pwm: axi-pwmgen: Implementation of the waveform callbacks

Convert the axi-pwmgen driver to use the new callbacks for hardware
programming.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Tested-by: Trevor Gamblin <tgamblin@baylibre.com>
Link: https://lore.kernel.org/r/922277f07b1d1fb9c9cd915b1ec3fdeec888a916.1726819463.git.u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
This commit is contained in:
Uwe Kleine-König 2024-09-20 10:58:01 +02:00 committed by Uwe Kleine-König
parent 1afd01db1a
commit eb18504ca5

View File

@ -23,6 +23,7 @@
#include <linux/err.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/io.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
@ -53,81 +54,142 @@ static const struct regmap_config axi_pwmgen_regmap_config = {
.max_register = 0xFC,
};
static int axi_pwmgen_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
/* This represents a hardware configuration for one channel */
struct axi_pwmgen_waveform {
u32 period_cnt;
u32 duty_cycle_cnt;
u32 duty_offset_cnt;
};
static int axi_pwmgen_round_waveform_tohw(struct pwm_chip *chip,
struct pwm_device *pwm,
const struct pwm_waveform *wf,
void *_wfhw)
{
struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip);
if (wf->period_length_ns == 0) {
*wfhw = (struct axi_pwmgen_waveform){
.period_cnt = 0,
.duty_cycle_cnt = 0,
.duty_offset_cnt = 0,
};
} else {
/* With ddata->clk_rate_hz < NSEC_PER_SEC this won't overflow. */
wfhw->period_cnt = min_t(u64,
mul_u64_u32_div(wf->period_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
if (wfhw->period_cnt == 0) {
/*
* The specified period is too short for the hardware.
* Let's round .duty_cycle down to 0 to get a (somewhat)
* valid result.
*/
wfhw->period_cnt = 1;
wfhw->duty_cycle_cnt = 0;
wfhw->duty_offset_cnt = 0;
} else {
wfhw->duty_cycle_cnt = min_t(u64,
mul_u64_u32_div(wf->duty_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
wfhw->duty_offset_cnt = min_t(u64,
mul_u64_u32_div(wf->duty_offset_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
}
}
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> PERIOD: %08x, DUTY: %08x, OFFSET: %08x\n",
pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
ddata->clk_rate_hz, wfhw->period_cnt, wfhw->duty_cycle_cnt, wfhw->duty_offset_cnt);
return 0;
}
static int axi_pwmgen_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
const void *_wfhw, struct pwm_waveform *wf)
{
const struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip);
wf->period_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->period_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
wf->duty_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_cycle_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
wf->duty_offset_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_offset_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
return 0;
}
static int axi_pwmgen_write_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw)
{
const struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip);
unsigned int ch = pwm->hwpwm;
struct regmap *regmap = ddata->regmap;
u64 period_cnt, duty_cnt;
unsigned int ch = pwm->hwpwm;
int ret;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
if (state->enabled) {
period_cnt = mul_u64_u64_div_u64(state->period, ddata->clk_rate_hz, NSEC_PER_SEC);
if (period_cnt > UINT_MAX)
period_cnt = UINT_MAX;
if (period_cnt == 0)
return -EINVAL;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), period_cnt);
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), wfhw->period_cnt);
if (ret)
return ret;
duty_cnt = mul_u64_u64_div_u64(state->duty_cycle, ddata->clk_rate_hz, NSEC_PER_SEC);
if (duty_cnt > UINT_MAX)
duty_cnt = UINT_MAX;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), duty_cnt);
if (ret)
return ret;
} else {
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), 0);
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), wfhw->duty_cycle_cnt);
if (ret)
return ret;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), 0);
ret = regmap_write(regmap, AXI_PWMGEN_CHX_OFFSET(ch), wfhw->duty_offset_cnt);
if (ret)
return ret;
}
return regmap_write(regmap, AXI_PWMGEN_REG_CONFIG, AXI_PWMGEN_LOAD_CONFIG);
}
static int axi_pwmgen_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
static int axi_pwmgen_read_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
void *_wfhw)
{
struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip);
struct regmap *regmap = ddata->regmap;
unsigned int ch = pwm->hwpwm;
u32 cnt;
int ret;
ret = regmap_read(regmap, AXI_PWMGEN_CHX_PERIOD(ch), &cnt);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_PERIOD(ch), &wfhw->period_cnt);
if (ret)
return ret;
state->enabled = cnt != 0;
state->period = DIV_ROUND_UP_ULL((u64)cnt * NSEC_PER_SEC, ddata->clk_rate_hz);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_DUTY(ch), &cnt);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_DUTY(ch), &wfhw->duty_cycle_cnt);
if (ret)
return ret;
state->duty_cycle = DIV_ROUND_UP_ULL((u64)cnt * NSEC_PER_SEC, ddata->clk_rate_hz);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_OFFSET(ch), &wfhw->duty_offset_cnt);
if (ret)
return ret;
state->polarity = PWM_POLARITY_NORMAL;
if (wfhw->duty_cycle_cnt > wfhw->period_cnt)
wfhw->duty_cycle_cnt = wfhw->period_cnt;
/* XXX: is this the actual behaviour of the hardware? */
if (wfhw->duty_offset_cnt >= wfhw->period_cnt) {
wfhw->duty_cycle_cnt = 0;
wfhw->duty_offset_cnt = 0;
}
return 0;
}
static const struct pwm_ops axi_pwmgen_pwm_ops = {
.apply = axi_pwmgen_apply,
.get_state = axi_pwmgen_get_state,
.sizeof_wfhw = sizeof(struct axi_pwmgen_waveform),
.round_waveform_tohw = axi_pwmgen_round_waveform_tohw,
.round_waveform_fromhw = axi_pwmgen_round_waveform_fromhw,
.read_waveform = axi_pwmgen_read_waveform,
.write_waveform = axi_pwmgen_write_waveform,
};
static int axi_pwmgen_setup(struct regmap *regmap, struct device *dev)