Merge branch 'for-6.13/wacom' into for-linus

- Sanitization of BTN_TOOL_RUBBER handling (Jason Gerecke)
This commit is contained in:
Jiri Kosina 2024-11-18 21:29:33 +01:00
commit f33e46a0c6
7514 changed files with 245851 additions and 101930 deletions

View File

@ -141,11 +141,13 @@ ForEachMacros:
- 'damon_for_each_target_safe'
- 'damos_for_each_filter'
- 'damos_for_each_filter_safe'
- 'damos_for_each_quota_goal'
- 'damos_for_each_quota_goal_safe'
- 'data__for_each_file'
- 'data__for_each_file_new'
- 'data__for_each_file_start'
- 'device_for_each_child_node'
- 'displayid_iter_for_each'
- 'device_for_each_child_node_scoped'
- 'dma_fence_array_for_each'
- 'dma_fence_chain_for_each'
- 'dma_fence_unwrap_for_each'
@ -172,11 +174,14 @@ ForEachMacros:
- 'drm_for_each_plane'
- 'drm_for_each_plane_mask'
- 'drm_for_each_privobj'
- 'drm_gem_for_each_gpuva'
- 'drm_gem_for_each_gpuva_safe'
- 'drm_gem_for_each_gpuvm_bo'
- 'drm_gem_for_each_gpuvm_bo_safe'
- 'drm_gpuva_for_each_op'
- 'drm_gpuva_for_each_op_from_reverse'
- 'drm_gpuva_for_each_op_reverse'
- 'drm_gpuva_for_each_op_safe'
- 'drm_gpuvm_bo_for_each_va'
- 'drm_gpuvm_bo_for_each_va_safe'
- 'drm_gpuvm_for_each_va'
- 'drm_gpuvm_for_each_va_range'
- 'drm_gpuvm_for_each_va_range_safe'
@ -192,11 +197,11 @@ ForEachMacros:
- 'dsa_switch_for_each_port_continue_reverse'
- 'dsa_switch_for_each_port_safe'
- 'dsa_switch_for_each_user_port'
- 'dsa_switch_for_each_user_port_continue_reverse'
- 'dsa_tree_for_each_cpu_port'
- 'dsa_tree_for_each_user_port'
- 'dsa_tree_for_each_user_port_continue_reverse'
- 'dso__for_each_symbol'
- 'dsos__for_each_with_build_id'
- 'elf_hash_for_each_possible'
- 'elf_symtab__for_each_symbol'
- 'evlist__for_each_cpu'
@ -216,6 +221,7 @@ ForEachMacros:
- 'for_each_and_bit'
- 'for_each_andnot_bit'
- 'for_each_available_child_of_node'
- 'for_each_available_child_of_node_scoped'
- 'for_each_bench'
- 'for_each_bio'
- 'for_each_board_func_rsrc'
@ -234,6 +240,7 @@ ForEachMacros:
- 'for_each_card_widgets_safe'
- 'for_each_cgroup_storage_type'
- 'for_each_child_of_node'
- 'for_each_child_of_node_scoped'
- 'for_each_clear_bit'
- 'for_each_clear_bit_from'
- 'for_each_clear_bitrange'
@ -251,6 +258,7 @@ ForEachMacros:
- 'for_each_cpu'
- 'for_each_cpu_and'
- 'for_each_cpu_andnot'
- 'for_each_cpu_from'
- 'for_each_cpu_or'
- 'for_each_cpu_wrap'
- 'for_each_dapm_widgets'
@ -269,13 +277,14 @@ ForEachMacros:
- 'for_each_element'
- 'for_each_element_extid'
- 'for_each_element_id'
- 'for_each_enabled_cpu'
- 'for_each_endpoint_of_node'
- 'for_each_event'
- 'for_each_event_tps'
- 'for_each_evictable_lru'
- 'for_each_fib6_node_rt_rcu'
- 'for_each_fib6_walker_rt'
- 'for_each_free_mem_pfn_range_in_zone'
- 'for_each_file_lock'
- 'for_each_free_mem_pfn_range_in_zone_from'
- 'for_each_free_mem_range'
- 'for_each_free_mem_range_reverse'
@ -286,15 +295,18 @@ ForEachMacros:
- 'for_each_group_member'
- 'for_each_group_member_head'
- 'for_each_hstate'
- 'for_each_hwgpio'
- 'for_each_if'
- 'for_each_inject_fn'
- 'for_each_insn'
- 'for_each_insn_op_loc'
- 'for_each_insn_prefix'
- 'for_each_intid'
- 'for_each_iommu'
- 'for_each_ip_tunnel_rcu'
- 'for_each_irq_nr'
- 'for_each_lang'
- 'for_each_link_ch_maps'
- 'for_each_link_codecs'
- 'for_each_link_cpus'
- 'for_each_link_platforms'
@ -332,6 +344,9 @@ ForEachMacros:
- 'for_each_new_plane_in_state_reverse'
- 'for_each_new_private_obj_in_state'
- 'for_each_new_reg'
- 'for_each_nhlt_endpoint'
- 'for_each_nhlt_endpoint_fmtcfg'
- 'for_each_nhlt_fmtcfg'
- 'for_each_node'
- 'for_each_node_by_name'
- 'for_each_node_by_type'
@ -387,12 +402,15 @@ ForEachMacros:
- 'for_each_reloc_from'
- 'for_each_requested_gpio'
- 'for_each_requested_gpio_in_range'
- 'for_each_reserved_child_of_node'
- 'for_each_reserved_mem_range'
- 'for_each_reserved_mem_region'
- 'for_each_rtd_ch_maps'
- 'for_each_rtd_codec_dais'
- 'for_each_rtd_components'
- 'for_each_rtd_cpu_dais'
- 'for_each_rtd_dais'
- 'for_each_rtd_dais_reverse'
- 'for_each_sband_iftype_data'
- 'for_each_script'
- 'for_each_sec'
@ -533,8 +551,6 @@ ForEachMacros:
- 'lwq_for_each_safe'
- 'map__for_each_symbol'
- 'map__for_each_symbol_by_name'
- 'maps__for_each_entry'
- 'maps__for_each_entry_safe'
- 'mas_for_each'
- 'mci_for_each_dimm'
- 'media_device_for_each_entity'
@ -560,7 +576,9 @@ ForEachMacros:
- 'netdev_hw_addr_list_for_each'
- 'nft_rule_for_each_expr'
- 'nla_for_each_attr'
- 'nla_for_each_attr_type'
- 'nla_for_each_nested'
- 'nla_for_each_nested_type'
- 'nlmsg_for_each_attr'
- 'nlmsg_for_each_msg'
- 'nr_neigh_for_each'
@ -579,6 +597,7 @@ ForEachMacros:
- 'perf_config_sections__for_each_entry'
- 'perf_config_set__for_each_entry'
- 'perf_cpu_map__for_each_cpu'
- 'perf_cpu_map__for_each_cpu_skip_any'
- 'perf_cpu_map__for_each_idx'
- 'perf_evlist__for_each_entry'
- 'perf_evlist__for_each_entry_reverse'
@ -639,7 +658,6 @@ ForEachMacros:
- 'shost_for_each_device'
- 'sk_for_each'
- 'sk_for_each_bound'
- 'sk_for_each_bound_bhash2'
- 'sk_for_each_entry_offset_rcu'
- 'sk_for_each_from'
- 'sk_for_each_rcu'
@ -653,6 +671,7 @@ ForEachMacros:
- 'snd_soc_dapm_widget_for_each_path_safe'
- 'snd_soc_dapm_widget_for_each_sink_path'
- 'snd_soc_dapm_widget_for_each_source_path'
- 'sparsebit_for_each_set_range'
- 'strlist__for_each_entry'
- 'strlist__for_each_entry_safe'
- 'sym_for_each_insn'
@ -662,7 +681,6 @@ ForEachMacros:
- 'tcf_act_for_each_action'
- 'tcf_exts_for_each_action'
- 'ttm_resource_manager_for_each_res'
- 'twsk_for_each_bound_bhash2'
- 'udp_portaddr_for_each_entry'
- 'udp_portaddr_for_each_entry_rcu'
- 'usb_hub_for_each_child'
@ -686,6 +704,9 @@ ForEachMacros:
- 'xbc_node_for_each_child'
- 'xbc_node_for_each_key_value'
- 'xbc_node_for_each_subkey'
- 'ynl_attr_for_each'
- 'ynl_attr_for_each_nested'
- 'ynl_attr_for_each_payload'
- 'zorro_for_each_dev'
IncludeBlocks: Preserve

3
.gitignore vendored
View File

@ -47,7 +47,6 @@
*.so.dbg
*.su
*.symtypes
*.symversions
*.tab.[ch]
*.tar
*.xz
@ -71,6 +70,7 @@ modules.order
/Module.markers
/modules.builtin
/modules.builtin.modinfo
/modules.builtin.ranges
/modules.nsdeps
#
@ -143,7 +143,6 @@ GTAGS
# id-utils files
ID
*.orig
*~
\#*#

View File

@ -154,6 +154,9 @@ Christian Brauner <brauner@kernel.org> <christian.brauner@ubuntu.com>
Christian Marangi <ansuelsmth@gmail.com>
Christophe Ricard <christophe.ricard@gmail.com>
Christoph Hellwig <hch@lst.de>
Chuck Lever <chuck.lever@oracle.com> <cel@kernel.org>
Chuck Lever <chuck.lever@oracle.com> <cel@netapp.com>
Chuck Lever <chuck.lever@oracle.com> <cel@citi.umich.edu>
Claudiu Beznea <claudiu.beznea@tuxon.dev> <claudiu.beznea@microchip.com>
Colin Ian King <colin.i.king@gmail.com> <colin.king@canonical.com>
Corey Minyard <minyard@acm.org>
@ -200,12 +203,16 @@ Ezequiel Garcia <ezequiel@vanguardiasur.com.ar> <ezequiel@collabora.com>
Faith Ekstrand <faith.ekstrand@collabora.com> <jason@jlekstrand.net>
Faith Ekstrand <faith.ekstrand@collabora.com> <jason.ekstrand@intel.com>
Faith Ekstrand <faith.ekstrand@collabora.com> <jason.ekstrand@collabora.com>
Fangrui Song <i@maskray.me> <maskray@google.com>
Felipe W Damasio <felipewd@terra.com.br>
Felix Kuhling <fxkuehl@gmx.de>
Felix Moeller <felix@derklecks.de>
Fenglin Wu <quic_fenglinw@quicinc.com> <fenglinw@codeaurora.org>
Filipe Lautert <filipe@icewall.org>
Finn Thain <fthain@linux-m68k.org> <fthain@telegraphics.com.au>
Fiona Behrens <me@kloenk.dev>
Fiona Behrens <me@kloenk.dev> <me@kloenk.de>
Fiona Behrens <me@kloenk.dev> <fin@nyantec.com>
Franck Bui-Huu <vagabon.xyz@gmail.com>
Frank Rowand <frowand.list@gmail.com> <frank.rowand@am.sony.com>
Frank Rowand <frowand.list@gmail.com> <frank.rowand@sony.com>
@ -313,6 +320,7 @@ Jiri Slaby <jirislaby@kernel.org> <xslaby@fi.muni.cz>
Jisheng Zhang <jszhang@kernel.org> <jszhang@marvell.com>
Jisheng Zhang <jszhang@kernel.org> <Jisheng.Zhang@synaptics.com>
Jishnu Prakash <quic_jprakash@quicinc.com> <jprakash@codeaurora.org>
Joel Granados <joel.granados@kernel.org> <j.granados@samsung.com>
Johan Hovold <johan@kernel.org> <jhovold@gmail.com>
Johan Hovold <johan@kernel.org> <johan@hovoldconsulting.com>
John Crispin <john@phrozen.org> <blogic@openwrt.org>
@ -613,6 +621,10 @@ Shuah Khan <shuah@kernel.org> <shuah.kh@samsung.com>
Sibi Sankar <quic_sibis@quicinc.com> <sibis@codeaurora.org>
Sid Manning <quic_sidneym@quicinc.com> <sidneym@codeaurora.org>
Simon Arlott <simon@octiron.net> <simon@fire.lp0.eu>
Simona Vetter <simona.vetter@ffwll.ch> <daniel.vetter@ffwll.ch>
Simona Vetter <simona.vetter@ffwll.ch> <daniel.vetter@intel.com>
Simona Vetter <simona.vetter@ffwll.ch> <daniel@ffwll.ch>
Simona Vetter <simona.vetter@ffwll.ch> <daniel@biene.ffwll.ch>
Simon Horman <horms@kernel.org> <simon.horman@corigine.com>
Simon Horman <horms@kernel.org> <simon.horman@netronome.com>
Simon Kelley <simon@thekelleys.org.uk>

54
CREDITS
View File

@ -1358,10 +1358,6 @@ D: Major kbuild rework during the 2.5 cycle
D: ISDN Maintainer
S: USA
N: Gerrit Renker
E: gerrit@erg.abdn.ac.uk
D: DCCP protocol support.
N: Philip Gladstone
E: philip@gladstonefamily.net
D: Kernel / timekeeping stuff
@ -1677,11 +1673,6 @@ W: http://www.carumba.com/
D: bug toaster (A1 sauce makes all the difference)
D: Random linux hacker
N: James Hogan
E: jhogan@kernel.org
D: Metag architecture maintainer
D: TZ1090 SoC maintainer
N: Tim Hockin
E: thockin@hockin.org
W: http://www.hockin.org/~thockin
@ -1697,6 +1688,11 @@ D: hwmon subsystem maintainer
D: i2c-sis96x and i2c-stub SMBus drivers
S: USA
N: James Hogan
E: jhogan@kernel.org
D: Metag architecture maintainer
D: TZ1090 SoC maintainer
N: Dirk Hohndel
E: hohndel@suse.de
D: The XFree86[tm] Project
@ -1872,6 +1868,10 @@ S: K osmidomkum 723
S: 160 00 Praha 6
S: Czech Republic
N: Seth Jennings
E: sjenning@redhat.com
D: Creation and maintenance of zswap
N: Jeremy Kerr
D: Maintainer of SPU File System
@ -2188,19 +2188,6 @@ N: Mike Kravetz
E: mike.kravetz@oracle.com
D: Maintenance and development of the hugetlb subsystem
N: Seth Jennings
E: sjenning@redhat.com
D: Creation and maintenance of zswap
N: Dan Streetman
E: ddstreet@ieee.org
D: Maintenance and development of zswap
D: Creation and maintenance of the zpool API
N: Vitaly Wool
E: vitaly.wool@konsulko.com
D: Maintenance and development of zswap
N: Andreas S. Krebs
E: akrebs@altavista.net
D: CYPRESS CY82C693 chipset IDE, Digital's PC-Alpha 164SX boards
@ -3191,6 +3178,11 @@ N: Ken Pizzini
E: ken@halcyon.com
D: CDROM driver "sonycd535" (Sony CDU-535/531)
N: Mathieu Poirier
E: mathieu.poirier@linaro.org
D: CoreSight kernel subsystem, Maintainer 2014-2022
D: Perf tool support for CoreSight
N: Stelian Pop
E: stelian@popies.net
P: 1024D/EDBB6147 7B36 0E07 04BC 11DC A7A0 D3F7 7185 9E7A EDBB 6147
@ -3300,6 +3292,10 @@ S: Schlossbergring 9
S: 79098 Freiburg
S: Germany
N: Gerrit Renker
E: gerrit@erg.abdn.ac.uk
D: DCCP protocol support.
N: Thomas Renninger
E: trenn@suse.de
D: cpupowerutils
@ -3576,11 +3572,6 @@ D: several improvements to system programs
S: Oldenburg
S: Germany
N: Mathieu Poirier
E: mathieu.poirier@linaro.org
D: CoreSight kernel subsystem, Maintainer 2014-2022
D: Perf tool support for CoreSight
N: Robert Schwebel
E: robert@schwebel.de
W: https://www.schwebel.de
@ -3771,6 +3762,11 @@ S: Chr. Winthersvej 1 B, st.th.
S: DK-1860 Frederiksberg C
S: Denmark
N: Dan Streetman
E: ddstreet@ieee.org
D: Maintenance and development of zswap
D: Creation and maintenance of the zpool API
N: Drew Sullivan
E: drew@ss.org
W: http://www.ss.org/
@ -4286,6 +4282,10 @@ S: Pipers Way
S: Swindon. SN3 1RJ
S: England
N: Vitaly Wool
E: vitaly.wool@konsulko.com
D: Maintenance and development of zswap
N: Chris Wright
E: chrisw@sous-sol.org
D: hacking on LSM framework and security modules.

View File

@ -11,7 +11,7 @@ Description:
Read returns '0' or '1' for read-write or read-only modes
respectively.
Write parses one of 'YyTt1NnFf0', or [oO][NnFf] for "on"
and "off", i.e. what kstrbool() supports.
and "off", i.e. what kstrtobool() supports.
Note: This file is only present if CONFIG_NVMEM_SYSFS
is enabled.

View File

@ -6,3 +6,10 @@ Description:
This item contains just one readonly attribute: port_num.
It contains the port number of the /dev/ttyGS<n> device
associated with acm function's instance "name".
What: /config/usb-gadget/gadget/functions/acm.name/protocol
Date: Aug 2024
KernelVersion: 6.13
Description:
Reported bInterfaceProtocol for the ACM device. For legacy
reasons, this defaults to 1 (USB_CDC_ACM_PROTO_AT_V25TER).

View File

@ -30,4 +30,12 @@ Description:
req_number the number of pre-allocated requests
for both capture and playback
function_name name of the interface
p_it_name playback input terminal name
p_it_ch_name playback channels name
p_ot_name playback output terminal name
p_fu_vol_name playback mute/volume functional unit name
c_it_name capture input terminal name
c_it_ch_name capture channels name
c_ot_name capture output terminal name
c_fu_vol_name capture mute/volume functional unit name
===================== =======================================

View File

@ -35,6 +35,17 @@ Description:
req_number the number of pre-allocated requests
for both capture and playback
function_name name of the interface
if_ctrl_name topology control name
clksrc_in_name input clock name
clksrc_out_name output clock name
p_it_name playback input terminal name
p_it_ch_name playback input first channel name
p_ot_name playback output terminal name
p_fu_vol_name playback mute/volume function unit name
c_it_name capture input terminal name
c_it_ch_name capture input first channel name
c_ot_name capture output terminal name
c_fu_vol_name capture mute/volume functional unit name
c_terminal_type code of the capture terminal type
p_terminal_type code of the playback terminal type
===================== =======================================

View File

@ -0,0 +1,39 @@
What: /sys/kernel/debug/iio/iio:deviceX/calibration_table_dump
KernelVersion: 6.11
Contact: linux-iio@vger.kernel.org
Description:
This dumps the calibration table that was filled during the
digital interface tuning process.
What: /sys/kernel/debug/iio/iio:deviceX/in_voltage_test_mode_available
KernelVersion: 6.11
Contact: linux-iio@vger.kernel.org
Description:
List all the available test tones:
- off
- midscale_short
- pos_fullscale
- neg_fullscale
- checkerboard
- prbs23
- prbs9
- one_zero_toggle
- user
- bit_toggle
- sync
- one_bit_high
- mixed_bit_frequency
- ramp
Note that depending on the actual device being used, some of the
above might not be available (and they won't be listed when
reading the file).
What: /sys/kernel/debug/iio/iio:deviceX/in_voltageY_test_mode
KernelVersion: 6.11
Contact: linux-iio@vger.kernel.org
Description:
Writing to this file will initiate one of available test tone on
channel Y. Reading it, shows which test is running. In cases
where an IIO backend is available and supports the test tone,
additional information about the data correctness is given.

View File

@ -0,0 +1,20 @@
What: /sys/kernel/debug/iio/iio:deviceX/backendY/name
KernelVersion: 6.11
Contact: linux-iio@vger.kernel.org
Description:
Name of Backend Y connected to device X.
What: /sys/kernel/debug/iio/iio:deviceX/backendY/direct_reg_access
KernelVersion: 6.11
Contact: linux-iio@vger.kernel.org
Description:
Directly access the registers of backend Y. Typical usage is:
Reading address 0x50
echo 0x50 > direct_reg_access
cat direct_reg_access
Writing address 0x50
echo 0x50 0x3 > direct_reg_access
//readback address 0x50
cat direct_reg_access

View File

@ -151,3 +151,10 @@ Contact: Sergey Senozhatsky <senozhatsky@chromium.org>
Description:
The recompress file is write-only and triggers re-compression
with secondary compression algorithms.
What: /sys/block/zram<id>/algorithm_params
Date: August 2024
Contact: Sergey Senozhatsky <senozhatsky@chromium.org>
Description:
The algorithm_params file is write-only and is used to setup
compression algorithm parameters.

View File

@ -523,13 +523,27 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/in_accel_x_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_accel_z_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltageY_i_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltageY_q_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_x_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_y_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_z_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_capacitance_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance0_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_intensityY_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_magn_x_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_magn_y_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_magn_z_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_pressure_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_proximity_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_resistance_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_temp_calibbias
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_calibbias
What: /sys/bus/iio/devices/iio:deviceX/out_currentY_calibbias
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_calibbias
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@ -541,6 +555,10 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/in_accel_calibbias_available
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_calibbias_available
What: /sys/bus/iio/devices/iio:deviceX/in_temp_calibbias_available
What: /sys/bus/iio/devices/iio:deviceX/in_proximity_calibbias_available
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_calibbias_available
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_calibbias_available
KernelVersion: 5.8
Contact: linux-iio@vger.kernel.org
Description:
@ -549,25 +567,34 @@ Description:
- a small discrete set of values like "0 2 4 6 8"
- a range specified as "[min step max]"
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_supply_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_x_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_z_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_x_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_y_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_z_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance0_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_pressure_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_capacitance_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance0_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_intensity_both_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_intensity_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_intensity_ir_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_x_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_y_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_z_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_pressure_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_i_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_q_calibscale
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_supply_calibscale
What: /sys/bus/iio/devices/iio:deviceX/out_currentY_calibscale
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_calibscale
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@ -575,6 +602,20 @@ Description:
production inaccuracies). If shared across all channels,
<type>_calibscale is used.
What: /sys/bus/iio/devices/iio:deviceX/in_illuminanceY_calibscale_available
What: /sys/bus/iio/devices/iio:deviceX/in_intensityY_calibscale_available
What: /sys/bus/iio/devices/iio:deviceX/in_proximityY_calibscale_available
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_calibscale_available
KernelVersion: 4.8
Contact: linux-iio@vger.kernel.org
Description:
Available values of calibscale. Maybe expressed as either of:
- a small discrete set of values like "1 8 16"
- a range specified as "[min step max]"
If shared across all channels, <type>_calibscale_available is used.
What: /sys/bus/iio/devices/iio:deviceX/in_activity_calibgender
What: /sys/bus/iio/devices/iio:deviceX/in_energy_calibgender
What: /sys/bus/iio/devices/iio:deviceX/in_distance_calibgender
@ -708,6 +749,7 @@ Description:
2.5kohm_to_gnd: connected to ground via a 2.5kOhm resistor,
6kohm_to_gnd: connected to ground via a 6kOhm resistor,
20kohm_to_gnd: connected to ground via a 20kOhm resistor,
42kohm_to_gnd: connected to ground via a 42kOhm resistor,
90kohm_to_gnd: connected to ground via a 90kOhm resistor,
100kohm_to_gnd: connected to ground via an 100kOhm resistor,
125kohm_to_gnd: connected to ground via an 125kOhm resistor,
@ -2289,3 +2331,11 @@ KernelVersion: 6.7
Contact: linux-iio@vger.kernel.org
Description:
List of available timeout value for tap gesture confirmation.
What: /sys/.../iio:deviceX/in_shunt_resistor
What: /sys/.../iio:deviceX/in_current_shunt_resistor
What: /sys/.../iio:deviceX/in_power_shunt_resistor
KernelVersion: 6.10
Contact: linux-iio@vger.kernel.org
Description:
The value of current sense resistor in Ohms.

View File

@ -1,17 +0,0 @@
What: /sys/bus/iio/devices/iio:deviceX/in_power_shunt_resistor
Date: March 2017
KernelVersion: 4.12
Contact: linux-iio@vger.kernel.org
Description: The value of the shunt resistor used to compute power drain on
common input voltage pin (RS+). In Ohms.
What: /sys/bus/iio/devices/iio:deviceX/in_current_shunt_resistor
Date: March 2017
KernelVersion: 4.12
Contact: linux-iio@vger.kernel.org
Description: The value of the shunt resistor used to compute current flowing
between RS+ and RS- voltage sense inputs. In Ohms.
These attributes describe a single physical component, exposed as two distinct
attributes as it is used to calculate two different values: power load and
current flowing between RS+ and RS- inputs.

View File

@ -15,17 +15,3 @@ Description:
Set the relative humidity. This value is sent to the sensor for
humidity compensation.
Default value: 50000 (50 % relative humidity)
What: /sys/bus/iio/devices/iio:deviceX/in_resistance_calibbias
Date: August 2021
KernelVersion: 5.15
Contact: Andreas Klinger <ak@it-klinger.de>
Description:
Set the bias value for the resistance which is used for
calculation of in_concentration_input as follows:
x = (in_resistance_raw - in_resistance_calibbias) * 0.65
in_concentration_input = 500 / (1 + e^x)
Default value: 30000

View File

@ -0,0 +1,61 @@
What: /sys/bus/iio/devices/iio:deviceX/out_currentY_toggle_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Toggle enable. Write 1 to enable toggle or 0 to disable it. This
is useful when one wants to change the DAC output codes. For
autonomous toggling, the way it should be done is:
- disable toggle operation;
- change out_currentY_rawN, where N is the integer value of the symbol;
- enable toggle operation.
What: /sys/bus/iio/devices/iio:deviceX/out_currentY_rawN
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
This attribute has the same meaning as out_currentY_raw. It is
specific to toggle enabled channels and refers to the DAC output
code in INPUT_N (_rawN), where N is the integer value of the symbol.
The same scale and offset as in out_currentY_raw applies.
What: /sys/bus/iio/devices/iio:deviceX/out_currentY_symbol
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Performs a SW switch to a predefined output symbol. This attribute
is specific to toggle enabled channels and allows switching between
multiple predefined symbols. Each symbol corresponds to a different
output, denoted as out_currentY_rawN, where N is the integer value
of the symbol. Writing an integer value N will select out_currentY_rawN.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_toggle_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Toggle enable. Write 1 to enable toggle or 0 to disable it. This
is useful when one wants to change the DAC output codes. For
autonomous toggling, the way it should be done is:
- disable toggle operation;
- change out_voltageY_rawN, where N is the integer value of the symbol;
- enable toggle operation.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_rawN
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
This attribute has the same meaning as out_currentY_raw. It is
specific to toggle enabled channels and refers to the DAC output
code in INPUT_N (_rawN), where N is the integer value of the symbol.
The same scale and offset as in out_currentY_raw applies.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_symbol
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Performs a SW switch to a predefined output symbol. This attribute
is specific to toggle enabled channels and allows switching between
multiple predefined symbols. Each symbol corresponds to a different
output, denoted as out_voltageY_rawN, where N is the integer value
of the symbol. Writing an integer value N will select out_voltageY_rawN.

View File

@ -53,34 +53,3 @@ KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Returns the available values for the dither phase.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_toggle_en
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Toggle enable. Write 1 to enable toggle or 0 to disable it. This is
useful when one wants to change the DAC output codes. The way it should
be done is:
- disable toggle operation;
- change out_voltageY_raw0 and out_voltageY_raw1;
- enable toggle operation.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw0
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw1
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
It has the same meaning as out_voltageY_raw. This attribute is
specific to toggle enabled channels and refers to the DAC output
code in INPUT_A (_raw0) and INPUT_B (_raw1). The same scale and offset
as in out_voltageY_raw applies.
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_symbol
KernelVersion: 5.18
Contact: linux-iio@vger.kernel.org
Description:
Performs a SW toggle. This attribute is specific to toggle
enabled channels and allows to toggle between out_voltageY_raw0
and out_voltageY_raw1 through software. Writing 0 will select
out_voltageY_raw0 while 1 selects out_voltageY_raw1.

View File

@ -3,7 +3,7 @@ KernelVersion:
Contact: linux-iio@vger.kernel.org
Description:
Reading this returns the valid values that can be written to the
on_altvoltage0_mode attribute:
filter_mode attribute:
- auto -> Adjust bandpass filter to track changes in input clock rate.
- manual -> disable/unregister the clock rate notifier / input clock tracking.

View File

@ -13,12 +13,3 @@ Description:
available for reading data. However, samples can be occasionally skipped
or repeated, depending on the beat between the capture and conversion
rates.
What: /sys/bus/iio/devices/iio:deviceX/in_shunt_resistor
Date: December 2015
KernelVersion: 4.4
Contact: linux-iio@vger.kernel.org
Description:
The value of the shunt resistor may be known only at runtime fom an
eeprom content read by a client application. This attribute allows to
set its value in ohms.

View File

@ -500,3 +500,75 @@ Description:
console drivers from the device. Raw users of pci-sysfs
resourceN attributes must be terminated prior to resizing.
Success of the resizing operation is not guaranteed.
What: /sys/bus/pci/devices/.../leds/*:enclosure:*/brightness
What: /sys/class/leds/*:enclosure:*/brightness
Date: August 2024
KernelVersion: 6.12
Description:
LED indications on PCIe storage enclosures which are controlled
through the NPEM interface (Native PCIe Enclosure Management,
PCIe r6.1 sec 6.28) are accessible as led class devices, both
below /sys/class/leds and below NPEM-capable PCI devices.
Although these led class devices could be manipulated manually,
in practice they are typically manipulated automatically by an
application such as ledmon(8).
The name of a led class device is as follows:
<bdf>:enclosure:<indication>
where:
- <bdf> is the domain, bus, device and function number
(e.g. 10000:02:05.0)
- <indication> is a short description of the LED indication
Valid indications per PCIe r6.1 table 6-27 are:
- ok (drive is functioning normally)
- locate (drive is being identified by an admin)
- fail (drive is not functioning properly)
- rebuild (drive is part of an array that is rebuilding)
- pfa (drive is predicted to fail soon)
- hotspare (drive is marked to be used as a replacement)
- ica (drive is part of an array that is degraded)
- ifa (drive is part of an array that is failed)
- idt (drive is not the right type for the connector)
- disabled (drive is disabled, removal is safe)
- specific0 to specific7 (enclosure-specific indications)
Broadly, the indications fall into one of these categories:
- to signify drive state (ok, locate, fail, idt, disabled)
- to signify drive role or state in a software RAID array
(rebuild, pfa, hotspare, ica, ifa)
- to signify any other role or state (specific0 to specific7)
Mandatory indications per PCIe r6.1 sec 7.9.19.2 comprise:
ok, locate, fail, rebuild. All others are optional.
A led class device is only visible if the corresponding
indication is supported by the device.
To manipulate the indications, write 0 (LED_OFF) or 1 (LED_ON)
to the "brightness" file. Note that manipulating an indication
may implicitly manipulate other indications at the vendor's
discretion. E.g. when the user lights up the "ok" indication,
the vendor may choose to automatically turn off the "fail"
indication. The current state of an indication can be
retrieved by reading its "brightness" file.
The PCIe Base Specification allows vendors leeway to choose
different colors or blinking patterns for the indications,
but they typically follow the IBPI standard. E.g. the "locate"
indication is usually presented as one or two LEDs blinking at
4 Hz frequency:
https://en.wikipedia.org/wiki/International_Blinking_Pattern_Interpretation
PCI Firmware Specification r3.3 sec 4.7 defines a DSM interface
to facilitate shared access by operating system and platform
firmware to a device's NPEM registers. The kernel will use
this DSM interface where available, instead of accessing NPEM
registers directly. The DSM interface does not support the
enclosure-specific indications "specific0" to "specific7",
hence the corresponding led class devices are unavailable if
the DSM interface is used.

View File

@ -115,6 +115,6 @@ What: /sys/devices/system/memory/crash_hotplug
Date: Aug 2023
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description:
(RO) indicates whether or not the kernel directly supports
modifying the crash elfcorehdr for memory hot un/plug and/or
on/offline changes.
(RO) indicates whether or not the kernel updates relevant kexec
segments on memory hot un/plug and/or on/offline events, avoiding the
need to reload kdump kernel.

View File

@ -704,9 +704,9 @@ What: /sys/devices/system/cpu/crash_hotplug
Date: Aug 2023
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description:
(RO) indicates whether or not the kernel directly supports
modifying the crash elfcorehdr for CPU hot un/plug and/or
on/offline changes.
(RO) indicates whether or not the kernel updates relevant kexec
segments on memory hot un/plug and/or on/offline events, avoiding the
need to reload kdump kernel.
What: /sys/devices/system/cpu/enabled
Date: Nov 2022

View File

@ -75,3 +75,11 @@ Description: RO. Energy input of device or gt in microjoules.
for the gt.
Only supported for particular Intel i915 graphics platforms.
What: /sys/bus/pci/drivers/i915/.../hwmon/hwmon<i>/fan1_input
Date: November 2024
KernelVersion: 6.12
Contact: intel-gfx@lists.freedesktop.org
Description: RO. Fan speed of device in RPM.
Only supported for particular Intel i915 graphics platforms.

View File

@ -1532,3 +1532,30 @@ Contact: Bean Huo <beanhuo@micron.com>
Description:
rtc_update_ms indicates how often the host should synchronize or update the
UFS RTC. If set to 0, this will disable UFS RTC periodic update.
What: /sys/devices/platform/.../ufshci_capabilities/version
Date: August 2024
Contact: Avri Altman <avri.altman@wdc.com>
Description:
Host Capabilities register group: UFS version register.
Symbol - VER. This file shows the UFSHCD version.
Example: Version 3.12 would be represented as 0000_0312h.
The file is read only.
What: /sys/devices/platform/.../ufshci_capabilities/product_id
Date: August 2024
Contact: Avri Altman <avri.altman@wdc.com>
Description:
Host Capabilities register group: product ID register.
Symbol - HCPID. This file shows the UFSHCD product id.
The content of this register is vendor specific.
The file is read only.
What: /sys/devices/platform/.../ufshci_capabilities/man_id
Date: August 2024
Contact: Avri Altman <avri.altman@wdc.com>
Description:
Host Capabilities register group: manufacturer ID register.
Symbol - HCMID. This file shows the UFSHCD manufacturer id.
The Manufacturer ID is defined by JEDEC in JEDEC-JEP106.
The file is read only.

View File

@ -579,6 +579,12 @@ Description: When ATGC is on, it controls age threshold to bypass GCing young
candidates whose age is not beyond the threshold, by default it was
initialized as 604800 seconds (equals to 7 days).
What: /sys/fs/f2fs/<disk>/atgc_enabled
Date: Feb 2024
Contact: "Jinbao Liu" <liujinbao1@xiaomi.com>
Description: It represents whether ATGC is on or off. The value is 1 which
indicates that ATGC is on, and 0 indicates that it is off.
What: /sys/fs/f2fs/<disk>/gc_reclaimed_segments
Date: July 2021
Contact: "Daeho Jeong" <daehojeong@google.com>
@ -763,3 +769,53 @@ Date: November 2023
Contact: "Chao Yu" <chao@kernel.org>
Description: It controls to enable/disable IO aware feature for background discard.
By default, the value is 1 which indicates IO aware is on.
What: /sys/fs/f2fs/<disk>/blkzone_alloc_policy
Date: July 2024
Contact: "Yuanhong Liao" <liaoyuanhong@vivo.com>
Description: The zone UFS we are currently using consists of two parts:
conventional zones and sequential zones. It can be used to control which part
to prioritize for writes, with a default value of 0.
======================== =========================================
value description
blkzone_alloc_policy = 0 Prioritize writing to sequential zones
blkzone_alloc_policy = 1 Only allow writing to sequential zones
blkzone_alloc_policy = 2 Prioritize writing to conventional zones
======================== =========================================
What: /sys/fs/f2fs/<disk>/migration_window_granularity
Date: September 2024
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: Controls migration window granularity of garbage collection on large
section. it can control the scanning window granularity for GC migration
in a unit of segment, while migration_granularity controls the number
of segments which can be migrated at the same turn.
What: /sys/fs/f2fs/<disk>/reserved_segments
Date: September 2024
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: In order to fine tune GC behavior, we can control the number of
reserved segments.
What: /sys/fs/f2fs/<disk>/gc_no_zoned_gc_percent
Date: September 2024
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: If the percentage of free sections over total sections is above this
number, F2FS do not garbage collection for zoned devices through the
background GC thread. the default number is "60".
What: /sys/fs/f2fs/<disk>/gc_boost_zoned_gc_percent
Date: September 2024
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: If the percentage of free sections over total sections is under this
number, F2FS boosts garbage collection for zoned devices through the
background GC thread. the default number is "25".
What: /sys/fs/f2fs/<disk>/gc_valid_thresh_ratio
Date: September 2024
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: It controls the valid block ratio threshold not to trigger excessive GC
for zoned deivces. The initial value of it is 95(%). F2FS will stop the
background GC thread from intiating GC for sections having valid blocks
exceeding the ratio.

View File

@ -147,12 +147,6 @@ DRM_IOCTL_QAIC_PERF_STATS_BO
recent execution of a BO. This allows userspace to construct an end to end
timeline of the BO processing for a performance analysis.
DRM_IOCTL_QAIC_PART_DEV
This IOCTL allows userspace to request a duplicate "shadow device". This extra
accelN device is associated with a specific partition of resources on the
AIC100 device and can be used for limiting a process to some subset of
resources.
DRM_IOCTL_QAIC_DETACH_SLICE_BO
This IOCTL allows userspace to remove the slicing information from a BO that
was originally provided by a call to DRM_IOCTL_QAIC_ATTACH_SLICE_BO. This

View File

@ -102,17 +102,41 @@ Examples::
#select lzo compression algorithm
echo lzo > /sys/block/zram0/comp_algorithm
For the time being, the `comp_algorithm` content does not necessarily
show every compression algorithm supported by the kernel. We keep this
list primarily to simplify device configuration and one can configure
a new device with a compression algorithm that is not listed in
`comp_algorithm`. The thing is that, internally, ZRAM uses Crypto API
and, if some of the algorithms were built as modules, it's impossible
to list all of them using, for instance, /proc/crypto or any other
method. This, however, has an advantage of permitting the usage of
custom crypto compression modules (implementing S/W or H/W compression).
For the time being, the `comp_algorithm` content shows only compression
algorithms that are supported by zram.
4) Set Disksize
4) Set compression algorithm parameters: Optional
=================================================
Compression algorithms may support specific parameters which can be
tweaked for particular dataset. ZRAM has an `algorithm_params` device
attribute which provides a per-algorithm params configuration.
For example, several compression algorithms support `level` parameter.
In addition, certain compression algorithms support pre-trained dictionaries,
which significantly change algorithms' characteristics. In order to configure
compression algorithm to use external pre-trained dictionary, pass full
path to the `dict` along with other parameters::
#pass path to pre-trained zstd dictionary
echo "algo=zstd dict=/etc/dictioary" > /sys/block/zram0/algorithm_params
#same, but using algorithm priority
echo "priority=1 dict=/etc/dictioary" > \
/sys/block/zram0/algorithm_params
#pass path to pre-trained zstd dictionary and compression level
echo "algo=zstd level=8 dict=/etc/dictioary" > \
/sys/block/zram0/algorithm_params
Parameters are algorithm specific: not all algorithms support pre-trained
dictionaries, not all algorithms support `level`. Furthermore, for certain
algorithms `level` controls the compression level (the higher the value the
better the compression ratio, it even can take negatives values for some
algorithms), for other algorithms `level` is acceleration level (the higher
the value the lower the compression ratio).
5) Set Disksize
===============
Set disk size by writing the value to sysfs node 'disksize'.
@ -132,7 +156,7 @@ There is little point creating a zram of greater than twice the size of memory
since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
size of the disk when not in use so a huge zram is wasteful.
5) Set memory limit: Optional
6) Set memory limit: Optional
=============================
Set memory limit by writing the value to sysfs node 'mem_limit'.
@ -151,7 +175,7 @@ Examples::
# To disable memory limit
echo 0 > /sys/block/zram0/mem_limit
6) Activate
7) Activate
===========
::
@ -162,7 +186,7 @@ Examples::
mkfs.ext4 /dev/zram1
mount /dev/zram1 /tmp
7) Add/remove zram devices
8) Add/remove zram devices
==========================
zram provides a control interface, which enables dynamic (on-demand) device
@ -182,7 +206,7 @@ execute::
echo X > /sys/class/zram-control/hot_remove
8) Stats
9) Stats
========
Per-device statistics are exported as various nodes under /sys/block/zram<id>/
@ -205,6 +229,7 @@ writeback_limit_enable RW show and set writeback_limit feature
max_comp_streams RW the number of possible concurrent compress
operations
comp_algorithm RW show and change the compression algorithm
algorithm_params WO setup compression algorithm parameters
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
@ -283,15 +308,15 @@ a single line of text and contains the following stats separated by whitespace:
Unit: 4K bytes
============== =============================================================
9) Deactivate
=============
10) Deactivate
==============
::
swapoff /dev/zram0
umount /dev/zram1
10) Reset
11) Reset
=========
Write any positive value to 'reset' sysfs node::
@ -487,11 +512,14 @@ registered compression algorithms, increases our chances of finding the
algorithm that successfully compresses a particular page. Sometimes, however,
it is convenient (and sometimes even necessary) to limit recompression to
only one particular algorithm so that it will not try any other algorithms.
This can be achieved by providing a algo=NAME parameter:::
This can be achieved by providing a `algo` or `priority` parameter:::
#use zstd algorithm only (if registered)
echo "type=huge algo=zstd" > /sys/block/zramX/recompress
#use zstd algorithm only (if zstd was registered under priority 1)
echo "type=huge priority=1" > /sys/block/zramX/recompress
memory tracking
===============

View File

@ -78,18 +78,24 @@ Brief summary of control files.
memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
memory.soft_limit_in_bytes set/show soft limit of memory usage
This knob is not available on CONFIG_PREEMPT_RT systems.
This knob is deprecated and shouldn't be
used.
memory.stat show various statistics
memory.use_hierarchy set/show hierarchical account enabled
This knob is deprecated and shouldn't be
used.
memory.force_empty trigger forced page reclaim
memory.pressure_level set memory pressure notifications
This knob is deprecated and shouldn't be
used.
memory.swappiness set/show swappiness parameter of vmscan
(See sysctl's vm.swappiness)
memory.move_charge_at_immigrate set/show controls of moving charges
This knob is deprecated and shouldn't be
used.
memory.oom_control set/show oom controls.
This knob is deprecated and shouldn't be
used.
memory.numa_stat show the number of memory usage per numa
node
memory.kmem.limit_in_bytes Deprecated knob to set and read the kernel
@ -105,10 +111,18 @@ Brief summary of control files.
memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
This knob is deprecated and shouldn't be
used.
memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
This knob is deprecated and shouldn't be
used.
memory.kmem.tcp.failcnt show the number of tcp buf memory usage
hits limits
This knob is deprecated and shouldn't be
used.
memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
This knob is deprecated and shouldn't be
used.
==================================== ==========================================
1. History
@ -693,8 +707,10 @@ For compatibility reasons writing 1 to memory.use_hierarchy will always pass::
# echo 1 > memory.use_hierarchy
7. Soft limits
==============
7. Soft limits (DEPRECATED)
===========================
THIS IS DEPRECATED!
Soft limits allow for greater sharing of memory. The idea behind soft limits
is to allow control groups to use as much of the memory as needed, provided
@ -834,8 +850,10 @@ It's applicable for root and non-root cgroup.
.. _cgroup-v1-memory-oom-control:
10. OOM Control
===============
10. OOM Control (DEPRECATED)
============================
THIS IS DEPRECATED!
memory.oom_control file is for OOM notification and other controls.
@ -882,8 +900,10 @@ At reading, current status of OOM is shown.
The number of processes belonging to this cgroup killed by any
kind of OOM killer.
11. Memory Pressure
===================
11. Memory Pressure (DEPRECATED)
================================
THIS IS DEPRECATED!
The pressure level notifications can be used to monitor the memory
allocation cost; based on the pressure, applications can implement

View File

@ -1343,11 +1343,14 @@ The following nested keys are defined.
all the existing limitations and potential future extensions.
memory.peak
A read-only single value file which exists on non-root
cgroups.
A read-write single value file which exists on non-root cgroups.
The max memory usage recorded for the cgroup and its
descendants since the creation of the cgroup.
The max memory usage recorded for the cgroup and its descendants since
either the creation of the cgroup or the most recent reset for that FD.
A write of any non-empty string to this file resets it to the
current memory usage for subsequent reads through the same
file descriptor.
memory.oom.group
A read-write single value file which exists on non-root
@ -1624,6 +1627,25 @@ The following nested keys are defined.
Usually because failed to allocate some continuous swap space
for the huge page.
numa_pages_migrated (npn)
Number of pages migrated by NUMA balancing.
numa_pte_updates (npn)
Number of pages whose page table entries are modified by
NUMA balancing to produce NUMA hinting faults on access.
numa_hint_faults (npn)
Number of NUMA hinting faults.
pgdemote_kswapd
Number of pages demoted by kswapd.
pgdemote_direct
Number of pages demoted directly.
pgdemote_khugepaged
Number of pages demoted by khugepaged.
memory.numa_stat
A read-only nested-keyed file which exists on non-root cgroups.
@ -1673,11 +1695,14 @@ The following nested keys are defined.
Healthy workloads are not expected to reach this limit.
memory.swap.peak
A read-only single value file which exists on non-root
cgroups.
A read-write single value file which exists on non-root cgroups.
The max swap usage recorded for the cgroup and its
descendants since the creation of the cgroup.
The max swap usage recorded for the cgroup and its descendants since
the creation of the cgroup or the most recent reset for that FD.
A write of any non-empty string to this file resets it to the
current memory usage for subsequent reads through the same
file descriptor.
memory.swap.max
A read-write single value file which exists on non-root
@ -1741,6 +1766,8 @@ The following nested keys are defined.
Note that this is subtly different from setting memory.swap.max to
0, as it still allows for pages to be written to the zswap pool.
This setting has no effect if zswap is disabled, and swapping
is allowed unless memory.swap.max is set to 0.
memory.pressure
A read-only nested-keyed file.

View File

@ -3,29 +3,52 @@ dm-delay
========
Device-Mapper's "delay" target delays reads and/or writes
and maps them to different devices.
and/or flushs and optionally maps them to different devices.
Parameters::
Arguments::
<device> <offset> <delay> [<write_device> <write_offset> <write_delay>
[<flush_device> <flush_offset> <flush_delay>]]
With separate write parameters, the first set is only used for reads.
Table line has to either have 3, 6 or 9 arguments:
3: apply offset and delay to read, write and flush operations on device
6: apply offset and delay to device, also apply write_offset and write_delay
to write and flush operations on optionally different write_device with
optionally different sector offset
9: same as 6 arguments plus define flush_offset and flush_delay explicitely
on/with optionally different flush_device/flush_offset.
Offsets are specified in sectors.
Delays are specified in milliseconds.
Example scripts
===============
::
#!/bin/sh
# Create device delaying rw operation for 500ms
echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
#
# Create mapped device named "delayed" delaying read, write and flush operations for 500ms.
#
dmsetup create delayed --table "0 `blockdev --getsz $1` delay $1 0 500"
::
#!/bin/sh
# Create device delaying only write operation for 500ms and
# splitting reads and writes to different devices $1 $2
echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
#
# Create mapped device delaying write and flush operations for 400ms and
# splitting reads to device $1 but writes and flushs to different device $2
# to different offsets of 2048 and 4096 sectors respectively.
#
dmsetup create delayed --table "0 `blockdev --getsz $1` delay $1 2048 0 $2 4096 400"
::
#!/bin/sh
#
# Create mapped device delaying reads for 50ms, writes for 100ms and flushs for 333ms
# onto the same backing device at offset 0 sectors.
#
dmsetup create delayed --table "0 `blockdev --getsz $1` delay $1 0 50 $2 0 100 $1 0 333"

View File

@ -160,6 +160,10 @@ iv_large_sectors
The <iv_offset> must be multiple of <sector_size> (in 512 bytes units)
if this flag is specified.
integrity_key_size:<bytes>
Use an integrity key of <bytes> size instead of using an integrity key size
of the digest size of the used HMAC algorithm.
Module parameters::
max_read_size

View File

@ -251,7 +251,12 @@ The messages are:
by the vdostats userspace program to interpret the output
buffer.
dump:
config:
Outputs useful vdo configuration information. Mostly used
by users who want to recreate a similar VDO volume and
want to know the creation configuration used.
dump:
Dumps many internal structures to the system log. This is
not always safe to run, so it should only be used to debug
a hung vdo. Optional parameters to specify structures to

View File

@ -212,16 +212,6 @@ When mounting an ext4 filesystem, the following option are accepted:
that ext4's inode table readahead algorithm will pre-read into the
buffer cache. The default value is 32 blocks.
nouser_xattr
Disables Extended User Attributes. See the attr(5) manual page for
more information about extended attributes.
noacl
This option disables POSIX Access Control List support. If ACL support
is enabled in the kernel configuration (CONFIG_EXT4_FS_POSIX_ACL), ACL
is enabled by default on mount. See the acl(5) manual page for more
information about acl.
bsddf (*)
Make 'df' act like BSD.

View File

@ -2677,6 +2677,23 @@
Default is Y (on).
kvm.enable_virt_at_load=[KVM,ARM64,LOONGARCH,MIPS,RISCV,X86]
If enabled, KVM will enable virtualization in hardware
when KVM is loaded, and disable virtualization when KVM
is unloaded (if KVM is built as a module).
If disabled, KVM will dynamically enable and disable
virtualization on-demand when creating and destroying
VMs, i.e. on the 0=>1 and 1=>0 transitions of the
number of VMs.
Enabling virtualization at module lode avoids potential
latency for creation of the 0=>1 VM, as KVM serializes
virtualization enabling across all online CPUs. The
"cost" of enabling virtualization when KVM is loaded,
is that doing so may interfere with using out-of-tree
hypervisors that want to "own" virtualization hardware.
kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface.
Default is false (don't support).
@ -4152,6 +4169,21 @@
Disable NUMA, Only set up a single NUMA node
spanning all memory.
numa=fake=<size>[MG]
[KNL, ARM64, RISCV, X86, EARLY]
If given as a memory unit, fills all system RAM with
nodes of size interleaved over physical nodes.
numa=fake=<N>
[KNL, ARM64, RISCV, X86, EARLY]
If given as an integer, fills all system RAM with N
fake nodes interleaved over physical nodes.
numa=fake=<N>U
[KNL, ARM64, RISCV, X86, EARLY]
If given as an integer followed by 'U', it will
divide each physical node into N emulated nodes.
numa_balancing= [KNL,ARM64,PPC,RISCV,S390,X86] Enable or disable automatic
NUMA balancing.
Allowed values are enable and disable
@ -6655,6 +6687,15 @@
<deci-seconds>: poll all this frequency
0: no polling (default)
thp_anon= [KNL]
Format: <size>,<size>[KMG]:<state>;<size>-<size>[KMG]:<state>
state is one of "always", "madvise", "never" or "inherit".
Control the default behavior of the system with respect
to anonymous transparent hugepages.
Can be used multiple times for multiple anon THP sizes.
See Documentation/admin-guide/mm/transhuge.rst for more
details.
threadirqs [KNL,EARLY]
Force threading of all interrupt handlers except those
marked explicitly IRQF_NO_THREAD.
@ -6784,6 +6825,51 @@
the same thing would happen if it was left off). The irq_handler_entry
event, and all events under the "initcall" system.
Flags can be added to the instance to modify its behavior when it is
created. The flags are separated by '^'.
The available flags are:
traceoff - Have the tracing instance tracing disabled after it is created.
traceprintk - Have trace_printk() write into this trace instance
(note, "printk" and "trace_printk" can also be used)
trace_instance=foo^traceoff^traceprintk,sched,irq
The flags must come before the defined events.
If memory has been reserved (see memmap for x86), the instance
can use that memory:
memmap=12M$0x284500000 trace_instance=boot_map@0x284500000:12M
The above will create a "boot_map" instance that uses the physical
memory at 0x284500000 that is 12Megs. The per CPU buffers of that
instance will be split up accordingly.
Alternatively, the memory can be reserved by the reserve_mem option:
reserve_mem=12M:4096:trace trace_instance=boot_map@trace
This will reserve 12 megabytes at boot up with a 4096 byte alignment
and place the ring buffer in this memory. Note that due to KASLR, the
memory may not be the same location each time, which will not preserve
the buffer content.
Also note that the layout of the ring buffer data may change between
kernel versions where the validator will fail and reset the ring buffer
if the layout is not the same as the previous kernel.
If the ring buffer is used for persistent bootups and has events enabled,
it is recommend to disable tracing so that events from a previous boot do not
mix with events of the current boot (unless you are debugging a random crash
at boot up).
reserve_mem=12M:4096:trace trace_instance=boot_map^traceoff^traceprintk@trace,sched,irq
See also Documentation/trace/debugging.rst
trace_options=[option-list]
[FTRACE] Enable or disable tracer options at boot.
The option-list is a comma delimited list of options

View File

@ -42,10 +42,14 @@ dongles):
``persistent_config``: by default this is off, but when set to 1 the driver
will store the current settings to the device's internal eeprom and restore
it the next time the device is connected to the USB port.
- RainShadow Tech. Note: this driver does not support the persistent_config
module option of the Pulse-Eight driver. The hardware supports it, but I
have no plans to add this feature. But I accept patches :-)
- Extron DA HD 4K PLUS HDMI Distribution Amplifier. See
:ref:`extron_da_hd_4k_plus` for more information.
Miscellaneous:
- vivid: emulates a CEC receiver and CEC transmitter.
@ -378,3 +382,86 @@ it later using ``--analyze-pin``.
You can also use this as a full-fledged CEC device by configuring it
using ``cec-ctl --tv -p0.0.0.0`` or ``cec-ctl --playback -p1.0.0.0``.
.. _extron_da_hd_4k_plus:
Extron DA HD 4K PLUS CEC Adapter driver
=======================================
This driver is for the Extron DA HD 4K PLUS series of HDMI Distribution
Amplifiers: https://www.extron.com/product/dahd4kplusseries
The 2, 4 and 6 port models are supported.
Firmware version 1.02.0001 or higher is required.
Note that older Extron hardware revisions have a problem with the CEC voltage,
which may mean that CEC will not work. This is fixed in hardware revisions
E34814 and up.
The CEC support has two modes: the first is a manual mode where userspace has
to manually control CEC for the HDMI Input and all HDMI Outputs. While this gives
full control, it is also complicated.
The second mode is an automatic mode, which is selected if the module option
``vendor_id`` is set. In that case the driver controls CEC and CEC messages
received in the input will be distributed to the outputs. It is still possible
to use the /dev/cecX devices to talk to the connected devices directly, but it is
the driver that configures everything and deals with things like Hotplug Detect
changes.
The driver also takes care of the EDIDs: /dev/videoX devices are created to
read the EDIDs and (for the HDMI Input port) to set the EDID.
By default userspace is responsible to set the EDID for the HDMI Input
according to the EDIDs of the connected displays. But if the ``manufacturer_name``
module option is set, then the driver will take care of setting the EDID
of the HDMI Input based on the supported resolutions of the connected displays.
Currently the driver only supports resolutions 1080p60 and 4kp60: if all connected
displays support 4kp60, then it will advertise 4kp60 on the HDMI input, otherwise
it will fall back to an EDID that just reports 1080p60.
The status of the Extron is reported in ``/sys/kernel/debug/cec/cecX/status``.
The extron-da-hd-4k-plus driver implements the following module options:
``debug``
---------
If set to 1, then all serial port traffic is shown.
``vendor_id``
-------------
The CEC Vendor ID to report to connected displays.
If set, then the driver will take care of distributing CEC messages received
on the input to the HDMI outputs. This is done for the following CEC messages:
- <Standby>
- <Image View On> and <Text View On>
- <Give Device Power Status>
- <Set System Audio Mode>
- <Request Current Latency>
If not set, then userspace is responsible for this, and it will have to
configure the CEC devices for HDMI Input and the HDMI Outputs manually.
``manufacturer_name``
---------------------
A three character manufacturer name that is used in the EDID for the HDMI
Input. If not set, then userspace is reponsible for configuring an EDID.
If set, then the driver will update the EDID automatically based on the
resolutions supported by the connected displays, and it will not be possible
anymore to manually set the EDID for the HDMI Input.
``hpd_never_low``
-----------------
If set, then the Hotplug Detect pin of the HDMI Input will always be high,
even if nothing is connected to the HDMI Outputs. If not set (the default)
then the Hotplug Detect pin of the HDMI input will go low if all the detected
Hotplug Detect pins of the HDMI Outputs are also low.
This option may be changed dynamically.

View File

@ -227,8 +227,13 @@ Common FPDL3/GMSL output parameters
open.*
**frame_rate** (RW):
Output video frame rate in frames per second. The default frame rate is
60Hz.
Output video signal frame rate limit in frames per second. Due to
the limited output pixel clock steps, the card can not always generate
a frame rate perfectly matching the value required by the connected display.
Using this parameter one can limit the frame rate by "crippling" the signal
so that the lines are not equal (the porches of the last line differ) but
the signal appears like having the exact frame rate to the connected display.
The default frame rate limit is 60Hz.
**hsync_polarity** (RW):
HSYNC signal polarity.
@ -253,33 +258,33 @@ Common FPDL3/GMSL output parameters
and there is a non-linear stepping between two consecutive allowed
frequencies. The driver finds the nearest allowed frequency to the given
value and sets it. When reading this property, you get the exact
frequency set by the driver. The default frequency is 70000kHz.
frequency set by the driver. The default frequency is 61150kHz.
*Note: This parameter can not be changed while the output v4l2 device is
open.*
**hsync_width** (RW):
Width of the HSYNC signal in pixels. The default value is 16.
Width of the HSYNC signal in pixels. The default value is 40.
**vsync_width** (RW):
Width of the VSYNC signal in video lines. The default value is 2.
Width of the VSYNC signal in video lines. The default value is 20.
**hback_porch** (RW):
Number of PCLK pulses between deassertion of the HSYNC signal and the first
valid pixel in the video line (marked by DE=1). The default value is 32.
valid pixel in the video line (marked by DE=1). The default value is 50.
**hfront_porch** (RW):
Number of PCLK pulses between the end of the last valid pixel in the video
line (marked by DE=1) and assertion of the HSYNC signal. The default value
is 32.
is 50.
**vback_porch** (RW):
Number of video lines between deassertion of the VSYNC signal and the video
line with the first valid pixel (marked by DE=1). The default value is 2.
line with the first valid pixel (marked by DE=1). The default value is 31.
**vfront_porch** (RW):
Number of video lines between the end of the last valid pixel line (marked
by DE=1) and assertion of the VSYNC signal. The default value is 2.
by DE=1) and assertion of the VSYNC signal. The default value is 30.
FPDL3 specific input parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -114,11 +114,18 @@ to be applied to the hardware during a video stream, allowing userspace
to dynamically modify values such as black level, cross talk corrections
and others.
The buffer format is defined by struct :c:type:`rkisp1_params_cfg`, and
userspace should set
The ISP driver supports two different parameters configuration methods, the
`fixed parameters format` or the `extensible parameters format`.
When using the `fixed parameters` method the buffer format is defined by struct
:c:type:`rkisp1_params_cfg`, and userspace should set
:ref:`V4L2_META_FMT_RK_ISP1_PARAMS <v4l2-meta-fmt-rk-isp1-params>` as the
dataformat.
When using the `extensible parameters` method the buffer format is defined by
struct :c:type:`rkisp1_ext_params_cfg`, and userspace should set
:ref:`V4L2_META_FMT_RK_ISP1_EXT_PARAMS <v4l2-meta-fmt-rk-isp1-ext-params>` as
the dataformat.
Capturing Video Frames Example
==============================

View File

@ -1343,7 +1343,7 @@ Some Future Improvements
Just as a reminder and in no particular order:
- Add a virtual alsa driver to test audio
- Add virtual sub-devices and media controller support
- Add virtual sub-devices
- Some support for testing compressed video
- Add support to loop raw VBI output to raw VBI input
- Add support to loop teletext sliced VBI output to VBI input
@ -1358,4 +1358,4 @@ Just as a reminder and in no particular order:
- Make a thread for the RDS generation, that would help in particular for the
"Controls" RDS Rx I/O Mode as the read-only RDS controls could be updated
in real-time.
- Changing the EDID should cause hotplug detect emulation to happen.
- Changing the EDID doesn't wait 100 ms before setting the HPD signal.

View File

@ -7,7 +7,7 @@ Getting Started
This document briefly describes how you can use DAMON by demonstrating its
default user space tool. Please note that this document describes only a part
of its features for brevity. Please refer to the usage `doc
<https://github.com/awslabs/damo/blob/next/USAGE.md>`_ of the tool for more
<https://github.com/damonitor/damo/blob/next/USAGE.md>`_ of the tool for more
details.
@ -26,7 +26,7 @@ User Space Tool
For the demonstration, we will use the default user space tool for DAMON,
called DAMON Operator (DAMO). It is available at
https://github.com/awslabs/damo. The examples below assume that ``damo`` is on
https://github.com/damonitor/damo. The examples below assume that ``damo`` is on
your ``$PATH``. It's not mandatory, though.
Because DAMO is using the sysfs interface (refer to :doc:`usage` for the

View File

@ -7,19 +7,19 @@ Detailed Usages
DAMON provides below interfaces for different users.
- *DAMON user space tool.*
`This <https://github.com/awslabs/damo>`_ is for privileged people such as
`This <https://github.com/damonitor/damo>`_ is for privileged people such as
system administrators who want a just-working human-friendly interface.
Using this, users can use the DAMONs major features in a human-friendly way.
It may not be highly tuned for special cases, though. For more detail,
please refer to its `usage document
<https://github.com/awslabs/damo/blob/next/USAGE.md>`_.
<https://github.com/damonitor/damo/blob/next/USAGE.md>`_.
- *sysfs interface.*
:ref:`This <sysfs_interface>` is for privileged user space programmers who
want more optimized use of DAMON. Using this, users can use DAMONs major
features by reading from and writing to special sysfs files. Therefore,
you can write and use your personalized DAMON sysfs wrapper programs that
reads/writes the sysfs files instead of you. The `DAMON user space tool
<https://github.com/awslabs/damo>`_ is one example of such programs.
<https://github.com/damonitor/damo>`_ is one example of such programs.
- *Kernel Space Programming Interface.*
:doc:`This </mm/damon/api>` is for kernel space programmers. Using this,
users can utilize every feature of DAMON most flexibly and efficiently by
@ -543,7 +543,7 @@ memory rate becomes larger than 60%, or lower than 30%". ::
# echo 300 > watermarks/low
Please note that it's highly recommended to use user space tools like `damo
<https://github.com/awslabs/damo>`_ rather than manually reading and writing
<https://github.com/damonitor/damo>`_ rather than manually reading and writing
the files as above. Above is only for an example.
.. _tracepoint:

View File

@ -294,8 +294,9 @@ The following files are currently defined:
``crash_hotplug`` read-only: when changes to the system memory map
occur due to hot un/plug of memory, this file contains
'1' if the kernel updates the kdump capture kernel memory
map itself (via elfcorehdr), or '0' if userspace must update
the kdump capture kernel memory map.
map itself (via elfcorehdr and other relevant kexec
segments), or '0' if userspace must update the kdump
capture kernel memory map.
Availability depends on the CONFIG_MEMORY_HOTPLUG kernel
configuration option.

View File

@ -202,6 +202,16 @@ PMD-mappable transparent hugepage::
cat /sys/kernel/mm/transparent_hugepage/hpage_pmd_size
All THPs at fault and collapse time will be added to _deferred_list,
and will therefore be split under memory presure if they are considered
"underused". A THP is underused if the number of zero-filled pages in
the THP is above max_ptes_none (see below). It is possible to disable
this behaviour by writing 0 to shrink_underused, and enable it by writing
1 to it::
echo 0 > /sys/kernel/mm/transparent_hugepage/shrink_underused
echo 1 > /sys/kernel/mm/transparent_hugepage/shrink_underused
khugepaged will be automatically started when PMD-sized THP is enabled
(either of the per-size anon control or the top-level control are set
to "always" or "madvise"), and it'll be automatically shutdown when
@ -284,13 +294,37 @@ that THP is shared. Exceeding the number would block the collapse::
A higher value may increase memory footprint for some workloads.
Boot parameter
==============
Boot parameters
===============
You can change the sysfs boot time defaults of Transparent Hugepage
Support by passing the parameter ``transparent_hugepage=always`` or
``transparent_hugepage=madvise`` or ``transparent_hugepage=never``
to the kernel command line.
You can change the sysfs boot time default for the top-level "enabled"
control by passing the parameter ``transparent_hugepage=always`` or
``transparent_hugepage=madvise`` or ``transparent_hugepage=never`` to the
kernel command line.
Alternatively, each supported anonymous THP size can be controlled by
passing ``thp_anon=<size>,<size>[KMG]:<state>;<size>-<size>[KMG]:<state>``,
where ``<size>`` is the THP size (must be a power of 2 of PAGE_SIZE and
supported anonymous THP) and ``<state>`` is one of ``always``, ``madvise``,
``never`` or ``inherit``.
For example, the following will set 16K, 32K, 64K THP to ``always``,
set 128K, 512K to ``inherit``, set 256K to ``madvise`` and 1M, 2M
to ``never``::
thp_anon=16K-64K:always;128K,512K:inherit;256K:madvise;1M-2M:never
``thp_anon=`` may be specified multiple times to configure all THP sizes as
required. If ``thp_anon=`` is specified at least once, any anon THP sizes
not explicitly configured on the command line are implicitly set to
``never``.
``transparent_hugepage`` setting only affects the global toggle. If
``thp_anon`` is not specified, PMD_ORDER THP will default to ``inherit``.
However, if a valid ``thp_anon`` setting is provided by the user, the
PMD_ORDER THP policy will be overridden. If the policy for PMD_ORDER
is not defined within a valid ``thp_anon``, its policy will default to
``never``.
Hugepages in tmpfs/shmem
========================
@ -447,6 +481,12 @@ thp_deferred_split_page
splitting it would free up some memory. Pages on split queue are
going to be split under memory pressure.
thp_underused_split_page
is incremented when a huge page on the split queue was split
because it was underused. A THP is underused if the number of
zero pages in the THP is above a certain threshold
(/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none).
thp_split_pmd
is incremented every time a PMD split into table of PTEs.
This can happen, for instance, when application calls mprotect() or
@ -527,6 +567,18 @@ split_deferred
it would free up some memory. Pages on split queue are going to
be split under memory pressure, if splitting is possible.
nr_anon
the number of anonymous THP we have in the whole system. These THPs
might be currently entirely mapped or have partially unmapped/unused
subpages.
nr_anon_partially_mapped
the number of anonymous THP which are likely partially mapped, possibly
wasting memory, and have been queued for deferred memory reclamation.
Note that in corner some cases (e.g., failed migration), we might detect
an anonymous THP as "partially mapped" and count it here, even though it
is not actually partially mapped anymore.
As the system ages, allocating huge pages may be expensive as the
system uses memory compaction to copy data around memory to free a
huge page for use. There are some counters in ``/proc/vmstat`` to help

View File

@ -12,7 +12,7 @@ ones.
Of course this is a bad idea to rely on the alignment trap to perform
unaligned memory access in general. If those access are predictable, you
are better to use the macros provided by include/asm/unaligned.h. The
are better to use the macros provided by include/linux/unaligned.h. The
alignment trap can fixup misaligned access for the exception cases, but at
a high performance cost. It better be rare.

View File

@ -146,6 +146,8 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A715 | #2645198 | ARM64_ERRATUM_2645198 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A715 | #3456084 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A720 | #3456091 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A725 | #3456106 | ARM64_ERRATUM_3194386 |
@ -186,6 +188,8 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N2 | #3324339 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N3 | #3456111 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-V1 | #1619801 | N/A |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-V1 | #3324341 | ARM64_ERRATUM_3194386 |
@ -289,3 +293,5 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| Microsoft | Azure Cobalt 100| #2253138 | ARM64_ERRATUM_2253138 |
+----------------+-----------------+-----------------+-----------------------------+
| Microsoft | Azure Cobalt 100| #3324339 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+

View File

@ -85,6 +85,38 @@ to CPUINTC directly::
| Devices |
+---------+
Advanced Extended IRQ model
===========================
In this model, IPI (Inter-Processor Interrupt) and CPU Local Timer interrupt go
to CPUINTC directly, CPU UARTS interrupts go to LIOINTC, PCH-MSI interrupts go
to AVECINTC, and then go to CPUINTC directly, while all other devices interrupts
go to PCH-PIC/PCH-LPC and gathered by EIOINTC, and then go to CPUINTC directly::
+-----+ +-----------------------+ +-------+
| IPI | --> | CPUINTC | <-- | Timer |
+-----+ +-----------------------+ +-------+
^ ^ ^
| | |
+---------+ +----------+ +---------+ +-------+
| EIOINTC | | AVECINTC | | LIOINTC | <-- | UARTs |
+---------+ +----------+ +---------+ +-------+
^ ^
| |
+---------+ +---------+
| PCH-PIC | | PCH-MSI |
+---------+ +---------+
^ ^ ^
| | |
+---------+ +---------+ +---------+
| Devices | | PCH-LPC | | Devices |
+---------+ +---------+ +---------+
^
|
+---------+
| Devices |
+---------+
ACPI-related definitions
========================

View File

@ -999,6 +999,36 @@ the vfio_ap mediated device to which it is assigned as long as each new APQN
resulting from plugging it in references a queue device bound to the vfio_ap
device driver.
Driver Features
===============
The vfio_ap driver exposes a sysfs file containing supported features.
This exists so third party tools (like Libvirt and mdevctl) can query the
availability of specific features.
The features list can be found here: /sys/bus/matrix/devices/matrix/features
Entries are space delimited. Each entry consists of a combination of
alphanumeric and underscore characters.
Example:
cat /sys/bus/matrix/devices/matrix/features
guest_matrix dyn ap_config
the following features are advertised:
---------------+---------------------------------------------------------------+
| Flag | Description |
+==============+===============================================================+
| guest_matrix | guest_matrix attribute exists. It reports the matrix of |
| | adapters and domains that are or will be passed through to a |
| | guest when the mdev is attached to it. |
+--------------+---------------------------------------------------------------+
| dyn | Indicates hot plug/unplug of AP adapters, domains and control |
| | domains for a guest to which the mdev is attached. |
+------------+-----------------------------------------------------------------+
| ap_config | ap_config interface for one-shot modifications to mdev config |
+--------------+---------------------------------------------------------------+
Limitations
===========
Live guest migration is not supported for guests using AP devices without

View File

@ -170,18 +170,6 @@ NUMA
Don't parse the HMAT table for NUMA setup, or soft-reserved memory
partitioning.
numa=fake=<size>[MG]
If given as a memory unit, fills all system RAM with nodes of
size interleaved over physical nodes.
numa=fake=<N>
If given as an integer, fills all system RAM with N fake nodes
interleaved over physical nodes.
numa=fake=<N>U
If given as an integer followed by 'U', it will divide each
physical node into N emulated nodes.
ACPI
====

View File

@ -368,7 +368,7 @@ No additional type data follow ``btf_type``.
* ``info.kind_flag``: 0
* ``info.kind``: BTF_KIND_FUNC
* ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
or BTF_FUNC_EXTERN)
or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`)
* ``type``: a BTF_KIND_FUNC_PROTO type
No additional type data follow ``btf_type``.
@ -424,9 +424,8 @@ following data::
__u32 linkage;
};
``struct btf_var`` encoding:
* ``linkage``: currently only static variable 0, or globally allocated
variable in ELF sections 1
``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN -
see :ref:`BTF_Var_Linkage_Constants`.
Not all type of global variables are supported by LLVM at this point.
The following is currently available:
@ -549,6 +548,38 @@ The ``btf_enum64`` encoding:
If the original enum value is signed and the size is less than 8,
that value will be sign extended into 8 bytes.
2.3 Constant Values
-------------------
.. _BTF_Function_Linkage_Constants:
2.3.1 Function Linkage Constant Values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: Function Linkage Values and Meanings
=================== ===== ===========
kind value description
=================== ===== ===========
``BTF_FUNC_STATIC`` 0x0 definition of subprogram not visible outside containing compilation unit
``BTF_FUNC_GLOBAL`` 0x1 definition of subprogram visible outside containing compilation unit
``BTF_FUNC_EXTERN`` 0x2 declaration of a subprogram whose definition is outside the containing compilation unit
=================== ===== ===========
.. _BTF_Var_Linkage_Constants:
2.3.2 Variable Linkage Constant Values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: Variable Linkage Values and Meanings
============================ ===== ===========
kind value description
============================ ===== ===========
``BTF_VAR_STATIC`` 0x0 definition of global variable not visible outside containing compilation unit
``BTF_VAR_GLOBAL_ALLOCATED`` 0x1 definition of global variable visible outside containing compilation unit
``BTF_VAR_GLOBAL_EXTERN`` 0x2 declaration of global variable whose definition is outside the containing compilation unit
============================ ===== ===========
3. BTF Kernel API
=================

View File

@ -121,6 +121,8 @@ described in more detail in the footnotes.
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_LWT_XMIT`` | | ``lwt_xmit`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_NETFILTER`` | | ``netfilter`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_PERF_EVENT`` | | ``perf_event`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE`` | | ``raw_tp.w+`` [#rawtp]_ | |
@ -131,11 +133,23 @@ described in more detail in the footnotes.
+ + +----------------------------------+-----------+
| | | ``raw_tracepoint+`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_SCHED_ACT`` | | ``action`` | |
| ``BPF_PROG_TYPE_SCHED_ACT`` | | ``action`` [#tc_legacy]_ | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_SCHED_CLS`` | | ``classifier`` | |
| ``BPF_PROG_TYPE_SCHED_CLS`` | | ``classifier`` [#tc_legacy]_ | |
+ + +----------------------------------+-----------+
| | | ``tc`` | |
| | | ``tc`` [#tc_legacy]_ | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_NETKIT_PRIMARY`` | ``netkit/primary`` | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_NETKIT_PEER`` | ``netkit/peer`` | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_TCX_INGRESS`` | ``tc/ingress`` | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_TCX_EGRESS`` | ``tc/egress`` | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_TCX_INGRESS`` | ``tcx/ingress`` | |
+ +----------------------------------------+----------------------------------+-----------+
| | ``BPF_TCX_EGRESS`` | ``tcx/egress`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_SK_LOOKUP`` | ``BPF_SK_LOOKUP`` | ``sk_lookup`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
@ -155,7 +169,9 @@ described in more detail in the footnotes.
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_SOCK_OPS`` | ``BPF_CGROUP_SOCK_OPS`` | ``sockops`` | |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_STRUCT_OPS`` | | ``struct_ops+`` | |
| ``BPF_PROG_TYPE_STRUCT_OPS`` | | ``struct_ops+`` [#struct_ops]_ | |
+ + +----------------------------------+-----------+
| | | ``struct_ops.s+`` [#struct_ops]_ | Yes |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
| ``BPF_PROG_TYPE_SYSCALL`` | | ``syscall`` | Yes |
+-------------------------------------------+----------------------------------------+----------------------------------+-----------+
@ -209,5 +225,11 @@ described in more detail in the footnotes.
``a-zA-Z0-9_.*?``.
.. [#lsm] The ``lsm`` attachment format is ``lsm[.s]/<hook>``.
.. [#rawtp] The ``raw_tp`` attach format is ``raw_tracepoint[.w]/<tracepoint>``.
.. [#tc_legacy] The ``tc``, ``classifier`` and ``action`` attach types are deprecated, use
``tcx/*`` instead.
.. [#struct_ops] The ``struct_ops`` attach format supports ``struct_ops[.s]/<name>`` convention,
but ``name`` is ignored and it is recommended to just use plain
``SEC("struct_ops[.s]")``. The attachments are defined in a struct initializer
that is tagged with ``SEC(".struct_ops[.link]")``.
.. [#tp] The ``tracepoint`` attach format is ``tracepoint/<category>/<name>``.
.. [#iter] The ``iter`` attach format is ``iter[.s]/<struct-name>``.

View File

@ -418,7 +418,7 @@ The rules for correspondence between registers / stack slots are as follows:
linked to the registers and stack slots of the parent state with the same
indices.
* For the outer stack frames, only caller saved registers (r6-r9) and stack
* For the outer stack frames, only callee saved registers (r6-r9) and stack
slots are linked to the registers and stack slots of the parent state with the
same indices.

View File

@ -0,0 +1,8 @@
.. SPDX-License-Identifier: GPL-2.0
===========================
Scope-based Cleanup Helpers
===========================
.. kernel-doc:: include/linux/cleanup.h
:doc: scope-based cleanup helpers

View File

@ -737,8 +737,9 @@ can process the event further.
When changes to the CPUs in the system occur, the sysfs file
/sys/devices/system/cpu/crash_hotplug contains '1' if the kernel
updates the kdump capture kernel list of CPUs itself (via elfcorehdr),
or '0' if userspace must update the kdump capture kernel list of CPUs.
updates the kdump capture kernel list of CPUs itself (via elfcorehdr and
other relevant kexec segment), or '0' if userspace must update the kdump
capture kernel list of CPUs.
The availability depends on the CONFIG_HOTPLUG_CPU kernel configuration
option.
@ -750,8 +751,9 @@ file can be used in a udev rule as follows:
SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end"
For a CPU hot un/plug event, if the architecture supports kernel updates
of the elfcorehdr (which contains the list of CPUs), then the rule skips
the unload-then-reload of the kdump capture kernel.
of the elfcorehdr (which contains the list of CPUs) and other relevant
kexec segments, then the rule skips the unload-then-reload of the kdump
capture kernel.
Kernel Inline Documentations Reference
======================================

View File

@ -0,0 +1,212 @@
.. SPDX-License-Identifier: GPL-2.0+
===========
Folio Queue
===========
:Author: David Howells <dhowells@redhat.com>
.. Contents:
* Overview
* Initialisation
* Adding and removing folios
* Querying information about a folio
* Querying information about a folio_queue
* Folio queue iteration
* Folio marks
* Lockless simultaneous production/consumption issues
Overview
========
The folio_queue struct forms a single segment in a segmented list of folios
that can be used to form an I/O buffer. As such, the list can be iterated over
using the ITER_FOLIOQ iov_iter type.
The publicly accessible members of the structure are::
struct folio_queue {
struct folio_queue *next;
struct folio_queue *prev;
...
};
A pair of pointers are provided, ``next`` and ``prev``, that point to the
segments on either side of the segment being accessed. Whilst this is a
doubly-linked list, it is intentionally not a circular list; the outward
sibling pointers in terminal segments should be NULL.
Each segment in the list also stores:
* an ordered sequence of folio pointers,
* the size of each folio and
* three 1-bit marks per folio,
but hese should not be accessed directly as the underlying data structure may
change, but rather the access functions outlined below should be used.
The facility can be made accessible by::
#include <linux/folio_queue.h>
and to use the iterator::
#include <linux/uio.h>
Initialisation
==============
A segment should be initialised by calling::
void folioq_init(struct folio_queue *folioq);
with a pointer to the segment to be initialised. Note that this will not
necessarily initialise all the folio pointers, so care must be taken to check
the number of folios added.
Adding and removing folios
==========================
Folios can be set in the next unused slot in a segment struct by calling one
of::
unsigned int folioq_append(struct folio_queue *folioq,
struct folio *folio);
unsigned int folioq_append_mark(struct folio_queue *folioq,
struct folio *folio);
Both functions update the stored folio count, store the folio and note its
size. The second function also sets the first mark for the folio added. Both
functions return the number of the slot used. [!] Note that no attempt is made
to check that the capacity wasn't overrun and the list will not be extended
automatically.
A folio can be excised by calling::
void folioq_clear(struct folio_queue *folioq, unsigned int slot);
This clears the slot in the array and also clears all the marks for that folio,
but doesn't change the folio count - so future accesses of that slot must check
if the slot is occupied.
Querying information about a folio
==================================
Information about the folio in a particular slot may be queried by the
following function::
struct folio *folioq_folio(const struct folio_queue *folioq,
unsigned int slot);
If a folio has not yet been set in that slot, this may yield an undefined
pointer. The size of the folio in a slot may be queried with either of::
unsigned int folioq_folio_order(const struct folio_queue *folioq,
unsigned int slot);
size_t folioq_folio_size(const struct folio_queue *folioq,
unsigned int slot);
The first function returns the size as an order and the second as a number of
bytes.
Querying information about a folio_queue
========================================
Information may be retrieved about a particular segment with the following
functions::
unsigned int folioq_nr_slots(const struct folio_queue *folioq);
unsigned int folioq_count(struct folio_queue *folioq);
bool folioq_full(struct folio_queue *folioq);
The first function returns the maximum capacity of a segment. It must not be
assumed that this won't vary between segments. The second returns the number
of folios added to a segments and the third is a shorthand to indicate if the
segment has been filled to capacity.
Not that the count and fullness are not affected by clearing folios from the
segment. These are more about indicating how many slots in the array have been
initialised, and it assumed that slots won't get reused, but rather the segment
will get discarded as the queue is consumed.
Folio marks
===========
Folios within a queue can also have marks assigned to them. These marks can be
used to note information such as if a folio needs folio_put() calling upon it.
There are three marks available to be set for each folio.
The marks can be set by::
void folioq_mark(struct folio_queue *folioq, unsigned int slot);
void folioq_mark2(struct folio_queue *folioq, unsigned int slot);
void folioq_mark3(struct folio_queue *folioq, unsigned int slot);
Cleared by::
void folioq_unmark(struct folio_queue *folioq, unsigned int slot);
void folioq_unmark2(struct folio_queue *folioq, unsigned int slot);
void folioq_unmark3(struct folio_queue *folioq, unsigned int slot);
And the marks can be queried by::
bool folioq_is_marked(const struct folio_queue *folioq, unsigned int slot);
bool folioq_is_marked2(const struct folio_queue *folioq, unsigned int slot);
bool folioq_is_marked3(const struct folio_queue *folioq, unsigned int slot);
The marks can be used for any purpose and are not interpreted by this API.
Folio queue iteration
=====================
A list of segments may be iterated over using the I/O iterator facility using
an ``iov_iter`` iterator of ``ITER_FOLIOQ`` type. The iterator may be
initialised with::
void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
const struct folio_queue *folioq,
unsigned int first_slot, unsigned int offset,
size_t count);
This may be told to start at a particular segment, slot and offset within a
queue. The iov iterator functions will follow the next pointers when advancing
and prev pointers when reverting when needed.
Lockless simultaneous production/consumption issues
===================================================
If properly managed, the list can be extended by the producer at the head end
and shortened by the consumer at the tail end simultaneously without the need
to take locks. The ITER_FOLIOQ iterator inserts appropriate barriers to aid
with this.
Care must be taken when simultaneously producing and consuming a list. If the
last segment is reached and the folios it refers to are entirely consumed by
the IOV iterators, an iov_iter struct will be left pointing to the last segment
with a slot number equal to the capacity of that segment. The iterator will
try to continue on from this if there's another segment available when it is
used again, but care must be taken lest the segment got removed and freed by
the consumer before the iterator was advanced.
It is recommended that the queue always contain at least one segment, even if
that segment has never been filled or is entirely spent. This prevents the
head and tail pointers from collapsing.
API Function Reference
======================
.. kernel-doc:: include/linux/folio_queue.h

View File

@ -35,7 +35,9 @@ Library functionality that is used throughout the kernel.
kobject
kref
cleanup
assoc_array
folio_queue
xarray
maple_tree
idr

View File

@ -576,13 +576,12 @@ The field width is passed by value, the bitmap is passed by reference.
Helper macros cpumask_pr_args() and nodemask_pr_args() are available to ease
printing cpumask and nodemask.
Flags bitfields such as page flags, page_type, gfp_flags
Flags bitfields such as page flags and gfp_flags
--------------------------------------------------------
::
%pGp 0x17ffffc0002036(referenced|uptodate|lru|active|private|node=0|zone=2|lastcpupid=0x1fffff)
%pGt 0xffffff7f(buddy)
%pGg GFP_USER|GFP_DMA32|GFP_NOWARN
%pGv read|exec|mayread|maywrite|mayexec|denywrite
@ -591,7 +590,6 @@ would construct the value. The type of flags is given by the third
character. Currently supported are:
- p - [p]age flags, expects value of type (``unsigned long *``)
- t - page [t]ype, expects value of type (``unsigned int *``)
- v - [v]ma_flags, expects value of type (``unsigned long *``)
- g - [g]fp_flags, expects value of type (``gfp_t *``)

View File

@ -203,7 +203,7 @@ Avoiding unaligned accesses
===========================
The easiest way to avoid unaligned access is to use the get_unaligned() and
put_unaligned() macros provided by the <asm/unaligned.h> header file.
put_unaligned() macros provided by the <linux/unaligned.h> header file.
Going back to an earlier example of code that potentially causes unaligned
access::

View File

@ -53,6 +53,13 @@ configurable via the Kconfig option ``CONFIG_KFENCE_DEFERRABLE``.
The KUnit test suite is very likely to fail when using a deferrable timer
since it currently causes very unpredictable sample intervals.
By default KFENCE will only sample 1 heap allocation within each sample
interval. *Burst mode* allows to sample successive heap allocations, where the
kernel boot parameter ``kfence.burst`` can be set to a non-zero value which
denotes the *additional* successive allocations within a sample interval;
setting ``kfence.burst=N`` means that ``1 + N`` successive allocations are
attempted through KFENCE for each sample interval.
The KFENCE memory pool is of fixed size, and if the pool is exhausted, no
further KFENCE allocations occur. With ``CONFIG_KFENCE_NUM_OBJECTS`` (default
255), the number of available guarded objects can be controlled. Each object

View File

@ -0,0 +1,10 @@
.. SPDX-License-Identifier: GPL-2.0
========
Clk API
========
The KUnit clk API is used to test clk providers and clk consumers.
.. kernel-doc:: drivers/clk/clk_kunit_helpers.c
:export:

View File

@ -9,11 +9,17 @@ API Reference
test
resource
functionredirection
clk
of
platformdevice
This page documents the KUnit kernel testing API. It is divided into the
following sections:
Core KUnit API
==============
Documentation/dev-tools/kunit/api/test.rst
- Documents all of the standard testing API
@ -25,3 +31,18 @@ Documentation/dev-tools/kunit/api/resource.rst
Documentation/dev-tools/kunit/api/functionredirection.rst
- Documents the KUnit Function Redirection API
Driver KUnit API
================
Documentation/dev-tools/kunit/api/clk.rst
- Documents the KUnit clk API
Documentation/dev-tools/kunit/api/of.rst
- Documents the KUnit device tree (OF) API
Documentation/dev-tools/kunit/api/platformdevice.rst
- Documents the KUnit platform device API

View File

@ -0,0 +1,13 @@
.. SPDX-License-Identifier: GPL-2.0
====================
Device Tree (OF) API
====================
The KUnit device tree API is used to test device tree (of_*) dependent code.
.. kernel-doc:: include/kunit/of.h
:internal:
.. kernel-doc:: drivers/of/of_kunit_helpers.c
:export:

View File

@ -0,0 +1,10 @@
.. SPDX-License-Identifier: GPL-2.0
===================
Platform Device API
===================
The KUnit platform device API is used to test platform devices.
.. kernel-doc:: lib/kunit/platform.c
:export:

View File

@ -0,0 +1,38 @@
# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/cirrus/cirrus,ep9301.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Cirrus Logic EP93xx platforms
description:
The EP93xx SoC is a ARMv4T-based with 200 MHz ARM9 CPU.
maintainers:
- Alexander Sverdlin <alexander.sverdlin@gmail.com>
- Nikita Shubin <nikita.shubin@maquefel.me>
properties:
$nodename:
const: '/'
compatible:
oneOf:
- description: The TS-7250 is a compact, full-featured Single Board
Computer (SBC) based upon the Cirrus EP9302 ARM9 CPU
items:
- const: technologic,ts7250
- const: cirrus,ep9301
- description: The Liebherr BK3 is a derivate from ts7250 board
items:
- const: liebherr,bk3
- const: cirrus,ep9301
- description: EDB302 is an evaluation board by Cirrus Logic,
based on a Cirrus Logic EP9302 CPU
items:
- const: cirrus,edb9302
- const: cirrus,ep9301
additionalProperties: true

View File

@ -1,24 +0,0 @@
Mediatek bdpsys controller
============================
The Mediatek bdpsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt2701-bdpsys", "syscon"
- "mediatek,mt2712-bdpsys", "syscon"
- "mediatek,mt7623-bdpsys", "mediatek,mt2701-bdpsys", "syscon"
- #clock-cells: Must be 1
The bdpsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
bdpsys: clock-controller@1c000000 {
compatible = "mediatek,mt2701-bdpsys", "syscon";
reg = <0 0x1c000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,24 +0,0 @@
MediaTek CAMSYS controller
============================
The MediaTek camsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt6765-camsys", "syscon"
- "mediatek,mt6779-camsys", "syscon"
- "mediatek,mt8183-camsys", "syscon"
- #clock-cells: Must be 1
The camsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
camsys: camsys@1a000000 {
compatible = "mediatek,mt8183-camsys", "syscon";
reg = <0 0x1a000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,30 +0,0 @@
Mediatek imgsys controller
============================
The Mediatek imgsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-imgsys", "syscon"
- "mediatek,mt2712-imgsys", "syscon"
- "mediatek,mt6765-imgsys", "syscon"
- "mediatek,mt6779-imgsys", "syscon"
- "mediatek,mt6797-imgsys", "syscon"
- "mediatek,mt7623-imgsys", "mediatek,mt2701-imgsys", "syscon"
- "mediatek,mt8167-imgsys", "syscon"
- "mediatek,mt8173-imgsys", "syscon"
- "mediatek,mt8183-imgsys", "syscon"
- #clock-cells: Must be 1
The imgsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
imgsys: clock-controller@15000000 {
compatible = "mediatek,mt8173-imgsys", "syscon";
reg = <0 0x15000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,22 +0,0 @@
Mediatek ipesys controller
============================
The Mediatek ipesys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt6779-ipesys", "syscon"
- #clock-cells: Must be 1
The ipesys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
ipesys: clock-controller@1b000000 {
compatible = "mediatek,mt6779-ipesys", "syscon";
reg = <0 0x1b000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,43 +0,0 @@
Mediatek IPU controller
============================
The Mediatek ipu controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt8183-ipu_conn", "syscon"
- "mediatek,mt8183-ipu_adl", "syscon"
- "mediatek,mt8183-ipu_core0", "syscon"
- "mediatek,mt8183-ipu_core1", "syscon"
- #clock-cells: Must be 1
The ipu controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
ipu_conn: syscon@19000000 {
compatible = "mediatek,mt8183-ipu_conn", "syscon";
reg = <0 0x19000000 0 0x1000>;
#clock-cells = <1>;
};
ipu_adl: syscon@19010000 {
compatible = "mediatek,mt8183-ipu_adl", "syscon";
reg = <0 0x19010000 0 0x1000>;
#clock-cells = <1>;
};
ipu_core0: syscon@19180000 {
compatible = "mediatek,mt8183-ipu_core0", "syscon";
reg = <0 0x19180000 0 0x1000>;
#clock-cells = <1>;
};
ipu_core1: syscon@19280000 {
compatible = "mediatek,mt8183-ipu_core1", "syscon";
reg = <0 0x19280000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,22 +0,0 @@
Mediatek jpgdecsys controller
============================
The Mediatek jpgdecsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt2712-jpgdecsys", "syscon"
- #clock-cells: Must be 1
The jpgdecsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
jpgdecsys: syscon@19000000 {
compatible = "mediatek,mt2712-jpgdecsys", "syscon";
reg = <0 0x19000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,23 +0,0 @@
Mediatek mcucfg controller
============================
The Mediatek mcucfg controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt2712-mcucfg", "syscon"
- "mediatek,mt8183-mcucfg", "syscon"
- #clock-cells: Must be 1
The mcucfg controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
mcucfg: syscon@10220000 {
compatible = "mediatek,mt2712-mcucfg", "syscon";
reg = <0 0x10220000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,25 +0,0 @@
Mediatek mfgcfg controller
============================
The Mediatek mfgcfg controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt2712-mfgcfg", "syscon"
- "mediatek,mt6779-mfgcfg", "syscon"
- "mediatek,mt8167-mfgcfg", "syscon"
- "mediatek,mt8183-mfgcfg", "syscon"
- #clock-cells: Must be 1
The mfgcfg controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
mfgcfg: syscon@13000000 {
compatible = "mediatek,mt2712-mfgcfg", "syscon";
reg = <0 0x13000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,28 +0,0 @@
Mediatek mipi0a (mipi_rx_ana_csi0a) controller
============================
The Mediatek mipi0a controller provides various clocks
to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt6765-mipi0a", "syscon"
- #clock-cells: Must be 1
The mipi0a controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
The mipi0a controller also uses the common power domain from
Documentation/devicetree/bindings/soc/mediatek/scpsys.txt
The available power domains are defined in dt-bindings/power/mt*-power.h.
Example:
mipi0a: clock-controller@11c10000 {
compatible = "mediatek,mt6765-mipi0a", "syscon";
reg = <0 0x11c10000 0 0x1000>;
power-domains = <&scpsys MT6765_POWER_DOMAIN_CAM>;
#clock-cells = <1>;
};

View File

@ -1,27 +0,0 @@
Mediatek vcodecsys controller
============================
The Mediatek vcodecsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt6765-vcodecsys", "syscon"
- #clock-cells: Must be 1
The vcodecsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
The vcodecsys controller also uses the common power domain from
Documentation/devicetree/bindings/soc/mediatek/scpsys.txt
The available power domains are defined in dt-bindings/power/mt*-power.h.
Example:
venc_gcon: clock-controller@17000000 {
compatible = "mediatek,mt6765-vcodecsys", "syscon";
reg = <0 0x17000000 0 0x10000>;
power-domains = <&scpsys MT6765_POWER_DOMAIN_VCODEC>;
#clock-cells = <1>;
};

View File

@ -1,29 +0,0 @@
Mediatek vdecsys controller
============================
The Mediatek vdecsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-vdecsys", "syscon"
- "mediatek,mt2712-vdecsys", "syscon"
- "mediatek,mt6779-vdecsys", "syscon"
- "mediatek,mt6797-vdecsys", "syscon"
- "mediatek,mt7623-vdecsys", "mediatek,mt2701-vdecsys", "syscon"
- "mediatek,mt8167-vdecsys", "syscon"
- "mediatek,mt8173-vdecsys", "syscon"
- "mediatek,mt8183-vdecsys", "syscon"
- #clock-cells: Must be 1
The vdecsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vdecsys: clock-controller@16000000 {
compatible = "mediatek,mt8173-vdecsys", "syscon";
reg = <0 0x16000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,22 +0,0 @@
Mediatek vencltsys controller
============================
The Mediatek vencltsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-vencltsys", "syscon"
- #clock-cells: Must be 1
The vencltsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vencltsys: clock-controller@19000000 {
compatible = "mediatek,mt8173-vencltsys", "syscon";
reg = <0 0x19000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -1,26 +0,0 @@
Mediatek vencsys controller
============================
The Mediatek vencsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
- "mediatek,mt2712-vencsys", "syscon"
- "mediatek,mt6779-vencsys", "syscon"
- "mediatek,mt6797-vencsys", "syscon"
- "mediatek,mt8173-vencsys", "syscon"
- "mediatek,mt8183-vencsys", "syscon"
- #clock-cells: Must be 1
The vencsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vencsys: clock-controller@18000000 {
compatible = "mediatek,mt8173-vencsys", "syscon";
reg = <0 0x18000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -30,6 +30,8 @@ select:
- marvell,armada-3700-ahci
- marvell,armada-8k-ahci
- marvell,berlin2q-ahci
- qcom,apq8064-ahci
- qcom,ipq806x-ahci
- socionext,uniphier-pro4-ahci
- socionext,uniphier-pxs2-ahci
- socionext,uniphier-pxs3-ahci
@ -45,6 +47,8 @@ properties:
- marvell,armada-8k-ahci
- marvell,berlin2-ahci
- marvell,berlin2q-ahci
- qcom,apq8064-ahci
- qcom,ipq806x-ahci
- socionext,uniphier-pro4-ahci
- socionext,uniphier-pxs2-ahci
- socionext,uniphier-pxs3-ahci
@ -64,11 +68,11 @@ properties:
clocks:
minItems: 1
maxItems: 3
maxItems: 5
clock-names:
minItems: 1
maxItems: 3
maxItems: 5
interrupts:
maxItems: 1
@ -97,6 +101,31 @@ required:
allOf:
- $ref: ahci-common.yaml#
- if:
properties:
compatible:
contains:
enum:
- qcom,apq8064-ahci
- qcom,ipq806x-ahci
then:
properties:
clocks:
minItems: 5
clock-names:
items:
- const: slave_iface
- const: iface
- const: core
- const: rxoob
- const: pmalive
required:
- phys
- phy-names
- clocks
- clock-names
- if:
properties:
compatible:

View File

@ -0,0 +1,42 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/ata/cirrus,ep9312-pata.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Cirrus Logic EP9312 PATA controller
maintainers:
- Damien Le Moal <dlemoal@kernel.org>
properties:
compatible:
oneOf:
- const: cirrus,ep9312-pata
- items:
- const: cirrus,ep9315-pata
- const: cirrus,ep9312-pata
reg:
maxItems: 1
interrupts:
maxItems: 1
required:
- compatible
- reg
- interrupts
additionalProperties: false
examples:
- |
ide@800a0000 {
compatible = "cirrus,ep9312-pata";
reg = <0x800a0000 0x38>;
interrupt-parent = <&vic1>;
interrupts = <8>;
pinctrl-names = "default";
pinctrl-0 = <&ide_default_pins>;
};

View File

@ -19,6 +19,7 @@ properties:
- fsl,imx53-ahci
- fsl,imx6q-ahci
- fsl,imx6qp-ahci
- fsl,imx8qm-ahci
reg:
maxItems: 1
@ -27,12 +28,14 @@ properties:
maxItems: 1
clocks:
minItems: 2
items:
- description: sata clock
- description: sata reference clock
- description: ahb clock
clock-names:
minItems: 2
items:
- const: sata
- const: sata_ref
@ -58,6 +61,25 @@ properties:
$ref: /schemas/types.yaml#/definitions/flag
description: if present, disable spread-spectrum clocking on the SATA link.
phys:
items:
- description: phandle to SATA PHY.
Since "REXT" pin is only present for first lane of i.MX8QM PHY, it's
calibration result will be stored, passed through second lane, and
shared with all three lanes PHY. The first two lanes PHY are used as
calibration PHYs, although only the third lane PHY is used by SATA.
- description: phandle to the first lane PHY of i.MX8QM.
- description: phandle to the second lane PHY of i.MX8QM.
phy-names:
items:
- const: sata-phy
- const: cali-phy0
- const: cali-phy1
power-domains:
maxItems: 1
required:
- compatible
- reg
@ -65,6 +87,31 @@ required:
- clocks
- clock-names
allOf:
- if:
properties:
compatible:
contains:
enum:
- fsl,imx53-ahci
- fsl,imx6q-ahci
- fsl,imx6qp-ahci
then:
properties:
clock-names:
minItems: 3
- if:
properties:
compatible:
contains:
enum:
- fsl,imx8qm-ahci
then:
properties:
clock-names:
minItems: 2
additionalProperties: false
examples:

View File

@ -1,48 +0,0 @@
* Qualcomm AHCI SATA Controller
SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
- compatible : compatible list, must contain "generic-ahci"
- interrupts : <interrupt mapping for SATA IRQ>
- reg : <registers mapping>
- phys : Must contain exactly one entry as specified
in phy-bindings.txt
- phy-names : Must be "sata-phy"
Required properties for "qcom,ipq806x-ahci" compatible:
- clocks : Must contain an entry for each entry in clock-names.
- clock-names : Shall be:
"slave_iface" - Fabric port AHB clock for SATA
"iface" - AHB clock
"core" - core clock
"rxoob" - RX out-of-band clock
"pmalive" - Power Module Alive clock
- assigned-clocks : Shall be:
SATA_RXOOB_CLK
SATA_PMALIVE_CLK
- assigned-clock-rates : Shall be:
100Mhz (100000000) for SATA_RXOOB_CLK
100Mhz (100000000) for SATA_PMALIVE_CLK
Example:
sata@29000000 {
compatible = "qcom,ipq806x-ahci", "generic-ahci";
reg = <0x29000000 0x180>;
interrupts = <0 209 0x0>;
clocks = <&gcc SFAB_SATA_S_H_CLK>,
<&gcc SATA_H_CLK>,
<&gcc SATA_A_CLK>,
<&gcc SATA_RXOOB_CLK>,
<&gcc SATA_PMALIVE_CLK>;
clock-names = "slave_iface", "iface", "core",
"rxoob", "pmalive";
assigned-clocks = <&gcc SATA_RXOOB_CLK>, <&gcc SATA_PMALIVE_CLK>;
assigned-clock-rates = <100000000>, <100000000>;
phys = <&sata_phy>;
phy-names = "sata-phy";
};

View File

@ -42,6 +42,7 @@ properties:
- atmel,sama5d3-pmc
- atmel,sama5d4-pmc
- microchip,sam9x60-pmc
- microchip,sam9x7-pmc
- microchip,sama7g5-pmc
- const: syscon
@ -88,6 +89,7 @@ allOf:
contains:
enum:
- microchip,sam9x60-pmc
- microchip,sam9x7-pmc
- microchip,sama7g5-pmc
then:
properties:

View File

@ -18,7 +18,9 @@ properties:
- atmel,sama5d4-sckc
- microchip,sam9x60-sckc
- items:
- const: microchip,sama7g5-sckc
- enum:
- microchip,sam9x7-sckc
- microchip,sama7g5-sckc
- const: microchip,sam9x60-sckc
reg:

View File

@ -134,9 +134,13 @@ properties:
"#reset-cells":
const: 1
clocks: true
clocks:
minItems: 3
maxItems: 4
clock-names: true
clock-names:
minItems: 3
maxItems: 4
additionalProperties: false

View File

@ -67,9 +67,9 @@ properties:
minItems: 1
maxItems: 19
clocks: true
assigned-clocks: true
assigned-clock-parents: true
clocks:
minItems: 1
maxItems: 19
additionalProperties: false

View File

@ -44,6 +44,9 @@ properties:
ID in its "clocks" phandle cell. See include/dt-bindings/clock/imx8mp-clock.h
for the full list of i.MX8MP IMX8MP_CLK_AUDIOMIX_ clock IDs.
'#reset-cells':
const: 1
required:
- compatible
- reg

View File

@ -35,7 +35,7 @@ properties:
- mediatek,mt2701-apmixedsys
- mediatek,mt2712-apmixedsys
- mediatek,mt6765-apmixedsys
- mediatek,mt6779-apmixedsys
- mediatek,mt6779-apmixed
- mediatek,mt6795-apmixedsys
- mediatek,mt7629-apmixedsys
- mediatek,mt8167-apmixedsys

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,infracfg.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,infracfg.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Infrastructure System Configuration Controller

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8186-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8186-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Functional Clock Controller for MT8186

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8186-sys-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8186-sys-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek System Clock Controller for MT8186

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8192-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8192-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Functional Clock Controller for MT8192

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8192-sys-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8192-sys-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek System Clock Controller for MT8192

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8195-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8195-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Functional Clock Controller for MT8195

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,mt8195-sys-clock.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,mt8195-sys-clock.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek System Clock Controller for MT8195

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/mediatek/mediatek,pericfg.yaml#
$id: http://devicetree.org/schemas/clock/mediatek,pericfg.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Peripheral Configuration Controller

View File

@ -0,0 +1,93 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/clock/mediatek,syscon.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Clock controller syscon's
maintainers:
- Matthias Brugger <matthias.bgg@gmail.com>
- AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
description:
The MediaTek clock controller syscon's provide various clocks to the system.
properties:
compatible:
oneOf:
- items:
- enum:
- mediatek,mt2701-bdpsys
- mediatek,mt2701-imgsys
- mediatek,mt2701-vdecsys
- mediatek,mt2712-bdpsys
- mediatek,mt2712-imgsys
- mediatek,mt2712-jpgdecsys
- mediatek,mt2712-mcucfg
- mediatek,mt2712-mfgcfg
- mediatek,mt2712-vdecsys
- mediatek,mt2712-vencsys
- mediatek,mt6765-camsys
- mediatek,mt6765-imgsys
- mediatek,mt6765-mipi0a
- mediatek,mt6765-vcodecsys
- mediatek,mt6779-camsys
- mediatek,mt6779-imgsys
- mediatek,mt6779-ipesys
- mediatek,mt6779-mfgcfg
- mediatek,mt6779-vdecsys
- mediatek,mt6779-vencsys
- mediatek,mt6797-imgsys
- mediatek,mt6797-vdecsys
- mediatek,mt6797-vencsys
- mediatek,mt8167-imgsys
- mediatek,mt8167-mfgcfg
- mediatek,mt8167-vdecsys
- mediatek,mt8173-imgsys
- mediatek,mt8173-vdecsys
- mediatek,mt8173-vencltsys
- mediatek,mt8173-vencsys
- mediatek,mt8183-camsys
- mediatek,mt8183-imgsys
- mediatek,mt8183-ipu_conn
- mediatek,mt8183-ipu_adl
- mediatek,mt8183-ipu_core0
- mediatek,mt8183-ipu_core1
- mediatek,mt8183-mcucfg
- mediatek,mt8183-mfgcfg
- mediatek,mt8183-vdecsys
- mediatek,mt8183-vencsys
- const: syscon
- items:
- const: mediatek,mt7623-bdpsys
- const: mediatek,mt2701-bdpsys
- const: syscon
- items:
- const: mediatek,mt7623-imgsys
- const: mediatek,mt2701-imgsys
- const: syscon
- items:
- const: mediatek,mt7623-vdecsys
- const: mediatek,mt2701-vdecsys
- const: syscon
reg:
maxItems: 1
'#clock-cells':
const: 1
required:
- compatible
- '#clock-cells'
additionalProperties: false
examples:
- |
clock-controller@11220000 {
compatible = "mediatek,mt2701-bdpsys", "syscon";
reg = <0x11220000 0x2000>;
#clock-cells = <1>;
};

View File

@ -16,6 +16,7 @@ properties:
- nxp,imx95-lvds-csr
- nxp,imx95-display-csr
- nxp,imx95-camera-csr
- nxp,imx95-netcmix-blk-ctrl
- nxp,imx95-vpu-csr
- const: syscon

View File

@ -1,30 +0,0 @@
NXP LPC32xx Clock Controller
Required properties:
- compatible: should be "nxp,lpc3220-clk"
- reg: should contain clock controller registers location and length
- #clock-cells: must be 1, the cell holds id of a clock provided by the
clock controller
- clocks: phandles of external oscillators, the list must contain one
32768 Hz oscillator and may have one optional high frequency oscillator
- clock-names: list of external oscillator clock names, must contain
"xtal_32k" and may have optional "xtal"
Examples:
/* System Control Block */
scb {
compatible = "simple-bus";
ranges = <0x0 0x040004000 0x00001000>;
#address-cells = <1>;
#size-cells = <1>;
clk: clock-controller@0 {
compatible = "nxp,lpc3220-clk";
reg = <0x00 0x114>;
#clock-cells = <1>;
clocks = <&xtal_32k>, <&xtal>;
clock-names = "xtal_32k", "xtal";
};
};

View File

@ -0,0 +1,51 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/clock/nxp,lpc3220-clk.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: NXP LPC32xx Clock Controller
maintainers:
- Animesh Agarwal <animeshagarwal28@gmail.com>
properties:
compatible:
const: nxp,lpc3220-clk
reg:
maxItems: 1
'#clock-cells':
const: 1
clocks:
minItems: 1
items:
- description: External 32768 Hz oscillator.
- description: Optional high frequency oscillator.
clock-names:
minItems: 1
items:
- const: xtal_32k
- const: xtal
required:
- compatible
- reg
- '#clock-cells'
- clocks
- clock-names
additionalProperties: false
examples:
- |
clock-controller@0 {
compatible = "nxp,lpc3220-clk";
reg = <0x00 0x114>;
#clock-cells = <1>;
clocks = <&xtal_32k>, <&xtal>;
clock-names = "xtal_32k", "xtal";
};

View File

@ -1,22 +0,0 @@
NXP LPC32xx USB Clock Controller
Required properties:
- compatible: should be "nxp,lpc3220-usb-clk"
- reg: should contain clock controller registers location and length
- #clock-cells: must be 1, the cell holds id of a clock provided by the
USB clock controller
Examples:
usb {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
ranges = <0x0 0x31020000 0x00001000>;
usbclk: clock-controller@f00 {
compatible = "nxp,lpc3220-usb-clk";
reg = <0xf00 0x100>;
#clock-cells = <1>;
};
};

View File

@ -0,0 +1,35 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/clock/nxp,lpc3220-usb-clk.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: NXP LPC32xx USB Clock Controller
maintainers:
- Animesh Agarwal <animeshagarwal28@gmail.com>
properties:
compatible:
const: nxp,lpc3220-usb-clk
reg:
maxItems: 1
'#clock-cells':
const: 1
required:
- compatible
- reg
- '#clock-cells'
additionalProperties: false
examples:
- |
clock-controller@f00 {
compatible = "nxp,lpc3220-usb-clk";
reg = <0xf00 0x100>;
#clock-cells = <1>;
};

View File

@ -21,6 +21,7 @@ properties:
- qcom,ipq6018-a53pll
- qcom,ipq8074-a53pll
- qcom,ipq9574-a73pll
- qcom,msm8226-a7pll
- qcom,msm8916-a53pll
- qcom,msm8939-a53pll
@ -40,6 +41,9 @@ properties:
operating-points-v2: true
opp-table:
type: object
required:
- compatible
- reg

View File

@ -0,0 +1,47 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/clock/qcom,qcs404-turingcc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm Turing Clock & Reset Controller on QCS404
maintainers:
- Bjorn Andersson <andersson@kernel.org>
properties:
compatible:
const: qcom,qcs404-turingcc
reg:
maxItems: 1
clocks:
maxItems: 1
'#clock-cells':
const: 1
'#reset-cells':
const: 1
required:
- compatible
- reg
- clocks
- '#clock-cells'
- '#reset-cells'
additionalProperties: false
examples:
- |
#include <dt-bindings/clock/qcom,gcc-qcs404.h>
clock-controller@800000 {
compatible = "qcom,qcs404-turingcc";
reg = <0x00800000 0x30000>;
clocks = <&gcc GCC_CDSP_CFG_AHB_CLK>;
#clock-cells = <1>;
#reset-cells = <1>;
};

Some files were not shown because too many files have changed in this diff Show More