struct flchip *chip)
|
||||
{
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
}
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int chipnum;
|
||||
int ret = 0;
|
||||
int ofs = 0;
|
||||
|
||||
chipnum = (from >> sharp->chipshift);
|
||||
ofs = from & ((1 << sharp->chipshift)-1);
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
unsigned long thislen;
|
||||
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
|
||||
thislen = len;
|
||||
if(ofs+thislen >= (1<<sharp->chipshift))
|
||||
thislen = (1<<sharp->chipshift) - ofs;
|
||||
|
||||
ret = sharp_wait(map,&sharp->chips[chipnum]);
|
||||
if(ret<0)
|
||||
break;
|
||||
|
||||
map_copy_from(map,buf,ofs,thislen);
|
||||
|
||||
sharp_release(&sharp->chips[chipnum]);
|
||||
|
||||
*retlen += thislen;
|
||||
len -= thislen;
|
||||
buf += thislen;
|
||||
|
||||
ofs = 0;
|
||||
chipnum++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int ret = 0;
|
||||
int i,j;
|
||||
int chipnum;
|
||||
unsigned long ofs;
|
||||
union { u32 l; unsigned char uc[4]; } tbuf;
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
tbuf.l = 0xffffffff;
|
||||
chipnum = to >> sharp->chipshift;
|
||||
ofs = to & ((1<<sharp->chipshift)-1);
|
||||
|
||||
j=0;
|
||||
for(i=ofs&3;i<4 && len;i++){
|
||||
tbuf.uc[i] = *buf;
|
||||
buf++;
|
||||
to++;
|
||||
len--;
|
||||
j++;
|
||||
}
|
||||
sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l);
|
||||
if(ret<0)
|
||||
return ret;
|
||||
(*retlen)+=j;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum)
|
||||
{
|
||||
int ret;
|
||||
int timeo;
|
||||
int try;
|
||||
int i;
|
||||
map_word data, status;
|
||||
|
||||
status.x[0] = 0;
|
||||
ret = sharp_wait(map,chip);
|
||||
|
||||
for(try=0;try<10;try++){
|
||||
sharp_send_cmd(map, CMD_BYTE_WRITE, adr);
|
||||
/* cpu_to_le32 -> hack to fix the writel be->le conversion */
|
||||
data.x[0] = cpu_to_le32(datum);
|
||||
map_write(map, data, adr);
|
||||
|
||||
chip->state = FL_WRITING;
|
||||
|
||||
timeo = jiffies + (HZ/2);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
for(i=0;i<100;i++){
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY) == SR_READY)
|
||||
break;
|
||||
}
|
||||
if(i==100){
|
||||
printk("sharp: timed out writing\n");
|
||||
}
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS))
|
||||
break;
|
||||
|
||||
printk("sharp: error writing byte at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
}
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
unsigned long adr,len;
|
||||
int chipnum, ret=0;
|
||||
|
||||
//printk("sharp_erase()\n");
|
||||
if(instr->addr & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len + instr->addr > mtd->size)
|
||||
return -EINVAL;
|
||||
|
||||
chipnum = instr->addr >> sharp->chipshift;
|
||||
adr = instr->addr & ((1<<sharp->chipshift)-1);
|
||||
len = instr->len;
|
||||
|
||||
while(len){
|
||||
ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr);
|
||||
if(ret)return ret;
|
||||
|
||||
adr += mtd->erasesize;
|
||||
len -= mtd->erasesize;
|
||||
if(adr >> sharp->chipshift){
|
||||
adr = 0;
|
||||
chipnum++;
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
unsigned long timeo;
|
||||
map_word status;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
while(time_before(jiffies, timeo)){
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY)==SR_READY){
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule_timeout(1);
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_lock_bh(chip->mutex);
|
||||
|
||||
if (signal_pending(current)){
|
||||
ret = -EINTR;
|
||||
goto out;
|
||||
}
|
||||
|
||||
}
|
||||
ret = -ETIME;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
//int timeo;
|
||||
map_word status;
|
||||
//int i;
|
||||
|
||||
//printk("sharp_erase_oneblock()\n");
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
/* This seems like a good place to do an unlock */
|
||||
sharp_unlock_oneblock(map,chip,adr);
|
||||
#endif
|
||||
|
||||
sharp_send_cmd(map, CMD_BLOCK_ERASE_1, adr);
|
||||
sharp_send_cmd(map, CMD_BLOCK_ERASE_2, adr);
|
||||
|
||||
chip->state = FL_ERASING;
|
||||
|
||||
ret = sharp_do_wait_for_ready(map,chip,adr);
|
||||
if(ret<0)return ret;
|
||||
|
||||
sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS)){
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
printk("sharp: error erasing block at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int i;
|
||||
map_word status;
|
||||
|
||||
sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_1, adr);
|
||||
sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_2, adr);
|
||||
|
||||
udelay(100);
|
||||
|
||||
status = map_read(map, adr);
|
||||
printk("status=%08lx\n", status.x[0]);
|
||||
|
||||
for(i=0;i<1000;i++){
|
||||
//sharp_send_cmd(map, CMD_READ_STATUS, adr);
|
||||
status = map_read(map, adr);
|
||||
if((status.x[0] & SR_READY) == SR_READY)
|
||||
break;
|
||||
udelay(100);
|
||||
}
|
||||
if(i==1000){
|
||||
printk("sharp: timed out unlocking block\n");
|
||||
}
|
||||
|
||||
if(!(status.x[0] & SR_ERRORS)){
|
||||
sharp_send_cmd(map, CMD_RESET, adr);
|
||||
chip->state = FL_READY;
|
||||
return;
|
||||
}
|
||||
|
||||
printk("sharp: error unlocking block at addr=%08lx status=%08lx\n", adr, status.x[0]);
|
||||
sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void sharp_sync(struct mtd_info *mtd)
|
||||
{
|
||||
//printk("sharp_sync()\n");
|
||||
}
|
||||
|
||||
static int sharp_suspend(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_suspend()\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static void sharp_resume(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_resume()\n");
|
||||
|
||||
}
|
||||
|
||||
static void sharp_destroy(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_destroy()\n");
|
||||
|
||||
}
|
||||
|
||||
static int __init sharp_probe_init(void)
|
||||
{
|
||||
printk("MTD Sharp chip driver <ds@lineo.com>\n");
|
||||
|
||||
register_mtd_chip_driver(&sharp_chipdrv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit sharp_probe_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&sharp_chipdrv);
|
||||
}
|
||||
|
||||
module_init(sharp_probe_init);
|
||||
module_exit(sharp_probe_exit);
|
||||
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Schleef <ds@schleef.org>");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips");
|
@ -373,7 +373,7 @@ static inline void kill_final_newline(char *str)
|
||||
|
||||
#ifndef MODULE
|
||||
static int block2mtd_init_called = 0;
|
||||
static __initdata char block2mtd_paramline[80 + 12]; /* 80 for device, 12 for erase size */
|
||||
static char block2mtd_paramline[80 + 12]; /* 80 for device, 12 for erase size */
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -358,22 +358,6 @@ config MTD_CFI_FLAGADM
|
||||
Mapping for the Flaga digital module. If you don't have one, ignore
|
||||
this setting.
|
||||
|
||||
config MTD_BEECH
|
||||
tristate "CFI Flash device mapped on IBM 405LP Beech"
|
||||
depends on MTD_CFI && BEECH
|
||||
help
|
||||
This enables access routines for the flash chips on the IBM
|
||||
405LP Beech board. If you have one of these boards and would like
|
||||
to use the flash chips on it, say 'Y'.
|
||||
|
||||
config MTD_ARCTIC
|
||||
tristate "CFI Flash device mapped on IBM 405LP Arctic"
|
||||
depends on MTD_CFI && ARCTIC2
|
||||
help
|
||||
This enables access routines for the flash chips on the IBM 405LP
|
||||
Arctic board. If you have one of these boards and would like to
|
||||
use the flash chips on it, say 'Y'.
|
||||
|
||||
config MTD_WALNUT
|
||||
tristate "Flash device mapped on IBM 405GP Walnut"
|
||||
depends on MTD_JEDECPROBE && WALNUT
|
||||
|
@ -58,8 +58,6 @@ obj-$(CONFIG_MTD_NETtel) += nettel.o
|
||||
obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o
|
||||
obj-$(CONFIG_MTD_EBONY) += ebony.o
|
||||
obj-$(CONFIG_MTD_OCOTEA) += ocotea.o
|
||||
obj-$(CONFIG_MTD_BEECH) += beech-mtd.o
|
||||
obj-$(CONFIG_MTD_ARCTIC) += arctic-mtd.o
|
||||
obj-$(CONFIG_MTD_WALNUT) += walnut.o
|
||||
obj-$(CONFIG_MTD_H720X) += h720x-flash.o
|
||||
obj-$(CONFIG_MTD_SBC8240) += sbc8240.o
|
||||
|
@ -1,145 +0,0 @@
|
||||
/*
|
||||
* $Id: arctic-mtd.c,v 1.14 2005/11/07 11:14:26 gleixner Exp $
|
||||
*
|
||||
* drivers/mtd/maps/arctic-mtd.c MTD mappings and partition tables for
|
||||
* IBM 405LP Arctic boards.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*
|
||||
* Copyright (C) 2002, International Business Machines Corporation
|
||||
* All Rights Reserved.
|
||||
*
|
||||
* Bishop Brock
|
||||
* IBM Research, Austin Center for Low-Power Computing
|
||||
* bcbrock@us.ibm.com
|
||||
* March 2002
|
||||
*
|
||||
* modified for Arctic by,
|
||||
* David Gibson
|
||||
* IBM OzLabs, Canberra, Australia
|
||||
* <arctic@gibson.dropbear.id.au>
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
#include <asm/ibm4xx.h>
|
||||
|
||||
/*
|
||||
* 0 : 0xFE00 0000 - 0xFEFF FFFF : Filesystem 1 (16MiB)
|
||||
* 1 : 0xFF00 0000 - 0xFF4F FFFF : kernel (5.12MiB)
|
||||
* 2 : 0xFF50 0000 - 0xFFF5 FFFF : Filesystem 2 (10.624MiB) (if non-XIP)
|
||||
* 3 : 0xFFF6 0000 - 0xFFFF FFFF : PIBS Firmware (640KiB)
|
||||
*/
|
||||
|
||||
#define FFS1_SIZE 0x01000000 /* 16MiB */
|
||||
#define KERNEL_SIZE 0x00500000 /* 5.12MiB */
|
||||
#define FFS2_SIZE 0x00a60000 /* 10.624MiB */
|
||||
#define FIRMWARE_SIZE 0x000a0000 /* 640KiB */
|
||||
|
||||
|
||||
#define NAME "Arctic Linux Flash"
|
||||
#define PADDR SUBZERO_BOOTFLASH_PADDR
|
||||
#define BUSWIDTH 2
|
||||
#define SIZE SUBZERO_BOOTFLASH_SIZE
|
||||
#define PARTITIONS 4
|
||||
|
||||
/* Flash memories on these boards are memory resources, accessed big-endian. */
|
||||
|
||||
{
|
||||
/* do nothing for now */
|
||||
}
|
||||
|
||||
static struct map_info arctic_mtd_map = {
|
||||
.name = NAME,
|
||||
.size = SIZE,
|
||||
.bankwidth = BUSWIDTH,
|
||||
.phys = PADDR,
|
||||
};
|
||||
|
||||
static struct mtd_info *arctic_mtd;
|
||||
|
||||
static struct mtd_partition arctic_partitions[PARTITIONS] = {
|
||||
{ .name = "Filesystem",
|
||||
.size = FFS1_SIZE,
|
||||
.offset = 0,},
|
||||
{ .name = "Kernel",
|
||||
.size = KERNEL_SIZE,
|
||||
.offset = FFS1_SIZE,},
|
||||
{ .name = "Filesystem",
|
||||
.size = FFS2_SIZE,
|
||||
.offset = FFS1_SIZE + KERNEL_SIZE,},
|
||||
{ .name = "Firmware",
|
||||
.size = FIRMWARE_SIZE,
|
||||
.offset = SUBZERO_BOOTFLASH_SIZE - FIRMWARE_SIZE,},
|
||||
};
|
||||
|
||||
static int __init
|
||||
init_arctic_mtd(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
printk("%s: 0x%08x at 0x%08x\n", NAME, SIZE, PADDR);
|
||||
|
||||
arctic_mtd_map.virt = ioremap(PADDR, SIZE);
|
||||
|
||||
if (!arctic_mtd_map.virt) {
|
||||
printk("%s: failed to ioremap 0x%x\n", NAME, PADDR);
|
||||
return -EIO;
|
||||
}
|
||||
simple_map_init(&arctic_mtd_map);
|
||||
|
||||
printk("%s: probing %d-bit flash bus\n", NAME, BUSWIDTH * 8);
|
||||
arctic_mtd = do_map_probe("cfi_probe", &arctic_mtd_map);
|
||||
|
||||
if (!arctic_mtd) {
|
||||
iounmap(arctic_mtd_map.virt);
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
arctic_mtd->owner = THIS_MODULE;
|
||||
|
||||
err = add_mtd_partitions(arctic_mtd, arctic_partitions, PARTITIONS);
|
||||
if (err) {
|
||||
printk("%s: add_mtd_partitions failed\n", NAME);
|
||||
iounmap(arctic_mtd_map.virt);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit
|
||||
cleanup_arctic_mtd(void)
|
||||
{
|
||||
if (arctic_mtd) {
|
||||
del_mtd_partitions(arctic_mtd);
|
||||
map_destroy(arctic_mtd);
|
||||
iounmap((void *) arctic_mtd_map.virt);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(init_arctic_mtd);
|
||||
module_exit(cleanup_arctic_mtd);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Gibson <arctic@gibson.dropbear.id.au>");
|
||||
MODULE_DESCRIPTION("MTD map and partitions for IBM 405LP Arctic boards");
|
@ -1,122 +0,0 @@
|
||||
/*
|
||||
* $Id: beech-mtd.c,v 1.11 2005/11/07 11:14:26 gleixner Exp $
|
||||
*
|
||||
* drivers/mtd/maps/beech-mtd.c MTD mappings and partition tables for
|
||||
* IBM 405LP Beech boards.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*
|
||||
* Copyright (C) 2002, International Business Machines Corporation
|
||||
* All Rights Reserved.
|
||||
*
|
||||
* Bishop Brock
|
||||
* IBM Research, Austin Center for Low-Power Computing
|
||||
* bcbrock@us.ibm.com
|
||||
* March 2002
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
#include <asm/ibm4xx.h>
|
||||
|
||||
#define NAME "Beech Linux Flash"
|
||||
#define PADDR BEECH_BIGFLASH_PADDR
|
||||
#define SIZE BEECH_BIGFLASH_SIZE
|
||||
#define BUSWIDTH 1
|
||||
|
||||
/* Flash memories on these boards are memory resources, accessed big-endian. */
|
||||
|
||||
|
||||
static struct map_info beech_mtd_map = {
|
||||
.name = NAME,
|
||||
.size = SIZE,
|
||||
.bankwidth = BUSWIDTH,
|
||||
.phys = PADDR
|
||||
};
|
||||
|
||||
static struct mtd_info *beech_mtd;
|
||||
|
||||
static struct mtd_partition beech_partitions[2] = {
|
||||
{
|
||||
.name = "Linux Kernel",
|
||||
.size = BEECH_KERNEL_SIZE,
|
||||
.offset = BEECH_KERNEL_OFFSET
|
||||
}, {
|
||||
.name = "Free Area",
|
||||
.size = BEECH_FREE_AREA_SIZE,
|
||||
.offset = BEECH_FREE_AREA_OFFSET
|
||||
}
|
||||
};
|
||||
|
||||
static int __init
|
||||
init_beech_mtd(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
printk("%s: 0x%08x at 0x%08x\n", NAME, SIZE, PADDR);
|
||||
|
||||
beech_mtd_map.virt = ioremap(PADDR, SIZE);
|
||||
|
||||
if (!beech_mtd_map.virt) {
|
||||
printk("%s: failed to ioremap 0x%x\n", NAME, PADDR);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
simple_map_init(&beech_mtd_map);
|
||||
|
||||
printk("%s: probing %d-bit flash bus\n", NAME, BUSWIDTH * 8);
|
||||
beech_mtd = do_map_probe("cfi_probe", &beech_mtd_map);
|
||||
|
||||
if (!beech_mtd) {
|
||||
iounmap(beech_mtd_map.virt);
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
beech_mtd->owner = THIS_MODULE;
|
||||
|
||||
err = add_mtd_partitions(beech_mtd, beech_partitions, 2);
|
||||
if (err) {
|
||||
printk("%s: add_mtd_partitions failed\n", NAME);
|
||||
iounmap(beech_mtd_map.virt);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit
|
||||
cleanup_beech_mtd(void)
|
||||
{
|
||||
if (beech_mtd) {
|
||||
del_mtd_partitions(beech_mtd);
|
||||
map_destroy(beech_mtd);
|
||||
iounmap((void *) beech_mtd_map.virt);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(init_beech_mtd);
|
||||
module_exit(cleanup_beech_mtd);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Bishop Brock <bcbrock@us.ibm.com>");
|
||||
MODULE_DESCRIPTION("MTD map and partitions for IBM 405LP Beech boards");
|
@ -186,7 +186,7 @@ static int __devinit of_physmap_probe(struct of_device *dev, const struct of_dev
|
||||
else {
|
||||
if (strcmp(of_probe, "ROM"))
|
||||
dev_dbg(&dev->dev, "map_probe: don't know probe type "
|
||||
"'%s', mapping as rom\n");
|
||||
"'%s', mapping as rom\n", of_probe);
|
||||
info->mtd = do_map_probe("mtd_rom", &info->map);
|
||||
}
|
||||
if (info->mtd == NULL) {
|
||||
|
@ -347,7 +347,6 @@ int add_mtd_partitions(struct mtd_info *master,
|
||||
slave->mtd.subpage_sft = master->subpage_sft;
|
||||
|
||||
slave->mtd.name = parts[i].name;
|
||||
slave->mtd.bank_size = master->bank_size;
|
||||
slave->mtd.owner = master->owner;
|
||||
|
||||
slave->mtd.read = part_read;
|
||||
|
@ -232,11 +232,13 @@ config MTD_NAND_BASLER_EXCITE
|
||||
will be named "excite_nandflash.ko".
|
||||
|
||||
config MTD_NAND_CAFE
|
||||
tristate "NAND support for OLPC CAFÉ chip"
|
||||
depends on PCI
|
||||
help
|
||||
Use NAND flash attached to the CAFÉ chip designed for the $100
|
||||
laptop.
|
||||
tristate "NAND support for OLPC CAFÉ chip"
|
||||
depends on PCI
|
||||
select REED_SOLOMON
|
||||
select REED_SOLOMON_DEC16
|
||||
help
|
||||
Use NAND flash attached to the CAFÉ chip designed for the $100
|
||||
laptop.
|
||||
|
||||
config MTD_NAND_CS553X
|
||||
tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
|
||||
@ -270,4 +272,13 @@ config MTD_NAND_NANDSIM
|
||||
The simulator may simulate various NAND flash chips for the
|
||||
MTD nand layer.
|
||||
|
||||
config MTD_NAND_PLATFORM
|
||||
tristate "Support for generic platform NAND driver"
|
||||
depends on MTD_NAND
|
||||
help
|
||||
This implements a generic NAND driver for on-SOC platform
|
||||
devices. You will need to provide platform-specific functions
|
||||
via platform_data.
|
||||
|
||||
|
||||
endif # MTD_NAND
|
||||
|
@ -26,6 +26,6 @@ obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
|
||||
obj-$(CONFIG_MTD_NAND_AT91) += at91_nand.o
|
||||
obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
|
||||
obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
|
||||
obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
|
||||
|
||||
nand-objs := nand_base.o nand_bbt.o
|
||||
cafe_nand-objs := cafe.o cafe_ecc.o
|
||||
|
@ -82,6 +82,10 @@ static void at91_nand_disable(struct at91_nand_host *host)
|
||||
at91_set_gpio_value(host->board->enable_pin, 1);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MTD_PARTITIONS
|
||||
const char *part_probes[] = { "cmdlinepart", NULL };
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Probe for the NAND device.
|
||||
*/
|
||||
@ -151,6 +155,12 @@ static int __init at91_nand_probe(struct platform_device *pdev)
|
||||
#ifdef CONFIG_MTD_PARTITIONS
|
||||
if (host->board->partition_info)
|
||||
partitions = host->board->partition_info(mtd->size, &num_partitions);
|
||||
#ifdef CONFIG_MTD_CMDLINE_PARTS
|
||||
else {
|
||||
mtd->name = "at91_nand";
|
||||
num_partitions = parse_mtd_partitions(mtd, part_probes, &partitions, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((!partitions) || (num_partitions == 0)) {
|
||||
printk(KERN_ERR "at91_nand: No parititions defined, or unsupported device.\n");
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -11,6 +11,7 @@
|
||||
#undef DEBUG
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/rslib.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/interrupt.h>
|
||||
@ -46,13 +47,14 @@
|
||||
#define CAFE_GLOBAL_IRQ_MASK 0x300c
|
||||
#define CAFE_NAND_RESET 0x3034
|
||||
|
||||
int cafe_correct_ecc(unsigned char *buf,
|
||||
unsigned short *chk_syndrome_list);
|
||||
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
|
||||
#define CTRL1_CHIPSELECT (1<<19)
|
||||
|
||||
struct cafe_priv {
|
||||
struct nand_chip nand;
|
||||
struct pci_dev *pdev;
|
||||
void __iomem *mmio;
|
||||
struct rs_control *rs;
|
||||
uint32_t ctl1;
|
||||
uint32_t ctl2;
|
||||
int datalen;
|
||||
@ -195,8 +197,8 @@ static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
|
||||
|
||||
cafe->data_pos = cafe->datalen = 0;
|
||||
|
||||
/* Set command valid bit */
|
||||
ctl1 = 0x80000000 | command;
|
||||
/* Set command valid bit, mask in the chip select bit */
|
||||
ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
|
||||
|
||||
/* Set RD or WR bits as appropriate */
|
||||
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
|
||||
@ -309,8 +311,16 @@ static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
|
||||
|
||||
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
|
||||
{
|
||||
//struct cafe_priv *cafe = mtd->priv;
|
||||
// cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
|
||||
struct cafe_priv *cafe = mtd->priv;
|
||||
|
||||
cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
|
||||
|
||||
/* Mask the appropriate bit into the stored value of ctl1
|
||||
which will be used by cafe_nand_cmdfunc() */
|
||||
if (chipnr)
|
||||
cafe->ctl1 |= CTRL1_CHIPSELECT;
|
||||
else
|
||||
cafe->ctl1 &= ~CTRL1_CHIPSELECT;
|
||||
}
|
||||
|
||||
static int cafe_nand_interrupt(int irq, void *id)
|
||||
@ -374,28 +384,66 @@ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||||
|
||||
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
|
||||
unsigned short syn[8];
|
||||
int i;
|
||||
unsigned short syn[8], pat[4];
|
||||
int pos[4];
|
||||
u8 *oob = chip->oob_poi;
|
||||
int i, n;
|
||||
|
||||
for (i=0; i<8; i+=2) {
|
||||
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
|
||||
syn[i] = tmp & 0xfff;
|
||||
syn[i+1] = (tmp >> 16) & 0xfff;
|
||||
syn[i] = cafe->rs->index_of[tmp & 0xfff];
|
||||
syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
|
||||
}
|
||||
|
||||
if ((i = cafe_correct_ecc(buf, syn)) < 0) {
|
||||
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
|
||||
pat);
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
int p = pos[i];
|
||||
|
||||
/* The 12-bit symbols are mapped to bytes here */
|
||||
|
||||
if (p > 1374) {
|
||||
/* out of range */
|
||||
n = -1374;
|
||||
} else if (p == 0) {
|
||||
/* high four bits do not correspond to data */
|
||||
if (pat[i] > 0xff)
|
||||
n = -2048;
|
||||
else
|
||||
buf[0] ^= pat[i];
|
||||
} else if (p == 1365) {
|
||||
buf[2047] ^= pat[i] >> 4;
|
||||
oob[0] ^= pat[i] << 4;
|
||||
} else if (p > 1365) {
|
||||
if ((p & 1) == 1) {
|
||||
oob[3*p/2 - 2048] ^= pat[i] >> 4;
|
||||
oob[3*p/2 - 2047] ^= pat[i] << 4;
|
||||
} else {
|
||||
oob[3*p/2 - 2049] ^= pat[i] >> 8;
|
||||
oob[3*p/2 - 2048] ^= pat[i];
|
||||
}
|
||||
} else if ((p & 1) == 1) {
|
||||
buf[3*p/2] ^= pat[i] >> 4;
|
||||
buf[3*p/2 + 1] ^= pat[i] << 4;
|
||||
} else {
|
||||
buf[3*p/2 - 1] ^= pat[i] >> 8;
|
||||
buf[3*p/2] ^= pat[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (n < 0) {
|
||||
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
|
||||
cafe_readl(cafe, NAND_ADDR2) * 2048);
|
||||
for (i=0; i< 0x5c; i+=4)
|
||||
for (i = 0; i < 0x5c; i += 4)
|
||||
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
||||
mtd->ecc_stats.failed++;
|
||||
} else {
|
||||
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
|
||||
mtd->ecc_stats.corrected += i;
|
||||
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
|
||||
mtd->ecc_stats.corrected += n;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -416,7 +464,7 @@ static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
|
||||
|
||||
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
|
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||||
.offs = 14,
|
||||
.len = 4,
|
||||
.veroffs = 18,
|
||||
@ -426,7 +474,7 @@ static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
|
||||
|
||||
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
|
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||||
.offs = 14,
|
||||
.len = 4,
|
||||
.veroffs = 18,
|
||||
@ -442,7 +490,7 @@ static struct nand_ecclayout cafe_oobinfo_512 = {
|
||||
|
||||
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
|
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||||
.offs = 14,
|
||||
.len = 1,
|
||||
.veroffs = 15,
|
||||
@ -452,7 +500,7 @@ static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
|
||||
|
||||
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
|
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
||||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||||
.offs = 14,
|
||||
.len = 1,
|
||||
.veroffs = 15,
|
||||
@ -525,6 +573,48 @@ static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* F_2[X]/(X**6+X+1) */
|
||||
static unsigned short __devinit gf64_mul(u8 a, u8 b)
|
||||
{
|
||||
u8 c;
|
||||
unsigned int i;
|
||||
|
||||
c = 0;
|
||||
for (i = 0; i < 6; i++) {
|
||||
if (a & 1)
|
||||
c ^= b;
|
||||
a >>= 1;
|
||||
b <<= 1;
|
||||
if ((b & 0x40) != 0)
|
||||
b ^= 0x43;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
|
||||
static u16 __devinit gf4096_mul(u16 a, u16 b)
|
||||
{
|
||||
u8 ah, al, bh, bl, ch, cl;
|
||||
|
||||
ah = a >> 6;
|
||||
al = a & 0x3f;
|
||||
bh = b >> 6;
|
||||
bl = b & 0x3f;
|
||||
|
||||
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
|
||||
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
|
||||
|
||||
return (ch << 6) ^ cl;
|
||||
}
|
||||
|
||||
static int __devinit cafe_mul(int x)
|
||||
{
|
||||
if (x == 0)
|
||||
return 1;
|
||||
return gf4096_mul(x, 0xe01);
|
||||
}
|
||||
|
||||
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
|
||||
const struct pci_device_id *ent)
|
||||
{
|
||||
@ -564,6 +654,12 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev,
|
||||
}
|
||||
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
|
||||
|
||||
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
|
||||
if (!cafe->rs) {
|
||||
err = -ENOMEM;
|
||||
goto out_ior;
|
||||
}
|
||||
|
||||
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
|
||||
cafe->nand.dev_ready = cafe_device_ready;
|
||||
cafe->nand.read_byte = cafe_read_byte;
|
||||
@ -646,7 +742,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev,
|
||||
cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
|
||||
|
||||
/* Scan to find existence of the device */
|
||||
if (nand_scan_ident(mtd, 1)) {
|
||||
if (nand_scan_ident(mtd, 2)) {
|
||||
err = -ENXIO;
|
||||
goto out_irq;
|
||||
}
|
||||
@ -713,6 +809,7 @@ static void __devexit cafe_nand_remove(struct pci_dev *pdev)
|
||||
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
|
||||
free_irq(pdev->irq, mtd);
|
||||
nand_release(mtd);
|
||||
free_rs(cafe->rs);
|
||||
pci_iounmap(pdev, cafe->mmio);
|
||||
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
|
||||
kfree(mtd);
|
@ -303,28 +303,27 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
||||
struct nand_chip *chip = mtd->priv;
|
||||
u16 bad;
|
||||
|
||||
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
|
||||
|
||||
if (getchip) {
|
||||
page = (int)(ofs >> chip->page_shift);
|
||||
chipnr = (int)(ofs >> chip->chip_shift);
|
||||
|
||||
nand_get_device(chip, mtd, FL_READING);
|
||||
|
||||
/* Select the NAND device */
|
||||
chip->select_chip(mtd, chipnr);
|
||||
} else
|
||||
page = (int)(ofs >> chip->page_shift);
|
||||
}
|
||||
|
||||
if (chip->options & NAND_BUSWIDTH_16) {
|
||||
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
|
||||
page & chip->pagemask);
|
||||
page);
|
||||
bad = cpu_to_le16(chip->read_word(mtd));
|
||||
if (chip->badblockpos & 0x1)
|
||||
bad >>= 8;
|
||||
if ((bad & 0xFF) != 0xff)
|
||||
res = 1;
|
||||
} else {
|
||||
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
|
||||
page & chip->pagemask);
|
||||
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
|
||||
if (chip->read_byte(mtd) != 0xff)
|
||||
res = 1;
|
||||
}
|
||||
|
150
drivers/mtd/nand/plat_nand.c
Normal file
150
drivers/mtd/nand/plat_nand.c
Normal file
@ -0,0 +1,150 @@
|
||||
/*
|
||||
* Generic NAND driver
|
||||
*
|
||||
* Author: Vitaly Wool <vitalywool@gmail.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/io.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
struct plat_nand_data {
|
||||
struct nand_chip chip;
|
||||
struct mtd_info mtd;
|
||||
void __iomem *io_base;
|
||||
#ifdef CONFIG_MTD_PARTITIONS
|
||||
int nr_parts;
|
||||
struct mtd_partition *parts;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* Probe for the NAND device.
|
||||
*/
|
||||
static int __init plat_nand_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct platform_nand_data *pdata = pdev->dev.platform_data;
|
||||
struct plat_nand_data *data;
|
||||
int res = 0;
|
||||
|
||||
/* Allocate memory for the device structure (and zero it) */
|
||||
data = kzalloc(sizeof(struct plat_nand_data), GFP_KERNEL);
|
||||
if (!data) {
|
||||
dev_err(&pdev->dev, "failed to allocate device structure.\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
data->io_base = ioremap(pdev->resource[0].start,
|
||||
pdev->resource[0].end - pdev->resource[0].start + 1);
|
||||
if (data->io_base == NULL) {
|
||||
dev_err(&pdev->dev, "ioremap failed\n");
|
||||
kfree(data);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
data->chip.priv = &data;
|
||||
data->mtd.priv = &data->chip;
|
||||
data->mtd.owner = THIS_MODULE;
|
||||
|
||||
data->chip.IO_ADDR_R = data->io_base;
|
||||
data->chip.IO_ADDR_W = data->io_base;
|
||||
data->chip.cmd_ctrl = pdata->ctrl.cmd_ctrl;
|
||||
data->chip.dev_ready = pdata->ctrl.dev_ready;
|
||||
data->chip.select_chip = pdata->ctrl.select_chip;
|
||||
data->chip.chip_delay = pdata->chip.chip_delay;
|
||||
data->chip.options |= pdata->chip.options;
|
||||
|
||||
data->chip.ecc.hwctl = pdata->ctrl.hwcontrol;
|
||||
data->chip.ecc.layout = pdata->chip.ecclayout;
|
||||
data->chip.ecc.mode = NAND_ECC_SOFT;
|
||||
|
||||
platform_set_drvdata(pdev, data);
|
||||
|
||||
/* Scan to find existance of the device */
|
||||
if (nand_scan(&data->mtd, 1)) {
|
||||
res = -ENXIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MTD_PARTITIONS
|
||||
if (pdata->chip.part_probe_types) {
|
||||
res = parse_mtd_partitions(&data->mtd,
|
||||
pdata->chip.part_probe_types,
|
||||
&data->parts, 0);
|
||||
if (res > 0) {
|
||||
add_mtd_partitions(&data->mtd, data->parts, res);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (pdata->chip.partitions) {
|
||||
data->parts = pdata->chip.partitions;
|
||||
res = add_mtd_partitions(&data->mtd, data->parts,
|
||||
pdata->chip.nr_partitions);
|
||||
} else
|
||||
#endif
|
||||
res = add_mtd_device(&data->mtd);
|
||||
|
||||
if (!res)
|
||||
return res;
|
||||
|
||||
nand_release(&data->mtd);
|
||||
out:
|
||||
platform_set_drvdata(pdev, NULL);
|
||||
iounmap(data->io_base);
|
||||
kfree(data);
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove a NAND device.
|
||||
*/
|
||||
static int __devexit plat_nand_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct plat_nand_data *data = platform_get_drvdata(pdev);
|
||||
struct platform_nand_data *pdata = pdev->dev.platform_data;
|
||||
|
||||
nand_release(&data->mtd);
|
||||
#ifdef CONFIG_MTD_PARTITIONS
|
||||
if (data->parts && data->parts != pdata->chip.partitions)
|
||||
kfree(data->parts);
|
||||
#endif
|
||||
iounmap(data->io_base);
|
||||
kfree(data);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct platform_driver plat_nand_driver = {
|
||||
.probe = plat_nand_probe,
|
||||
.remove = plat_nand_remove,
|
||||
.driver = {
|
||||
.name = "gen_nand",
|
||||
.owner = THIS_MODULE,
|
||||
},
|
||||
};
|
||||
|
||||
static int __init plat_nand_init(void)
|
||||
{
|
||||
return platform_driver_register(&plat_nand_driver);
|
||||
}
|
||||
|
||||
static void __exit plat_nand_exit(void)
|
||||
{
|
||||
platform_driver_unregister(&plat_nand_driver);
|
||||
}
|
||||
|
||||
module_init(plat_nand_init);
|
||||
module_exit(plat_nand_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Vitaly Wool");
|
||||
MODULE_DESCRIPTION("Simple generic NAND driver");
|
@ -1,2 +0,0 @@
|
||||
#define BIT_DIVIDER_MIPS 1043
|
||||
static int bits_mips[8] = { 277,249,290,267,229,341,212,241}; /* mips32 */
|
@ -219,9 +219,9 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
struct jffs2_tmp_dnode_info *tn)
|
||||
{
|
||||
uint32_t fn_end = tn->fn->ofs + tn->fn->size;
|
||||
struct jffs2_tmp_dnode_info *insert_point = NULL, *this;
|
||||
struct jffs2_tmp_dnode_info *this;
|
||||
|
||||
dbg_readinode("insert fragment %#04x-%#04x, ver %u\n", tn->fn->ofs, fn_end, tn->version);
|
||||
dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
|
||||
|
||||
/* If a node has zero dsize, we only have to keep if it if it might be the
|
||||
node with highest version -- i.e. the one which will end up as f->metadata.
|
||||
@ -240,24 +240,17 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
|
||||
/* Find the earliest node which _may_ be relevant to this one */
|
||||
this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
|
||||
if (!this) {
|
||||
/* First addition to empty tree. $DEITY how I love the easy cases */
|
||||
rb_link_node(&tn->rb, NULL, &rii->tn_root.rb_node);
|
||||
rb_insert_color(&tn->rb, &rii->tn_root);
|
||||
dbg_readinode("keep new frag\n");
|
||||
return 0;
|
||||
if (this) {
|
||||
/* If the node is coincident with another at a lower address,
|
||||
back up until the other node is found. It may be relevant */
|
||||
while (this->overlapped)
|
||||
this = tn_prev(this);
|
||||
|
||||
/* First node should never be marked overlapped */
|
||||
BUG_ON(!this);
|
||||
dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
|
||||
}
|
||||
|
||||
/* If we add a new node it'll be somewhere under here. */
|
||||
insert_point = this;
|
||||
|
||||
/* If the node is coincident with another at a lower address,
|
||||
back up until the other node is found. It may be relevant */
|
||||
while (tn->overlapped)
|
||||
tn = tn_prev(tn);
|
||||
|
||||
dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
|
||||
|
||||
while (this) {
|
||||
if (this->fn->ofs > fn_end)
|
||||
break;
|
||||
@ -274,11 +267,10 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
return 0;
|
||||
} else {
|
||||
/* Who cares if the new one is good; keep it for now anyway. */
|
||||
rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
|
||||
/* Same overlapping from in front and behind */
|
||||
tn->overlapped = this->overlapped;
|
||||
jffs2_kill_tn(c, this);
|
||||
dbg_readinode("Like new node. Throw away old\n");
|
||||
rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
|
||||
jffs2_kill_tn(c, this);
|
||||
/* Same overlapping from in front and behind */
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
@ -291,13 +283,8 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
jffs2_kill_tn(c, tn);
|
||||
return 0;
|
||||
}
|
||||
/* ... and is good. Kill 'this'... */
|
||||
rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
|
||||
tn->overlapped = this->overlapped;
|
||||
jffs2_kill_tn(c, this);
|
||||
/* ... and any subsequent nodes which are also overlapped */
|
||||
this = tn_next(tn);
|
||||
while (this && this->fn->ofs + this->fn->size < fn_end) {
|
||||
/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
|
||||
while (this && this->fn->ofs + this->fn->size <= fn_end) {
|
||||
struct jffs2_tmp_dnode_info *next = tn_next(this);
|
||||
if (this->version < tn->version) {
|
||||
tn_erase(this, &rii->tn_root);
|
||||
@ -308,8 +295,8 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
}
|
||||
this = next;
|
||||
}
|
||||
dbg_readinode("Done inserting new\n");
|
||||
return 0;
|
||||
dbg_readinode("Done killing overlapped nodes\n");
|
||||
continue;
|
||||
}
|
||||
if (this->version > tn->version &&
|
||||
this->fn->ofs <= tn->fn->ofs &&
|
||||
@ -321,29 +308,21 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
return 0;
|
||||
}
|
||||
/* ... but 'this' was bad. Replace it... */
|
||||
rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
|
||||
dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
|
||||
tn_erase(this, &rii->tn_root);
|
||||
jffs2_kill_tn(c, this);
|
||||
return 0;
|
||||
break;
|
||||
}
|
||||
/* We want to be inserted under the last node which is
|
||||
either at a lower offset _or_ has a smaller range */
|
||||
if (this->fn->ofs < tn->fn->ofs ||
|
||||
(this->fn->ofs == tn->fn->ofs &&
|
||||
this->fn->size <= tn->fn->size))
|
||||
insert_point = this;
|
||||
|
||||
this = tn_next(this);
|
||||
}
|
||||
dbg_readinode("insert_point %p, ver %d, 0x%x-0x%x, ov %d\n",
|
||||
insert_point, insert_point->version, insert_point->fn->ofs,
|
||||
insert_point->fn->ofs+insert_point->fn->size,
|
||||
insert_point->overlapped);
|
||||
|
||||
/* We neither completely obsoleted nor were completely
|
||||
obsoleted by an earlier node. Insert under insert_point */
|
||||
obsoleted by an earlier node. Insert into the tree */
|
||||
{
|
||||
struct rb_node *parent = &insert_point->rb;
|
||||
struct rb_node **link = &parent;
|
||||
struct rb_node *parent;
|
||||
struct rb_node **link = &rii->tn_root.rb_node;
|
||||
struct jffs2_tmp_dnode_info *insert_point = NULL;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
@ -359,6 +338,7 @@ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
||||
rb_link_node(&tn->rb, &insert_point->rb, link);
|
||||
rb_insert_color(&tn->rb, &rii->tn_root);
|
||||
}
|
||||
|
||||
/* If there's anything behind that overlaps us, note it */
|
||||
this = tn_prev(tn);
|
||||
if (this) {
|
||||
@ -457,7 +437,7 @@ static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
|
||||
this = tn_last(&rii->tn_root);
|
||||
while (this) {
|
||||
dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
|
||||
this->fn->ofs+this->fn->size, this->overlapped);
|
||||
this->fn->ofs+this->fn->size, this->overlapped);
|
||||
this = tn_prev(this);
|
||||
}
|
||||
#endif
|
||||
@ -483,7 +463,7 @@ static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
|
||||
vers_next = tn_prev(this);
|
||||
eat_last(&ver_root, &this->rb);
|
||||
if (check_tn_node(c, this)) {
|
||||
dbg_readinode("node ver %x, 0x%x-0x%x failed CRC\n",
|
||||
dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
|
||||
this->version, this->fn->ofs,
|
||||
this->fn->ofs+this->fn->size);
|
||||
jffs2_kill_tn(c, this);
|
||||
@ -496,7 +476,7 @@ static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
|
||||
high_ver = this->version;
|
||||
rii->latest_ref = this->fn->raw;
|
||||
}
|
||||
dbg_readinode("Add %p (v %x, 0x%x-0x%x, ov %d) to fragtree\n",
|
||||
dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
|
||||
this, this->version, this->fn->ofs,
|
||||
this->fn->ofs+this->fn->size, this->overlapped);
|
||||
|
||||
@ -850,7 +830,7 @@ static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
|
||||
return ret;
|
||||
}
|
||||
#ifdef JFFS2_DBG_READINODE_MESSAGES
|
||||
dbg_readinode("After adding ver %d:\n", tn->version);
|
||||
dbg_readinode("After adding ver %d:\n", je32_to_cpu(rd->version));
|
||||
tn = tn_first(&rii->tn_root);
|
||||
while (tn) {
|
||||
dbg_readinode("%p: v %d r 0x%x-0x%x ov %d\n",
|
||||
|
@ -637,7 +637,10 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
|
||||
|
||||
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
||||
/* adjust write buffer offset, else we get a non contiguous write bug */
|
||||
c->wbuf_ofs += c->wbuf_pagesize;
|
||||
if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize))
|
||||
c->wbuf_ofs += c->wbuf_pagesize;
|
||||
else
|
||||
c->wbuf_ofs = 0xffffffff;
|
||||
c->wbuf_len = 0;
|
||||
return 0;
|
||||
}
|
||||
|
@ -9,10 +9,6 @@
|
||||
#ifndef __MTD_MTD_H__
|
||||
#define __MTD_MTD_H__
|
||||
|
||||
#ifndef __KERNEL__
|
||||
#error This is a kernel header. Perhaps include mtd-user.h instead?
|
||||
#endif
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/uio.h>
|
||||
@ -137,9 +133,6 @@ struct mtd_info {
|
||||
int numeraseregions;
|
||||
struct mtd_erase_region_info *eraseregions;
|
||||
|
||||
/* This really shouldn't be here. It can go away in 2.5 */
|
||||
u_int32_t bank_size;
|
||||
|
||||
int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
|
||||
|
||||
/* This stuff for eXecute-In-Place */
|
||||
|
@ -560,6 +560,7 @@ extern int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
* @chip_delay: R/B delay value in us
|
||||
* @options: Option flags, e.g. 16bit buswidth
|
||||
* @ecclayout: ecc layout info structure
|
||||
* @part_probe_types: NULL-terminated array of probe types
|
||||
* @priv: hardware controller specific settings
|
||||
*/
|
||||
struct platform_nand_chip {
|
||||
@ -570,6 +571,7 @@ struct platform_nand_chip {
|
||||
struct nand_ecclayout *ecclayout;
|
||||
int chip_delay;
|
||||
unsigned int options;
|
||||
const char **part_probe_types;
|
||||
void *priv;
|
||||
};
|
||||
|
||||
@ -578,6 +580,8 @@ struct platform_nand_chip {
|
||||
* @hwcontrol: platform specific hardware control structure
|
||||
* @dev_ready: platform specific function to read ready/busy pin
|
||||
* @select_chip: platform specific chip select function
|
||||
* @cmd_ctrl: platform specific function for controlling
|
||||
* ALE/CLE/nCE. Also used to write command and address
|
||||
* @priv: private data to transport driver specific settings
|
||||
*
|
||||
* All fields are optional and depend on the hardware driver requirements
|
||||
@ -586,9 +590,21 @@ struct platform_nand_ctrl {
|
||||
void (*hwcontrol)(struct mtd_info *mtd, int cmd);
|
||||
int (*dev_ready)(struct mtd_info *mtd);
|
||||
void (*select_chip)(struct mtd_info *mtd, int chip);
|
||||
void (*cmd_ctrl)(struct mtd_info *mtd, int dat,
|
||||
unsigned int ctrl);
|
||||
void *priv;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct platform_nand_data - container structure for platform-specific data
|
||||
* @chip: chip level chip structure
|
||||
* @ctrl: controller level device structure
|
||||
*/
|
||||
struct platform_nand_data {
|
||||
struct platform_nand_chip chip;
|
||||
struct platform_nand_ctrl ctrl;
|
||||
};
|
||||
|
||||
/* Some helpers to access the data structures */
|
||||
static inline
|
||||
struct platform_nand_chip *get_platform_nandchip(struct mtd_info *mtd)
|
||||
|
@ -34,6 +34,7 @@
|
||||
* @prim: Primitive element, index form
|
||||
* @iprim: prim-th root of 1, index form
|
||||
* @gfpoly: The primitive generator polynominal
|
||||
* @gffunc: Function to generate the field, if non-canonical representation
|
||||
* @users: Users of this structure
|
||||
* @list: List entry for the rs control list
|
||||
*/
|
||||
@ -48,6 +49,7 @@ struct rs_control {
|
||||
int prim;
|
||||
int iprim;
|
||||
int gfpoly;
|
||||
int (*gffunc)(int);
|
||||
int users;
|
||||
struct list_head list;
|
||||
};
|
||||
@ -77,6 +79,8 @@ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
|
||||
/* Create or get a matching rs control structure */
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots);
|
||||
struct rs_control *init_rs_non_canonical(int symsize, int (*func)(int),
|
||||
int fcr, int prim, int nroots);
|
||||
|
||||
/* Release a rs control structure */
|
||||
void free_rs(struct rs_control *rs);
|
||||
|
@ -56,6 +56,7 @@ static DEFINE_MUTEX(rslistlock);
|
||||
* rs_init - Initialize a Reed-Solomon codec
|
||||
* @symsize: symbol size, bits (1-8)
|
||||
* @gfpoly: Field generator polynomial coefficients
|
||||
* @gffunc: Field generator function
|
||||
* @fcr: first root of RS code generator polynomial, index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
@ -63,8 +64,8 @@ static DEFINE_MUTEX(rslistlock);
|
||||
* Allocate a control structure and the polynom arrays for faster
|
||||
* en/decoding. Fill the arrays according to the given parameters.
|
||||
*/
|
||||
static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
||||
int prim, int nroots)
|
||||
static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
|
||||
int fcr, int prim, int nroots)
|
||||
{
|
||||
struct rs_control *rs;
|
||||
int i, j, sr, root, iprim;
|
||||
@ -82,6 +83,7 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
||||
rs->prim = prim;
|
||||
rs->nroots = nroots;
|
||||
rs->gfpoly = gfpoly;
|
||||
rs->gffunc = gffunc;
|
||||
|
||||
/* Allocate the arrays */
|
||||
rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
|
||||
@ -99,17 +101,26 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
||||
/* Generate Galois field lookup tables */
|
||||
rs->index_of[0] = rs->nn; /* log(zero) = -inf */
|
||||
rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
|
||||
sr = 1;
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr <<= 1;
|
||||
if (sr & (1 << symsize))
|
||||
sr ^= gfpoly;
|
||||
sr &= rs->nn;
|
||||
if (gfpoly) {
|
||||
sr = 1;
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr <<= 1;
|
||||
if (sr & (1 << symsize))
|
||||
sr ^= gfpoly;
|
||||
sr &= rs->nn;
|
||||
}
|
||||
} else {
|
||||
sr = gffunc(0);
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr = gffunc(sr);
|
||||
}
|
||||
}
|
||||
/* If it's not primitive, exit */
|
||||
if(sr != 1)
|
||||
if(sr != rs->alpha_to[0])
|
||||
goto errpol;
|
||||
|
||||
/* Find prim-th root of 1, used in decoding */
|
||||
@ -173,18 +184,22 @@ void free_rs(struct rs_control *rs)
|
||||
}
|
||||
|
||||
/**
|
||||
* init_rs - Find a matching or allocate a new rs control structure
|
||||
* init_rs_internal - Find a matching or allocate a new rs control structure
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
||||
* with the 0th coefficient in the low order bit. The polynomial
|
||||
* must be primitive;
|
||||
* @gffunc: pointer to function to generate the next field element,
|
||||
* or the multiplicative identity element if given 0. Used
|
||||
* instead of gfpoly if gfpoly is 0
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots)
|
||||
static struct rs_control *init_rs_internal(int symsize, int gfpoly,
|
||||
int (*gffunc)(int), int fcr,
|
||||
int prim, int nroots)
|
||||
{
|
||||
struct list_head *tmp;
|
||||
struct rs_control *rs;
|
||||
@ -208,6 +223,8 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
continue;
|
||||
if (gfpoly != rs->gfpoly)
|
||||
continue;
|
||||
if (gffunc != rs->gffunc)
|
||||
continue;
|
||||
if (fcr != rs->fcr)
|
||||
continue;
|
||||
if (prim != rs->prim)
|
||||
@ -220,7 +237,7 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
}
|
||||
|
||||
/* Create a new one */
|
||||
rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
|
||||
rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
|
||||
if (rs) {
|
||||
rs->users = 1;
|
||||
list_add(&rs->list, &rslist);
|
||||
@ -230,6 +247,42 @@ out:
|
||||
return rs;
|
||||
}
|
||||
|
||||
/**
|
||||
* init_rs - Find a matching or allocate a new rs control structure
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
||||
* with the 0th coefficient in the low order bit. The polynomial
|
||||
* must be primitive;
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots)
|
||||
{
|
||||
return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
|
||||
}
|
||||
|
||||
/**
|
||||
* init_rs_non_canonical - Find a matching or allocate a new rs control
|
||||
* structure, for fields with non-canonical
|
||||
* representation
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gffunc: pointer to function to generate the next field element,
|
||||
* or the multiplicative identity element if given 0. Used
|
||||
* instead of gfpoly if gfpoly is 0
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
|
||||
int fcr, int prim, int nroots)
|
||||
{
|
||||
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_REED_SOLOMON_ENC8
|
||||
/**
|
||||
* encode_rs8 - Calculate the parity for data values (8bit data width)
|
||||
@ -321,6 +374,7 @@ EXPORT_SYMBOL_GPL(decode_rs16);
|
||||
#endif
|
||||
|
||||
EXPORT_SYMBOL_GPL(init_rs);
|
||||
EXPORT_SYMBOL_GPL(init_rs_non_canonical);
|
||||
EXPORT_SYMBOL_GPL(free_rs);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
Loading…
x
Reference in New Issue
Block a user