rust: init: add initialization macros

Add the following initializer macros:
- `#[pin_data]` to annotate structurally pinned fields of structs,
  needed for `pin_init!` and `try_pin_init!` to select the correct
  initializer of fields.
- `pin_init!` create a pin-initializer for a struct with the
  `Infallible` error type.
- `try_pin_init!` create a pin-initializer for a struct with a custom
  error type (`kernel::error::Error` is the default).
- `init!` create an in-place-initializer for a struct with the
  `Infallible` error type.
- `try_init!` create an in-place-initializer for a struct with a custom
  error type (`kernel::error::Error` is the default).

Also add their needed internal helper traits and structs.

Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com>
Link: https://lore.kernel.org/r/20230408122429.1103522-8-y86-dev@protonmail.com
[ Fixed three typos. ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This commit is contained in:
Benno Lossin 2023-04-08 12:25:51 +00:00 committed by Miguel Ojeda
parent 90e53c5e70
commit fc6c6baa1f
6 changed files with 1747 additions and 7 deletions

View File

@ -14,7 +14,8 @@
//! - an in-place constructor,
//! - a memory location that can hold your `struct`.
//!
//! To get an in-place constructor there are generally two options:
//! To get an in-place constructor there are generally three options:
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
//! - a custom function/macro returning an in-place constructor provided by someone else,
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
//!
@ -22,6 +23,87 @@
//! the macros/types/functions are generally named like the pinned variants without the `pin`
//! prefix.
//!
//! # Examples
//!
//! ## Using the [`pin_init!`] macro
//!
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! #[pin_data]
//! struct Foo {
//! #[pin]
//! a: Mutex<usize>,
//! b: u32,
//! }
//!
//! let foo = pin_init!(Foo {
//! a <- new_mutex!(42, "Foo::a"),
//! b: 24,
//! });
//! ```
//!
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
//! (or just the stack) to actually initialize a `Foo`:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! # use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! # #[pin_data]
//! # struct Foo {
//! # #[pin]
//! # a: Mutex<usize>,
//! # b: u32,
//! # }
//! # let foo = pin_init!(Foo {
//! # a <- new_mutex!(42, "Foo::a"),
//! # b: 24,
//! # });
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
//! ```
//!
//! For more information see the [`pin_init!`] macro.
//!
//! ## Using a custom function/macro that returns an initializer
//!
//! Many types from the kernel supply a function/macro that returns an initializer, because the
//! above method only works for types where you can access the fields.
//!
//! ```rust
//! # use kernel::{new_mutex, sync::{Arc, Mutex}};
//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
//! ```
//!
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
//! #[pin_data]
//! struct DriverData {
//! #[pin]
//! status: Mutex<i32>,
//! buffer: Box<[u8; 1_000_000]>,
//! }
//!
//! impl DriverData {
//! fn new() -> impl PinInit<Self, Error> {
//! try_pin_init!(Self {
//! status <- new_mutex!(0, "DriverData::status"),
//! buffer: Box::init(kernel::init::zeroed())?,
//! })
//! }
//! }
//! ```
//!
//! [`sync`]: kernel::sync
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
//! [structurally pinned fields]:
@ -33,12 +115,729 @@
//! [`Opaque`]: kernel::types::Opaque
//! [`pin_data`]: ::macros::pin_data
//! [`UniqueArc<T>`]: kernel::sync::UniqueArc
//! [`Box<T>`]: alloc::boxed::Box
use core::{convert::Infallible, marker::PhantomData, mem::MaybeUninit};
use alloc::boxed::Box;
use core::{cell::Cell, convert::Infallible, marker::PhantomData, mem::MaybeUninit, ptr};
#[doc(hidden)]
pub mod __internal;
#[doc(hidden)]
pub mod macros;
/// Construct an in-place, pinned initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_pin_init!`].
///
/// The syntax is almost identical to that of a normal `struct` initializer:
///
/// ```rust
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// #[pin_data]
/// struct Foo {
/// a: usize,
/// b: Bar,
/// }
///
/// #[pin_data]
/// struct Bar {
/// x: u32,
/// }
///
/// # fn demo() -> impl PinInit<Foo> {
/// let a = 42;
///
/// let initializer = pin_init!(Foo {
/// a,
/// b: Bar {
/// x: 64,
/// },
/// });
/// # initializer }
/// # Box::pin_init(demo()).unwrap();
/// ```
///
/// Arbitrary Rust expressions can be used to set the value of a variable.
///
/// The fields are initialized in the order that they appear in the initializer. So it is possible
/// to read already initialized fields using raw pointers.
///
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
/// initializer.
///
/// # Init-functions
///
/// When working with this API it is often desired to let others construct your types without
/// giving access to all fields. This is where you would normally write a plain function `new`
/// that would return a new instance of your type. With this API that is also possible.
/// However, there are a few extra things to keep in mind.
///
/// To create an initializer function, simply declare it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
/// # use kernel::{init, pin_init, prelude::*, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// # x: u32,
/// # }
/// impl Foo {
/// fn new() -> impl PinInit<Self> {
/// pin_init!(Self {
/// a: 42,
/// b: Bar {
/// x: 64,
/// },
/// })
/// }
/// }
/// ```
///
/// Users of `Foo` can now create it like this:
///
/// ```rust
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl PinInit<Self> {
/// # pin_init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// let foo = Box::pin_init(Foo::new());
/// ```
///
/// They can also easily embed it into their own `struct`s:
///
/// ```rust
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
/// # use core::pin::Pin;
/// # #[pin_data]
/// # struct Foo {
/// # a: usize,
/// # b: Bar,
/// # }
/// # #[pin_data]
/// # struct Bar {
/// # x: u32,
/// # }
/// # impl Foo {
/// # fn new() -> impl PinInit<Self> {
/// # pin_init!(Self {
/// # a: 42,
/// # b: Bar {
/// # x: 64,
/// # },
/// # })
/// # }
/// # }
/// #[pin_data]
/// struct FooContainer {
/// #[pin]
/// foo1: Foo,
/// #[pin]
/// foo2: Foo,
/// other: u32,
/// }
///
/// impl FooContainer {
/// fn new(other: u32) -> impl PinInit<Self> {
/// pin_init!(Self {
/// foo1 <- Foo::new(),
/// foo2 <- Foo::new(),
/// other,
/// })
/// }
/// }
/// ```
///
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
///
/// # Syntax
///
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
/// the following modifications is expected:
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
/// pointer named `this` inside of the initializer.
///
/// For instance:
///
/// ```rust
/// # use kernel::pin_init;
/// # use macros::pin_data;
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
/// #[pin_data]
/// struct Buf {
/// // `ptr` points into `buf`.
/// ptr: *mut u8,
/// buf: [u8; 64],
/// #[pin]
/// pin: PhantomPinned,
/// }
/// pin_init!(&this in Buf {
/// buf: [0; 64],
/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
/// pin: PhantomPinned,
/// });
/// ```
///
/// [`try_pin_init!`]: kernel::try_pin_init
/// [`NonNull<Self>`]: core::ptr::NonNull
/// [`Error`]: kernel::error::Error
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! pin_init {
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}) => {
$crate::try_pin_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)?),
@fields($($fields)*),
@error(::core::convert::Infallible),
)
};
}
/// Construct an in-place, fallible pinned initializer for `struct`s.
///
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
///
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
/// initialization and return the error.
///
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
/// initialization fails, the memory can be safely deallocated without any further modifications.
///
/// This macro defaults the error to [`Error`].
///
/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
/// after the `struct` initializer to specify the error type you want to use.
///
/// # Examples
///
/// ```rust
/// # #![feature(new_uninit)]
/// use kernel::{init::{self, PinInit}, error::Error};
/// #[pin_data]
/// struct BigBuf {
/// big: Box<[u8; 1024 * 1024 * 1024]>,
/// small: [u8; 1024 * 1024],
/// ptr: *mut u8,
/// }
///
/// impl BigBuf {
/// fn new() -> impl PinInit<Self, Error> {
/// try_pin_init!(Self {
/// big: Box::init(init::zeroed())?,
/// small: [0; 1024 * 1024],
/// ptr: core::ptr::null_mut(),
/// }? Error)
/// }
/// }
/// ```
///
/// [`Error`]: kernel::error::Error
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_pin_init {
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}) => {
$crate::try_pin_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)? ),
@fields($($fields)*),
@error($crate::error::Error),
)
};
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}? $err:ty) => {
$crate::try_pin_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)? ),
@fields($($fields)*),
@error($err),
)
};
(
@this($($this:ident)?),
@typ($t:ident $(::<$($generics:ty),*>)?),
@fields($($fields:tt)*),
@error($err:ty),
) => {{
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
// type and shadow it later when we insert the arbitrary user code. That way there will be
// no possibility of returning without `unsafe`.
struct __InitOk;
// Get the pin data from the supplied type.
let data = unsafe {
use $crate::init::__internal::HasPinData;
$t$(::<$($generics),*>)?::__pin_data()
};
// Ensure that `data` really is of type `PinData` and help with type inference:
let init = $crate::init::__internal::PinData::make_closure::<_, __InitOk, $err>(
data,
move |slot| {
{
// Shadow the structure so it cannot be used to return early.
struct __InitOk;
// Create the `this` so it can be referenced by the user inside of the
// expressions creating the individual fields.
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
// Initialize every field.
$crate::try_pin_init!(init_slot:
@data(data),
@slot(slot),
@munch_fields($($fields)*,),
);
// We use unreachable code to ensure that all fields have been mentioned exactly
// once, this struct initializer will still be type-checked and complain with a
// very natural error message if a field is forgotten/mentioned more than once.
#[allow(unreachable_code, clippy::diverging_sub_expression)]
if false {
$crate::try_pin_init!(make_initializer:
@slot(slot),
@type_name($t),
@munch_fields($($fields)*,),
@acc(),
);
}
// Forget all guards, since initialization was a success.
$crate::try_pin_init!(forget_guards:
@munch_fields($($fields)*,),
);
}
Ok(__InitOk)
}
);
let init = move |slot| -> ::core::result::Result<(), $err> {
init(slot).map(|__InitOk| ())
};
let init = unsafe { $crate::init::pin_init_from_closure::<_, $err>(init) };
init
}};
(init_slot:
@data($data:ident),
@slot($slot:ident),
@munch_fields($(,)?),
) => {
// Endpoint of munching, no fields are left.
};
(init_slot:
@data($data:ident),
@slot($slot:ident),
// In-place initialization syntax.
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
let $field = $val;
// Call the initializer.
//
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
// return when an error/panic occurs.
// We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), $field)? };
// Create the drop guard.
//
// We only give access to `&DropGuard`, so it cannot be forgotten via safe code.
//
// SAFETY: We forget the guard later when initialization has succeeded.
let $field = &unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::try_pin_init!(init_slot:
@data($data),
@slot($slot),
@munch_fields($($rest)*),
);
};
(init_slot:
@data($data:ident),
@slot($slot:ident),
// Direct value init, this is safe for every field.
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
) => {
$(let $field = $val;)?
// Initialize the field.
//
// SAFETY: The memory at `slot` is uninitialized.
unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
// Create the drop guard:
//
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
//
// SAFETY: We forget the guard later when initialization has succeeded.
let $field = &unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::try_pin_init!(init_slot:
@data($data),
@slot($slot),
@munch_fields($($rest)*),
);
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields($(,)?),
@acc($($acc:tt)*),
) => {
// Endpoint, nothing more to munch, create the initializer.
// Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
// get the correct type inference here:
unsafe {
::core::ptr::write($slot, $t {
$($acc)*
});
}
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::try_pin_init!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)* $field: ::core::panic!(),),
);
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::try_pin_init!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)* $field: ::core::panic!(),),
);
};
(forget_guards:
@munch_fields($(,)?),
) => {
// Munching finished.
};
(forget_guards:
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
unsafe { $crate::init::__internal::DropGuard::forget($field) };
$crate::try_pin_init!(forget_guards:
@munch_fields($($rest)*),
);
};
(forget_guards:
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
) => {
unsafe { $crate::init::__internal::DropGuard::forget($field) };
$crate::try_pin_init!(forget_guards:
@munch_fields($($rest)*),
);
};
}
/// Construct an in-place initializer for `struct`s.
///
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
/// [`try_init!`].
///
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
/// deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// This initializer is for initializing data in-place that might later be moved. If you want to
/// pin-initialize, use [`pin_init!`].
///
/// [`Error`]: kernel::error::Error
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! init {
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}) => {
$crate::try_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)?),
@fields($($fields)*),
@error(::core::convert::Infallible),
)
}
}
/// Construct an in-place fallible initializer for `struct`s.
///
/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
/// [`init!`].
///
/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
/// append `? $type` after the `struct` initializer.
/// The safety caveats from [`try_pin_init!`] also apply:
/// - `unsafe` code must guarantee either full initialization or return an error and allow
/// deallocation of the memory.
/// - the fields are initialized in the order given in the initializer.
/// - no references to fields are allowed to be created inside of the initializer.
///
/// # Examples
///
/// ```rust
/// use kernel::{init::PinInit, error::Error, InPlaceInit};
/// struct BigBuf {
/// big: Box<[u8; 1024 * 1024 * 1024]>,
/// small: [u8; 1024 * 1024],
/// }
///
/// impl BigBuf {
/// fn new() -> impl Init<Self, Error> {
/// try_init!(Self {
/// big: Box::init(zeroed())?,
/// small: [0; 1024 * 1024],
/// }? Error)
/// }
/// }
/// ```
///
/// [`Error`]: kernel::error::Error
// For a detailed example of how this macro works, see the module documentation of the hidden
// module `__internal` inside of `init/__internal.rs`.
#[macro_export]
macro_rules! try_init {
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}) => {
$crate::try_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)?),
@fields($($fields)*),
@error($crate::error::Error),
)
};
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
$($fields:tt)*
}? $err:ty) => {
$crate::try_init!(
@this($($this)?),
@typ($t $(::<$($generics),*>)?),
@fields($($fields)*),
@error($err),
)
};
(
@this($($this:ident)?),
@typ($t:ident $(::<$($generics:ty),*>)?),
@fields($($fields:tt)*),
@error($err:ty),
) => {{
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
// type and shadow it later when we insert the arbitrary user code. That way there will be
// no possibility of returning without `unsafe`.
struct __InitOk;
// Get the init data from the supplied type.
let data = unsafe {
use $crate::init::__internal::HasInitData;
$t$(::<$($generics),*>)?::__init_data()
};
// Ensure that `data` really is of type `InitData` and help with type inference:
let init = $crate::init::__internal::InitData::make_closure::<_, __InitOk, $err>(
data,
move |slot| {
{
// Shadow the structure so it cannot be used to return early.
struct __InitOk;
// Create the `this` so it can be referenced by the user inside of the
// expressions creating the individual fields.
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
// Initialize every field.
$crate::try_init!(init_slot:
@slot(slot),
@munch_fields($($fields)*,),
);
// We use unreachable code to ensure that all fields have been mentioned exactly
// once, this struct initializer will still be type-checked and complain with a
// very natural error message if a field is forgotten/mentioned more than once.
#[allow(unreachable_code, clippy::diverging_sub_expression)]
if false {
$crate::try_init!(make_initializer:
@slot(slot),
@type_name($t),
@munch_fields($($fields)*,),
@acc(),
);
}
// Forget all guards, since initialization was a success.
$crate::try_init!(forget_guards:
@munch_fields($($fields)*,),
);
}
Ok(__InitOk)
}
);
let init = move |slot| -> ::core::result::Result<(), $err> {
init(slot).map(|__InitOk| ())
};
let init = unsafe { $crate::init::init_from_closure::<_, $err>(init) };
init
}};
(init_slot:
@slot($slot:ident),
@munch_fields( $(,)?),
) => {
// Endpoint of munching, no fields are left.
};
(init_slot:
@slot($slot:ident),
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
let $field = $val;
// Call the initializer.
//
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
// return when an error/panic occurs.
unsafe {
$crate::init::Init::__init($field, ::core::ptr::addr_of_mut!((*$slot).$field))?;
}
// Create the drop guard.
//
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
//
// SAFETY: We forget the guard later when initialization has succeeded.
let $field = &unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::try_init!(init_slot:
@slot($slot),
@munch_fields($($rest)*),
);
};
(init_slot:
@slot($slot:ident),
// Direct value init.
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
) => {
$(let $field = $val;)?
// Call the initializer.
//
// SAFETY: The memory at `slot` is uninitialized.
unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
// Create the drop guard.
//
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
//
// SAFETY: We forget the guard later when initialization has succeeded.
let $field = &unsafe {
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
};
$crate::try_init!(init_slot:
@slot($slot),
@munch_fields($($rest)*),
);
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields( $(,)?),
@acc($($acc:tt)*),
) => {
// Endpoint, nothing more to munch, create the initializer.
// Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
// get the correct type inference here:
unsafe {
::core::ptr::write($slot, $t {
$($acc)*
});
}
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::try_init!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)*$field: ::core::panic!(),),
);
};
(make_initializer:
@slot($slot:ident),
@type_name($t:ident),
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
@acc($($acc:tt)*),
) => {
$crate::try_init!(make_initializer:
@slot($slot),
@type_name($t),
@munch_fields($($rest)*),
@acc($($acc)*$field: ::core::panic!(),),
);
};
(forget_guards:
@munch_fields($(,)?),
) => {
// Munching finished.
};
(forget_guards:
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
) => {
unsafe { $crate::init::__internal::DropGuard::forget($field) };
$crate::try_init!(forget_guards:
@munch_fields($($rest)*),
);
};
(forget_guards:
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
) => {
unsafe { $crate::init::__internal::DropGuard::forget($field) };
$crate::try_init!(forget_guards:
@munch_fields($($rest)*),
);
};
}
/// A pin-initializer for the type `T`.
///
@ -63,7 +862,6 @@
/// [`Arc<T>`]: crate::sync::Arc
/// [`Arc::pin_init`]: crate::sync::Arc::pin_init
/// [`UniqueArc<T>`]: kernel::sync::UniqueArc
/// [`Box<T>`]: alloc::boxed::Box
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
/// Initializes `slot`.
@ -106,7 +904,6 @@ pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
///
/// [`Arc<T>`]: crate::sync::Arc
/// [`UniqueArc<T>`]: kernel::sync::UniqueArc
/// [`Box<T>`]: alloc::boxed::Box
#[must_use = "An initializer must be used in order to create its value."]
pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized {
/// Initializes `slot`.

View File

@ -31,3 +31,133 @@ unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
(self.0)(slot)
}
}
/// This trait is only implemented via the `#[pin_data]` proc-macro. It is used to facilitate
/// the pin projections within the initializers.
///
/// # Safety
///
/// Only the `init` module is allowed to use this trait.
pub unsafe trait HasPinData {
type PinData: PinData;
unsafe fn __pin_data() -> Self::PinData;
}
/// Marker trait for pinning data of structs.
///
/// # Safety
///
/// Only the `init` module is allowed to use this trait.
pub unsafe trait PinData: Copy {
type Datee: ?Sized + HasPinData;
/// Type inference helper function.
fn make_closure<F, O, E>(self, f: F) -> F
where
F: FnOnce(*mut Self::Datee) -> Result<O, E>,
{
f
}
}
/// This trait is automatically implemented for every type. It aims to provide the same type
/// inference help as `HasPinData`.
///
/// # Safety
///
/// Only the `init` module is allowed to use this trait.
pub unsafe trait HasInitData {
type InitData: InitData;
unsafe fn __init_data() -> Self::InitData;
}
/// Same function as `PinData`, but for arbitrary data.
///
/// # Safety
///
/// Only the `init` module is allowed to use this trait.
pub unsafe trait InitData: Copy {
type Datee: ?Sized + HasInitData;
/// Type inference helper function.
fn make_closure<F, O, E>(self, f: F) -> F
where
F: FnOnce(*mut Self::Datee) -> Result<O, E>,
{
f
}
}
pub struct AllData<T: ?Sized>(PhantomData<fn(Box<T>) -> Box<T>>);
impl<T: ?Sized> Clone for AllData<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: ?Sized> Copy for AllData<T> {}
unsafe impl<T: ?Sized> InitData for AllData<T> {
type Datee = T;
}
unsafe impl<T: ?Sized> HasInitData for T {
type InitData = AllData<T>;
unsafe fn __init_data() -> Self::InitData {
AllData(PhantomData)
}
}
/// When a value of this type is dropped, it drops a `T`.
///
/// Can be forgotten to prevent the drop.
pub struct DropGuard<T: ?Sized> {
ptr: *mut T,
do_drop: Cell<bool>,
}
impl<T: ?Sized> DropGuard<T> {
/// Creates a new [`DropGuard<T>`]. It will [`ptr::drop_in_place`] `ptr` when it gets dropped.
///
/// # Safety
///
/// `ptr` must be a valid pointer.
///
/// It is the callers responsibility that `self` will only get dropped if the pointee of `ptr`:
/// - has not been dropped,
/// - is not accessible by any other means,
/// - will not be dropped by any other means.
#[inline]
pub unsafe fn new(ptr: *mut T) -> Self {
Self {
ptr,
do_drop: Cell::new(true),
}
}
/// Prevents this guard from dropping the supplied pointer.
///
/// # Safety
///
/// This function is unsafe in order to prevent safe code from forgetting this guard. It should
/// only be called by the macros in this module.
#[inline]
pub unsafe fn forget(&self) {
self.do_drop.set(false);
}
}
impl<T: ?Sized> Drop for DropGuard<T> {
#[inline]
fn drop(&mut self) {
if self.do_drop.get() {
// SAFETY: A `DropGuard` can only be constructed using the unsafe `new` function
// ensuring that this operation is safe.
unsafe { ptr::drop_in_place(self.ptr) }
}
}
}

707
rust/kernel/init/macros.rs Normal file
View File

@ -0,0 +1,707 @@
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! This module provides the macros that actually implement the proc-macros `pin_data` and
//! `pinned_drop`.
//!
//! These macros should never be called directly, since they expect their input to be
//! in a certain format which is internal. Use the proc-macros instead.
//!
//! This architecture has been chosen because the kernel does not yet have access to `syn` which
//! would make matters a lot easier for implementing these as proc-macros.
//!
//! # Macro expansion example
//!
//! This section is intended for readers trying to understand the macros in this module and the
//! `pin_init!` macros from `init.rs`.
//!
//! We will look at the following example:
//!
//! ```rust
//! # use kernel::init::*;
//! #[pin_data]
//! #[repr(C)]
//! struct Bar<T> {
//! #[pin]
//! t: T,
//! pub x: usize,
//! }
//!
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! pin_init!(Self { t, x: 0 })
//! }
//! }
//! ```
//!
//! This example includes the most common and important features of the pin-init API.
//!
//! Below you can find individual section about the different macro invocations. Here are some
//! general things we need to take into account when designing macros:
//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()`
//! this ensures that the correct item is used, since users could define their own `mod core {}`
//! and then their own `panic!` inside to execute arbitrary code inside of our macro.
//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied
//! expressions inside of an `unsafe` block in the macro, because this would allow users to do
//! `unsafe` operations without an associated `unsafe` block.
//!
//! ## `#[pin_data]` on `Bar`
//!
//! This macro is used to specify which fields are structurally pinned and which fields are not. It
//! is placed on the struct definition and allows `#[pin]` to be placed on the fields.
//!
//! Here is the definition of `Bar` from our example:
//!
//! ```rust
//! # use kernel::init::*;
//! #[pin_data]
//! #[repr(C)]
//! struct Bar<T> {
//! t: T,
//! pub x: usize,
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust
//! // Firstly the normal definition of the struct, attributes are preserved:
//! #[repr(C)]
//! struct Bar<T> {
//! t: T,
//! pub x: usize,
//! }
//! // Then an anonymous constant is defined, this is because we do not want any code to access the
//! // types that we define inside:
//! const _: () = {
//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics,
//! // since we need to implement access functions for each field and thus need to know its
//! // type.
//! struct __ThePinData<T> {
//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
//! }
//! // We implement `Copy` for the pin-data struct, since all functions it defines will take
//! // `self` by value.
//! impl<T> ::core::clone::Clone for __ThePinData<T> {
//! fn clone(&self) -> Self {
//! *self
//! }
//! }
//! impl<T> ::core::marker::Copy for __ThePinData<T> {}
//! // For every field of `Bar`, the pin-data struct will define a function with the same name
//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the
//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field
//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`).
//! #[allow(dead_code)]
//! impl<T> __ThePinData<T> {
//! unsafe fn t<E>(
//! self,
//! slot: *mut T,
//! init: impl ::kernel::init::Init<T, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::Init::__init(init, slot) }
//! }
//! pub unsafe fn x<E>(
//! self,
//! slot: *mut usize,
//! init: impl ::kernel::init::Init<usize, E>,
//! ) -> ::core::result::Result<(), E> {
//! unsafe { ::kernel::init::Init::__init(init, slot) }
//! }
//! }
//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct
//! // that we constructed beforehand.
//! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> {
//! type PinData = __ThePinData<T>;
//! unsafe fn __pin_data() -> Self::PinData {
//! __ThePinData {
//! __phantom: ::core::marker::PhantomData,
//! }
//! }
//! }
//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
//! // struct. This is important to ensure that no user can implement a rouge `__pin_data`
//! // function without using `unsafe`.
//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> {
//! type Datee = Bar<T>;
//! }
//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is
//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned
//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our
//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
//! // for two reasons:
//! // - `__phantom`: every generic must be used, since we cannot really know which generics
//! // are used, we declere all and then use everything here once.
//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
//! // over it. The lifetime is needed to work around the limitation that trait bounds must
//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is
//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler
//! // into accepting these bounds regardless.
//! #[allow(dead_code)]
//! struct __Unpin<'__pin, T> {
//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
//! }
//! #[doc(hidden)]
//! impl<'__pin, T>
//! ::core::marker::Unpin for Bar<T> where __Unpin<'__pin, T>: ::core::marker::Unpin {}
//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users
//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to
//! // UB with only safe code, so we disallow this by giving a trait implementation error using
//! // a direct impl and a blanket implementation.
//! trait MustNotImplDrop {}
//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do
//! // (normally people want to know if a type has any kind of drop glue at all, here we want
//! // to know if it has any kind of custom drop glue, which is exactly what this bound does).
//! #[allow(drop_bounds)]
//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
//! impl<T> MustNotImplDrop for Bar<T> {}
//! };
//! ```
//!
//! ## `pin_init!` in `impl Bar`
//!
//! This macro creates an pin-initializer for the given struct. It requires that the struct is
//! annotated by `#[pin_data]`.
//!
//! Here is the impl on `Bar` defining the new function:
//!
//! ```rust
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! pin_init!(Self { t, x: 0 })
//! }
//! }
//! ```
//!
//! This expands to the following code:
//!
//! ```rust
//! impl<T> Bar<T> {
//! fn new(t: T) -> impl PinInit<Self> {
//! {
//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok`
//! // return type and shadow it later when we insert the arbitrary user code. That way
//! // there will be no possibility of returning without `unsafe`.
//! struct __InitOk;
//! // Get the pin-data type from the initialized type.
//! // - the function is unsafe, hence the unsafe block
//! // - we `use` the `HasPinData` trait in the block, it is only available in that
//! // scope.
//! let data = unsafe {
//! use ::kernel::init::__internal::HasPinData;
//! Self::__pin_data()
//! };
//! // Use `data` to help with type inference, the closure supplied will have the type
//! // `FnOnce(*mut Self) -> Result<__InitOk, Infallible>`.
//! let init = ::kernel::init::__internal::PinData::make_closure::<
//! _,
//! __InitOk,
//! ::core::convert::Infallible,
//! >(data, move |slot| {
//! {
//! // Shadow the structure so it cannot be used to return early. If a user
//! // tries to write `return Ok(__InitOk)`, then they get a type error, since
//! // that will refer to this struct instead of the one defined above.
//! struct __InitOk;
//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`.
//! unsafe { ::core::ptr::write(&raw mut (*slot).t, t) };
//! // Since initialization could fail later (not in this case, since the error
//! // type is `Infallible`) we will need to drop this field if it fails. This
//! // `DropGuard` will drop the field when it gets dropped and has not yet
//! // been forgotten. We make a reference to it, so users cannot `mem::forget`
//! // it from the initializer, since the name is the same as the field.
//! let t = &unsafe {
//! ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).t)
//! };
//! // Expansion of `x: 0,`:
//! // Since this can be an arbitrary expression we cannot place it inside of
//! // the `unsafe` block, so we bind it here.
//! let x = 0;
//! unsafe { ::core::ptr::write(&raw mut (*slot).x, x) };
//! let x = &unsafe {
//! ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).x)
//! };
//!
//! // Here we use the type checker to ensuer that every field has been
//! // initialized exactly once, since this is `if false` it will never get
//! // executed, but still type-checked.
//! // Additionally we abuse `slot` to automatically infer the correct type for
//! // the struct. This is also another check that every field is accessible
//! // from this scope.
//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
//! if false {
//! unsafe {
//! ::core::ptr::write(
//! slot,
//! Self {
//! // We only care about typecheck finding every field here,
//! // the expression does not matter, just conjure one using
//! // `panic!()`:
//! t: ::core::panic!(),
//! x: ::core::panic!(),
//! },
//! );
//! };
//! }
//! // Since initialization has successfully completed, we can now forget the
//! // guards.
//! unsafe { ::kernel::init::__internal::DropGuard::forget(t) };
//! unsafe { ::kernel::init::__internal::DropGuard::forget(x) };
//! }
//! // We leave the scope above and gain access to the previously shadowed
//! // `__InitOk` that we need to return.
//! Ok(__InitOk)
//! });
//! // Change the return type of the closure.
//! let init = move |slot| -> ::core::result::Result<(), ::core::convert::Infallible> {
//! init(slot).map(|__InitOk| ())
//! };
//! // Construct the initializer.
//! let init = unsafe {
//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init)
//! };
//! init
//! }
//! }
//! }
//! ```
/// This macro first parses the struct definition such that it separates pinned and not pinned
/// fields. Afterwards it declares the struct and implement the `PinData` trait safely.
#[doc(hidden)]
#[macro_export]
macro_rules! __pin_data {
// Proc-macro entry point, this is supplied by the proc-macro pre-parsing.
(parse_input:
@args($($pinned_drop:ident)?),
@sig(
$(#[$($struct_attr:tt)*])*
$vis:vis struct $name:ident
$(where $($whr:tt)*)?
),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@body({ $($fields:tt)* }),
) => {
// We now use token munching to iterate through all of the fields. While doing this we
// identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user
// wants these to be structurally pinned. The rest of the fields are the
// 'not pinned fields'. Additionally we collect all fields, since we need them in the right
// order to declare the struct.
//
// In this call we also put some explaining comments for the parameters.
$crate::__pin_data!(find_pinned_fields:
// Attributes on the struct itself, these will just be propagated to be put onto the
// struct definition.
@struct_attrs($(#[$($struct_attr)*])*),
// The visibility of the struct.
@vis($vis),
// The name of the struct.
@name($name),
// The 'impl generics', the generics that will need to be specified on the struct inside
// of an `impl<$ty_generics>` block.
@impl_generics($($impl_generics)*),
// The 'ty generics', the generics that will need to be specified on the impl blocks.
@ty_generics($($ty_generics)*),
// The where clause of any impl block and the declaration.
@where($($($whr)*)?),
// The remaining fields tokens that need to be processed.
// We add a `,` at the end to ensure correct parsing.
@fields_munch($($fields)* ,),
// The pinned fields.
@pinned(),
// The not pinned fields.
@not_pinned(),
// All fields.
@fields(),
// The accumulator containing all attributes already parsed.
@accum(),
// Contains `yes` or `` to indicate if `#[pin]` was found on the current field.
@is_pinned(),
// The proc-macro argument, this should be `PinnedDrop` or ``.
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We found a PhantomPinned field, this should generally be pinned!
@fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is not pinned.
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
::core::compile_error!(concat!(
"The field `",
stringify!($field),
"` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.",
));
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,),
@not_pinned($($not_pinned)*),
@fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration.
@fields_munch($field:ident : $type:ty, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is pinned.
@is_pinned(yes),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)* $($accum)* $field: $type,),
@not_pinned($($not_pinned)*),
@fields($($fields)* $($accum)* $field: $type,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration.
@fields_munch($field:ident : $type:ty, $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
// This field is not pinned.
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)* $($accum)* $field: $type,),
@fields($($fields)* $($accum)* $field: $type,),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We found the `#[pin]` attr.
@fields_munch(#[pin] $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
// We do not include `#[pin]` in the list of attributes, since it is not actually an
// attribute that is defined somewhere.
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)*),
// Set this to `yes`.
@is_pinned(yes),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the field declaration with visibility, for simplicity we only munch the
// visibility and put it into `$accum`.
@fields_munch($fvis:vis $field:ident $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($field $($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)* $fvis),
@is_pinned($($is_pinned)?),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// Some other attribute, just put it into `$accum`.
@fields_munch(#[$($attr:tt)*] $($rest:tt)*),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum($($accum:tt)*),
@is_pinned($($is_pinned:ident)?),
@pinned_drop($($pinned_drop:ident)?),
) => {
$crate::__pin_data!(find_pinned_fields:
@struct_attrs($($struct_attrs)*),
@vis($vis),
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@fields_munch($($rest)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
@fields($($fields)*),
@accum($($accum)* #[$($attr)*]),
@is_pinned($($is_pinned)?),
@pinned_drop($($pinned_drop)?),
);
};
(find_pinned_fields:
@struct_attrs($($struct_attrs:tt)*),
@vis($vis:vis),
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
// We reached the end of the fields, plus an optional additional comma, since we added one
// before and the user is also allowed to put a trailing comma.
@fields_munch($(,)?),
@pinned($($pinned:tt)*),
@not_pinned($($not_pinned:tt)*),
@fields($($fields:tt)*),
@accum(),
@is_pinned(),
@pinned_drop($($pinned_drop:ident)?),
) => {
// Declare the struct with all fields in the correct order.
$($struct_attrs)*
$vis struct $name <$($impl_generics)*>
where $($whr)*
{
$($fields)*
}
// We put the rest into this const item, because it then will not be accessible to anything
// outside.
const _: () = {
// We declare this struct which will host all of the projection function for our type.
// it will be invariant over all generic parameters which are inherited from the
// struct.
$vis struct __ThePinData<$($impl_generics)*>
where $($whr)*
{
__phantom: ::core::marker::PhantomData<
fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
>,
}
impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*>
where $($whr)*
{
fn clone(&self) -> Self { *self }
}
impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*>
where $($whr)*
{}
// Make all projection functions.
$crate::__pin_data!(make_pin_data:
@pin_data(__ThePinData),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@pinned($($pinned)*),
@not_pinned($($not_pinned)*),
);
// SAFETY: We have added the correct projection functions above to `__ThePinData` and
// we also use the least restrictive generics possible.
unsafe impl<$($impl_generics)*>
$crate::init::__internal::HasPinData for $name<$($ty_generics)*>
where $($whr)*
{
type PinData = __ThePinData<$($ty_generics)*>;
unsafe fn __pin_data() -> Self::PinData {
__ThePinData { __phantom: ::core::marker::PhantomData }
}
}
unsafe impl<$($impl_generics)*>
$crate::init::__internal::PinData for __ThePinData<$($ty_generics)*>
where $($whr)*
{
type Datee = $name<$($ty_generics)*>;
}
// This struct will be used for the unpin analysis. Since only structurally pinned
// fields are relevant whether the struct should implement `Unpin`.
#[allow(dead_code)]
struct __Unpin <'__pin, $($impl_generics)*>
where $($whr)*
{
__phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
__phantom: ::core::marker::PhantomData<
fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
>,
// Only the pinned fields.
$($pinned)*
}
#[doc(hidden)]
impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*>
where
__Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin,
$($whr)*
{}
// We need to disallow normal `Drop` implementation, the exact behavior depends on
// whether `PinnedDrop` was specified as the parameter.
$crate::__pin_data!(drop_prevention:
@name($name),
@impl_generics($($impl_generics)*),
@ty_generics($($ty_generics)*),
@where($($whr)*),
@pinned_drop($($pinned_drop)?),
);
};
};
// When no `PinnedDrop` was specified, then we have to prevent implementing drop.
(drop_prevention:
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned_drop(),
) => {
// We prevent this by creating a trait that will be implemented for all types implementing
// `Drop`. Additionally we will implement this trait for the struct leading to a conflict,
// if it also implements `Drop`
trait MustNotImplDrop {}
#[allow(drop_bounds)]
impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*>
where $($whr)* {}
};
// If some other parameter was specified, we emit a readable error.
(drop_prevention:
@name($name:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned_drop($($rest:tt)*),
) => {
compile_error!(
"Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.",
stringify!($($rest)*),
);
};
(make_pin_data:
@pin_data($pin_data:ident),
@impl_generics($($impl_generics:tt)*),
@ty_generics($($ty_generics:tt)*),
@where($($whr:tt)*),
@pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?),
@not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?),
) => {
// For every field, we create a projection function according to its projection type. If a
// field is structurally pinned, then it must be initialized via `PinInit`, if it is not
// structurally pinned, then it can be initialized via `Init`.
//
// The functions are `unsafe` to prevent accidentally calling them.
#[allow(dead_code)]
impl<$($impl_generics)*> $pin_data<$($ty_generics)*>
where $($whr)*
{
$(
$pvis unsafe fn $p_field<E>(
self,
slot: *mut $p_type,
init: impl $crate::init::PinInit<$p_type, E>,
) -> ::core::result::Result<(), E> {
unsafe { $crate::init::PinInit::__pinned_init(init, slot) }
}
)*
$(
$fvis unsafe fn $field<E>(
self,
slot: *mut $type,
init: impl $crate::init::Init<$type, E>,
) -> ::core::result::Result<(), E> {
unsafe { $crate::init::Init::__init(init, slot) }
}
)*
}
};
}

View File

@ -7,6 +7,7 @@
mod concat_idents;
mod helpers;
mod module;
mod pin_data;
mod vtable;
use proc_macro::TokenStream;
@ -168,3 +169,31 @@ pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
pub fn concat_idents(ts: TokenStream) -> TokenStream {
concat_idents::concat_idents(ts)
}
/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
/// [`pin_init!`]: ../kernel/macro.pin_init.html
// ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
pin_data::pin_data(inner, item)
}

79
rust/macros/pin_data.rs Normal file
View File

@ -0,0 +1,79 @@
// SPDX-License-Identifier: Apache-2.0 OR MIT
use proc_macro::{Punct, Spacing, TokenStream, TokenTree};
pub(crate) fn pin_data(args: TokenStream, input: TokenStream) -> TokenStream {
// This proc-macro only does some pre-parsing and then delegates the actual parsing to
// `kernel::__pin_data!`.
//
// In here we only collect the generics, since parsing them in declarative macros is very
// elaborate. We also do not need to analyse their structure, we only need to collect them.
// `impl_generics`, the declared generics with their bounds.
let mut impl_generics = vec![];
// Only the names of the generics, without any bounds.
let mut ty_generics = vec![];
// Tokens not related to the generics e.g. the `impl` token.
let mut rest = vec![];
// The current level of `<`.
let mut nesting = 0;
let mut toks = input.into_iter();
// If we are at the beginning of a generic parameter.
let mut at_start = true;
for tt in &mut toks {
match tt.clone() {
TokenTree::Punct(p) if p.as_char() == '<' => {
if nesting >= 1 {
impl_generics.push(tt);
}
nesting += 1;
}
TokenTree::Punct(p) if p.as_char() == '>' => {
if nesting == 0 {
break;
} else {
nesting -= 1;
if nesting >= 1 {
impl_generics.push(tt);
}
if nesting == 0 {
break;
}
}
}
tt => {
if nesting == 1 {
match &tt {
TokenTree::Ident(i) if i.to_string() == "const" => {}
TokenTree::Ident(_) if at_start => {
ty_generics.push(tt.clone());
ty_generics.push(TokenTree::Punct(Punct::new(',', Spacing::Alone)));
at_start = false;
}
TokenTree::Punct(p) if p.as_char() == ',' => at_start = true,
TokenTree::Punct(p) if p.as_char() == '\'' && at_start => {
ty_generics.push(tt.clone());
}
_ => {}
}
}
if nesting >= 1 {
impl_generics.push(tt);
} else if nesting == 0 {
rest.push(tt);
}
}
}
}
rest.extend(toks);
// This should be the body of the struct `{...}`.
let last = rest.pop();
quote!(::kernel::__pin_data! {
parse_input:
@args(#args),
@sig(#(#rest)*),
@impl_generics(#(#impl_generics)*),
@ty_generics(#(#ty_generics)*),
@body(#last),
})
}

View File

@ -38,7 +38,6 @@ fn to_tokens(&self, tokens: &mut TokenStream) {
/// This is a similar to the
/// [`quote_spanned!`](https://docs.rs/quote/latest/quote/macro.quote_spanned.html) macro from the
/// `quote` crate but provides only just enough functionality needed by the current `macros` crate.
#[allow(unused_macros)]
macro_rules! quote_spanned {
($span:expr => $($tt:tt)*) => {
#[allow(clippy::vec_init_then_push)]
@ -137,7 +136,6 @@ macro_rules! quote_spanned {
/// `macros` crate.
///
/// [`Span::mixed_site()`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.mixed_site
#[allow(unused_macros)]
macro_rules! quote {
($($tt:tt)*) => {
quote_spanned!(::proc_macro::Span::mixed_site() => $($tt)*)