Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine.git

This commit is contained in:
Stephen Rothwell 2024-12-20 14:39:24 +11:00
commit ff914bc51a
26 changed files with 942 additions and 126 deletions

View File

@ -22,7 +22,9 @@ properties:
number.
compatible:
const: allwinner,sun4i-a10-dma
enum:
- allwinner,sun4i-a10-dma
- allwinner,suniv-f1c100s-dma
reg:
maxItems: 1

View File

@ -25,7 +25,9 @@ properties:
- items:
- enum:
- qcom,qcm2290-gpi-dma
- qcom,qcs8300-gpi-dma
- qcom,qdu1000-gpi-dma
- qcom,sa8775p-gpi-dma
- qcom,sar2130p-gpi-dma
- qcom,sc7280-gpi-dma
- qcom,sdx75-gpi-dma
@ -35,10 +37,12 @@ properties:
- qcom,sm8450-gpi-dma
- qcom,sm8550-gpi-dma
- qcom,sm8650-gpi-dma
- qcom,sm8750-gpi-dma
- qcom,x1e80100-gpi-dma
- const: qcom,sm6350-gpi-dma
- items:
- enum:
- qcom,qcs615-gpi-dma
- qcom,sdm670-gpi-dma
- qcom,sm6125-gpi-dma
- qcom,sm8150-gpi-dma

View File

@ -988,6 +988,12 @@ L: linux-edac@vger.kernel.org
S: Supported
F: drivers/ras/amd/atl/*
AMD AE4DMA DRIVER
M: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
L: dmaengine@vger.kernel.org
S: Supported
F: drivers/dma/amd/ae4dma/
AMD AXI W1 DRIVER
M: Kris Chaplin <kris.chaplin@amd.com>
R: Thomas Delev <thomas.delev@amd.com>
@ -1172,8 +1178,8 @@ F: tools/power/x86/amd_pstate_tracer/amd_pstate_trace.py
AMD PTDMA DRIVER
M: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
L: dmaengine@vger.kernel.org
S: Maintained
F: drivers/dma/ptdma/
S: Supported
F: drivers/dma/amd/ptdma/
AMD QDMA DRIVER
M: Nishad Saraf <nishads@amd.com>

View File

@ -162,8 +162,8 @@ config DMA_SA11X0
config DMA_SUN4I
tristate "Allwinner A10 DMA SoCs support"
depends on MACH_SUN4I || MACH_SUN5I || MACH_SUN7I
default (MACH_SUN4I || MACH_SUN5I || MACH_SUN7I)
depends on MACH_SUN4I || MACH_SUN5I || MACH_SUN7I || MACH_SUNIV
default (MACH_SUN4I || MACH_SUN5I || MACH_SUN7I || MACH_SUNIV)
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
@ -740,8 +740,6 @@ source "drivers/dma/bestcomm/Kconfig"
source "drivers/dma/mediatek/Kconfig"
source "drivers/dma/ptdma/Kconfig"
source "drivers/dma/qcom/Kconfig"
source "drivers/dma/dw/Kconfig"

View File

@ -16,7 +16,6 @@ obj-$(CONFIG_DMATEST) += dmatest.o
obj-$(CONFIG_ALTERA_MSGDMA) += altera-msgdma.o
obj-$(CONFIG_AMBA_PL08X) += amba-pl08x.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_AMD_PTDMA) += ptdma/
obj-$(CONFIG_APPLE_ADMAC) += apple-admac.o
obj-$(CONFIG_AT_HDMAC) += at_hdmac.o
obj-$(CONFIG_AT_XDMAC) += at_xdmac.o

View File

@ -1,4 +1,32 @@
# SPDX-License-Identifier: GPL-2.0-only
#
config AMD_AE4DMA
tristate "AMD AE4DMA Engine"
depends on (X86_64 || COMPILE_TEST) && PCI
depends on AMD_PTDMA
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the AMD AE4DMA controller. This controller
provides DMA capabilities to perform high bandwidth memory to
memory and IO copy operations. It performs DMA transfer through
queue-based descriptor management. This DMA controller is intended
to be used with AMD Non-Transparent Bridge devices and not for
general purpose peripheral DMA.
config AMD_PTDMA
tristate "AMD PassThru DMA Engine"
depends on X86_64 && PCI
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the AMD PTDMA controller. This controller
provides DMA capabilities to perform high bandwidth memory to
memory and IO copy operations. It performs DMA transfer through
queue-based descriptor management. This DMA controller is intended
to be used with AMD Non-Transparent Bridge devices and not for
general purpose peripheral DMA.
config AMD_QDMA
tristate "AMD Queue-based DMA"

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_AMD_AE4DMA) += ae4dma/
obj-$(CONFIG_AMD_PTDMA) += ptdma/
obj-$(CONFIG_AMD_QDMA) += qdma/

View File

@ -0,0 +1,10 @@
# SPDX-License-Identifier: GPL-2.0
#
# AMD AE4DMA driver
#
obj-$(CONFIG_AMD_AE4DMA) += ae4dma.o
ae4dma-objs := ae4dma-dev.o
ae4dma-$(CONFIG_PCI) += ae4dma-pci.o

View File

@ -0,0 +1,157 @@
// SPDX-License-Identifier: GPL-2.0
/*
* AMD AE4DMA driver
*
* Copyright (c) 2024, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include "ae4dma.h"
static unsigned int max_hw_q = 1;
module_param(max_hw_q, uint, 0444);
MODULE_PARM_DESC(max_hw_q, "max hw queues supported by engine (any non-zero value, default: 1)");
static void ae4_pending_work(struct work_struct *work)
{
struct ae4_cmd_queue *ae4cmd_q = container_of(work, struct ae4_cmd_queue, p_work.work);
struct pt_cmd_queue *cmd_q = &ae4cmd_q->cmd_q;
struct pt_cmd *cmd;
u32 cridx;
for (;;) {
wait_event_interruptible(ae4cmd_q->q_w,
((atomic64_read(&ae4cmd_q->done_cnt)) <
atomic64_read(&ae4cmd_q->intr_cnt)));
atomic64_inc(&ae4cmd_q->done_cnt);
mutex_lock(&ae4cmd_q->cmd_lock);
cridx = readl(cmd_q->reg_control + AE4_RD_IDX_OFF);
while ((ae4cmd_q->dridx != cridx) && !list_empty(&ae4cmd_q->cmd)) {
cmd = list_first_entry(&ae4cmd_q->cmd, struct pt_cmd, entry);
list_del(&cmd->entry);
ae4_check_status_error(ae4cmd_q, ae4cmd_q->dridx);
cmd->pt_cmd_callback(cmd->data, cmd->ret);
ae4cmd_q->q_cmd_count--;
ae4cmd_q->dridx = (ae4cmd_q->dridx + 1) % CMD_Q_LEN;
complete_all(&ae4cmd_q->cmp);
}
mutex_unlock(&ae4cmd_q->cmd_lock);
}
}
static irqreturn_t ae4_core_irq_handler(int irq, void *data)
{
struct ae4_cmd_queue *ae4cmd_q = data;
struct pt_cmd_queue *cmd_q;
struct pt_device *pt;
u32 status;
cmd_q = &ae4cmd_q->cmd_q;
pt = cmd_q->pt;
pt->total_interrupts++;
atomic64_inc(&ae4cmd_q->intr_cnt);
status = readl(cmd_q->reg_control + AE4_INTR_STS_OFF);
if (status & BIT(0)) {
status &= GENMASK(31, 1);
writel(status, cmd_q->reg_control + AE4_INTR_STS_OFF);
}
wake_up(&ae4cmd_q->q_w);
return IRQ_HANDLED;
}
void ae4_destroy_work(struct ae4_device *ae4)
{
struct ae4_cmd_queue *ae4cmd_q;
int i;
for (i = 0; i < ae4->cmd_q_count; i++) {
ae4cmd_q = &ae4->ae4cmd_q[i];
if (!ae4cmd_q->pws)
break;
cancel_delayed_work_sync(&ae4cmd_q->p_work);
destroy_workqueue(ae4cmd_q->pws);
}
}
int ae4_core_init(struct ae4_device *ae4)
{
struct pt_device *pt = &ae4->pt;
struct ae4_cmd_queue *ae4cmd_q;
struct device *dev = pt->dev;
struct pt_cmd_queue *cmd_q;
int i, ret = 0;
writel(max_hw_q, pt->io_regs);
for (i = 0; i < max_hw_q; i++) {
ae4cmd_q = &ae4->ae4cmd_q[i];
ae4cmd_q->id = ae4->cmd_q_count;
ae4->cmd_q_count++;
cmd_q = &ae4cmd_q->cmd_q;
cmd_q->pt = pt;
cmd_q->reg_control = pt->io_regs + ((i + 1) * AE4_Q_SZ);
ret = devm_request_irq(dev, ae4->ae4_irq[i], ae4_core_irq_handler, 0,
dev_name(pt->dev), ae4cmd_q);
if (ret)
return ret;
cmd_q->qsize = Q_SIZE(sizeof(struct ae4dma_desc));
cmd_q->qbase = dmam_alloc_coherent(dev, cmd_q->qsize, &cmd_q->qbase_dma,
GFP_KERNEL);
if (!cmd_q->qbase)
return -ENOMEM;
}
for (i = 0; i < ae4->cmd_q_count; i++) {
ae4cmd_q = &ae4->ae4cmd_q[i];
cmd_q = &ae4cmd_q->cmd_q;
cmd_q->reg_control = pt->io_regs + ((i + 1) * AE4_Q_SZ);
/* Update the device registers with queue information. */
writel(CMD_Q_LEN, cmd_q->reg_control + AE4_MAX_IDX_OFF);
cmd_q->qdma_tail = cmd_q->qbase_dma;
writel(lower_32_bits(cmd_q->qdma_tail), cmd_q->reg_control + AE4_Q_BASE_L_OFF);
writel(upper_32_bits(cmd_q->qdma_tail), cmd_q->reg_control + AE4_Q_BASE_H_OFF);
INIT_LIST_HEAD(&ae4cmd_q->cmd);
init_waitqueue_head(&ae4cmd_q->q_w);
ae4cmd_q->pws = alloc_ordered_workqueue("ae4dma_%d", WQ_MEM_RECLAIM, ae4cmd_q->id);
if (!ae4cmd_q->pws) {
ae4_destroy_work(ae4);
return -ENOMEM;
}
INIT_DELAYED_WORK(&ae4cmd_q->p_work, ae4_pending_work);
queue_delayed_work(ae4cmd_q->pws, &ae4cmd_q->p_work, usecs_to_jiffies(100));
init_completion(&ae4cmd_q->cmp);
}
ret = pt_dmaengine_register(pt);
if (ret)
ae4_destroy_work(ae4);
else
ptdma_debugfs_setup(pt);
return ret;
}

View File

@ -0,0 +1,158 @@
// SPDX-License-Identifier: GPL-2.0
/*
* AMD AE4DMA driver
*
* Copyright (c) 2024, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include "ae4dma.h"
static int ae4_get_irqs(struct ae4_device *ae4)
{
struct ae4_msix *ae4_msix = ae4->ae4_msix;
struct pt_device *pt = &ae4->pt;
struct device *dev = pt->dev;
struct pci_dev *pdev;
int i, v, ret;
pdev = to_pci_dev(dev);
for (v = 0; v < ARRAY_SIZE(ae4_msix->msix_entry); v++)
ae4_msix->msix_entry[v].entry = v;
ret = pci_alloc_irq_vectors(pdev, v, v, PCI_IRQ_MSIX);
if (ret != v) {
if (ret > 0)
pci_free_irq_vectors(pdev);
dev_err(dev, "could not enable MSI-X (%d), trying MSI\n", ret);
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
if (ret < 0) {
dev_err(dev, "could not enable MSI (%d)\n", ret);
return ret;
}
ret = pci_irq_vector(pdev, 0);
if (ret < 0) {
pci_free_irq_vectors(pdev);
return ret;
}
for (i = 0; i < MAX_AE4_HW_QUEUES; i++)
ae4->ae4_irq[i] = ret;
} else {
ae4_msix->msix_count = ret;
for (i = 0; i < MAX_AE4_HW_QUEUES; i++)
ae4->ae4_irq[i] = ae4_msix->msix_entry[i].vector;
}
return ret;
}
static void ae4_free_irqs(struct ae4_device *ae4)
{
struct ae4_msix *ae4_msix = ae4->ae4_msix;
struct pt_device *pt = &ae4->pt;
struct device *dev = pt->dev;
struct pci_dev *pdev;
pdev = to_pci_dev(dev);
if (ae4_msix && (ae4_msix->msix_count || ae4->ae4_irq[MAX_AE4_HW_QUEUES - 1]))
pci_free_irq_vectors(pdev);
}
static void ae4_deinit(struct ae4_device *ae4)
{
ae4_free_irqs(ae4);
}
static int ae4_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct ae4_device *ae4;
struct pt_device *pt;
int bar_mask;
int ret = 0;
ae4 = devm_kzalloc(dev, sizeof(*ae4), GFP_KERNEL);
if (!ae4)
return -ENOMEM;
ae4->ae4_msix = devm_kzalloc(dev, sizeof(struct ae4_msix), GFP_KERNEL);
if (!ae4->ae4_msix)
return -ENOMEM;
ret = pcim_enable_device(pdev);
if (ret)
goto ae4_error;
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM);
ret = pcim_iomap_regions(pdev, bar_mask, "ae4dma");
if (ret)
goto ae4_error;
pt = &ae4->pt;
pt->dev = dev;
pt->ver = AE4_DMA_VERSION;
pt->io_regs = pcim_iomap_table(pdev)[0];
if (!pt->io_regs) {
ret = -ENOMEM;
goto ae4_error;
}
ret = ae4_get_irqs(ae4);
if (ret < 0)
goto ae4_error;
pci_set_master(pdev);
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
dev_set_drvdata(dev, ae4);
ret = ae4_core_init(ae4);
if (ret)
goto ae4_error;
return 0;
ae4_error:
ae4_deinit(ae4);
return ret;
}
static void ae4_pci_remove(struct pci_dev *pdev)
{
struct ae4_device *ae4 = dev_get_drvdata(&pdev->dev);
ae4_destroy_work(ae4);
ae4_deinit(ae4);
}
static const struct pci_device_id ae4_pci_table[] = {
{ PCI_VDEVICE(AMD, 0x14C8), },
{ PCI_VDEVICE(AMD, 0x14DC), },
{ PCI_VDEVICE(AMD, 0x149B), },
/* Last entry must be zero */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ae4_pci_table);
static struct pci_driver ae4_pci_driver = {
.name = "ae4dma",
.id_table = ae4_pci_table,
.probe = ae4_pci_probe,
.remove = ae4_pci_remove,
};
module_pci_driver(ae4_pci_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AMD AE4DMA driver");

View File

@ -0,0 +1,100 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* AMD AE4DMA driver
*
* Copyright (c) 2024, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#ifndef __AE4DMA_H__
#define __AE4DMA_H__
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include "../ptdma/ptdma.h"
#include "../../virt-dma.h"
#define MAX_AE4_HW_QUEUES 16
#define AE4_DESC_COMPLETED 0x03
#define AE4_MAX_IDX_OFF 0x08
#define AE4_RD_IDX_OFF 0x0c
#define AE4_WR_IDX_OFF 0x10
#define AE4_INTR_STS_OFF 0x14
#define AE4_Q_BASE_L_OFF 0x18
#define AE4_Q_BASE_H_OFF 0x1c
#define AE4_Q_SZ 0x20
#define AE4_DMA_VERSION 4
#define CMD_AE4_DESC_DW0_VAL 2
struct ae4_msix {
int msix_count;
struct msix_entry msix_entry[MAX_AE4_HW_QUEUES];
};
struct ae4_cmd_queue {
struct ae4_device *ae4;
struct pt_cmd_queue cmd_q;
struct list_head cmd;
/* protect command operations */
struct mutex cmd_lock;
struct delayed_work p_work;
struct workqueue_struct *pws;
struct completion cmp;
wait_queue_head_t q_w;
atomic64_t intr_cnt;
atomic64_t done_cnt;
u64 q_cmd_count;
u32 dridx;
u32 tail_wi;
u32 id;
};
union dwou {
u32 dw0;
struct dword0 {
u8 byte0;
u8 byte1;
u16 timestamp;
} dws;
};
struct dword1 {
u8 status;
u8 err_code;
u16 desc_id;
};
struct ae4dma_desc {
union dwou dwouv;
struct dword1 dw1;
u32 length;
u32 rsvd;
u32 src_hi;
u32 src_lo;
u32 dst_hi;
u32 dst_lo;
};
struct ae4_device {
struct pt_device pt;
struct ae4_msix *ae4_msix;
struct ae4_cmd_queue ae4cmd_q[MAX_AE4_HW_QUEUES];
unsigned int ae4_irq[MAX_AE4_HW_QUEUES];
unsigned int cmd_q_count;
};
int ae4_core_init(struct ae4_device *ae4);
void ae4_destroy_work(struct ae4_device *ae4);
void ae4_check_status_error(struct ae4_cmd_queue *ae4cmd_q, int idx);
#endif

View File

@ -13,6 +13,7 @@
#include <linux/seq_file.h>
#include "ptdma.h"
#include "../ae4dma/ae4dma.h"
/* DebugFS helpers */
#define RI_VERSION_NUM 0x0000003F
@ -23,11 +24,19 @@
static int pt_debugfs_info_show(struct seq_file *s, void *p)
{
struct pt_device *pt = s->private;
struct ae4_device *ae4;
unsigned int regval;
seq_printf(s, "Device name: %s\n", dev_name(pt->dev));
seq_printf(s, " # Queues: %d\n", 1);
seq_printf(s, " # Cmds: %d\n", pt->cmd_count);
if (pt->ver == AE4_DMA_VERSION) {
ae4 = container_of(pt, struct ae4_device, pt);
seq_printf(s, " # Queues: %d\n", ae4->cmd_q_count);
seq_printf(s, " # Cmds per queue: %d\n", CMD_Q_LEN);
} else {
seq_printf(s, " # Queues: %d\n", 1);
seq_printf(s, " # Cmds: %d\n", pt->cmd_count);
}
regval = ioread32(pt->io_regs + CMD_PT_VERSION);
@ -55,6 +64,7 @@ static int pt_debugfs_stats_show(struct seq_file *s, void *p)
static int pt_debugfs_queue_show(struct seq_file *s, void *p)
{
struct pt_cmd_queue *cmd_q = s->private;
struct pt_device *pt;
unsigned int regval;
if (!cmd_q)
@ -62,18 +72,24 @@ static int pt_debugfs_queue_show(struct seq_file *s, void *p)
seq_printf(s, " Pass-Thru: %ld\n", cmd_q->total_pt_ops);
regval = ioread32(cmd_q->reg_control + 0x000C);
pt = cmd_q->pt;
if (pt->ver == AE4_DMA_VERSION) {
regval = readl(cmd_q->reg_control + 0x4);
seq_printf(s, " Enabled Interrupts:: status 0x%x\n", regval);
} else {
regval = ioread32(cmd_q->reg_control + 0x000C);
seq_puts(s, " Enabled Interrupts:");
if (regval & INT_EMPTY_QUEUE)
seq_puts(s, " EMPTY");
if (regval & INT_QUEUE_STOPPED)
seq_puts(s, " STOPPED");
if (regval & INT_ERROR)
seq_puts(s, " ERROR");
if (regval & INT_COMPLETION)
seq_puts(s, " COMPLETION");
seq_puts(s, "\n");
seq_puts(s, " Enabled Interrupts:");
if (regval & INT_EMPTY_QUEUE)
seq_puts(s, " EMPTY");
if (regval & INT_QUEUE_STOPPED)
seq_puts(s, " STOPPED");
if (regval & INT_ERROR)
seq_puts(s, " ERROR");
if (regval & INT_COMPLETION)
seq_puts(s, " COMPLETION");
seq_puts(s, "\n");
}
return 0;
}
@ -84,8 +100,12 @@ DEFINE_SHOW_ATTRIBUTE(pt_debugfs_stats);
void ptdma_debugfs_setup(struct pt_device *pt)
{
struct pt_cmd_queue *cmd_q;
struct dentry *debugfs_q_instance;
struct ae4_cmd_queue *ae4cmd_q;
struct pt_cmd_queue *cmd_q;
struct ae4_device *ae4;
char name[30];
int i;
if (!debugfs_initialized())
return;
@ -96,11 +116,28 @@ void ptdma_debugfs_setup(struct pt_device *pt)
debugfs_create_file("stats", 0400, pt->dma_dev.dbg_dev_root, pt,
&pt_debugfs_stats_fops);
cmd_q = &pt->cmd_q;
debugfs_q_instance =
debugfs_create_dir("q", pt->dma_dev.dbg_dev_root);
if (pt->ver == AE4_DMA_VERSION) {
ae4 = container_of(pt, struct ae4_device, pt);
for (i = 0; i < ae4->cmd_q_count; i++) {
ae4cmd_q = &ae4->ae4cmd_q[i];
cmd_q = &ae4cmd_q->cmd_q;
debugfs_create_file("stats", 0400, debugfs_q_instance, cmd_q,
&pt_debugfs_queue_fops);
memset(name, 0, sizeof(name));
snprintf(name, 29, "q%d", ae4cmd_q->id);
debugfs_q_instance =
debugfs_create_dir(name, pt->dma_dev.dbg_dev_root);
debugfs_create_file("stats", 0400, debugfs_q_instance, cmd_q,
&pt_debugfs_queue_fops);
}
} else {
debugfs_q_instance =
debugfs_create_dir("q", pt->dma_dev.dbg_dev_root);
cmd_q = &pt->cmd_q;
debugfs_create_file("stats", 0400, debugfs_q_instance, cmd_q,
&pt_debugfs_queue_fops);
}
}
EXPORT_SYMBOL_GPL(ptdma_debugfs_setup);

View File

@ -9,9 +9,58 @@
* Author: Gary R Hook <gary.hook@amd.com>
*/
#include <linux/bitfield.h>
#include "ptdma.h"
#include "../dmaengine.h"
#include "../virt-dma.h"
#include "../ae4dma/ae4dma.h"
#include "../../dmaengine.h"
static char *ae4_error_codes[] = {
"",
"ERR 01: INVALID HEADER DW0",
"ERR 02: INVALID STATUS",
"ERR 03: INVALID LENGTH - 4 BYTE ALIGNMENT",
"ERR 04: INVALID SRC ADDR - 4 BYTE ALIGNMENT",
"ERR 05: INVALID DST ADDR - 4 BYTE ALIGNMENT",
"ERR 06: INVALID ALIGNMENT",
"ERR 07: INVALID DESCRIPTOR",
};
static void ae4_log_error(struct pt_device *d, int e)
{
/* ERR 01 - 07 represents Invalid AE4 errors */
if (e <= 7)
dev_info(d->dev, "AE4DMA error: %s (0x%x)\n", ae4_error_codes[e], e);
/* ERR 08 - 15 represents Invalid Descriptor errors */
else if (e > 7 && e <= 15)
dev_info(d->dev, "AE4DMA error: %s (0x%x)\n", "INVALID DESCRIPTOR", e);
/* ERR 16 - 31 represents Firmware errors */
else if (e > 15 && e <= 31)
dev_info(d->dev, "AE4DMA error: %s (0x%x)\n", "FIRMWARE ERROR", e);
/* ERR 32 - 63 represents Fatal errors */
else if (e > 31 && e <= 63)
dev_info(d->dev, "AE4DMA error: %s (0x%x)\n", "FATAL ERROR", e);
/* ERR 64 - 255 represents PTE errors */
else if (e > 63 && e <= 255)
dev_info(d->dev, "AE4DMA error: %s (0x%x)\n", "PTE ERROR", e);
else
dev_info(d->dev, "Unknown AE4DMA error");
}
void ae4_check_status_error(struct ae4_cmd_queue *ae4cmd_q, int idx)
{
struct pt_cmd_queue *cmd_q = &ae4cmd_q->cmd_q;
struct ae4dma_desc desc;
u8 status;
memcpy(&desc, &cmd_q->qbase[idx], sizeof(struct ae4dma_desc));
status = desc.dw1.status;
if (status && status != AE4_DESC_COMPLETED) {
cmd_q->cmd_error = desc.dw1.err_code;
if (cmd_q->cmd_error)
ae4_log_error(cmd_q->pt, cmd_q->cmd_error);
}
}
EXPORT_SYMBOL_GPL(ae4_check_status_error);
static inline struct pt_dma_chan *to_pt_chan(struct dma_chan *dma_chan)
{
@ -45,7 +94,71 @@ static void pt_do_cleanup(struct virt_dma_desc *vd)
kmem_cache_free(pt->dma_desc_cache, desc);
}
static int pt_dma_start_desc(struct pt_dma_desc *desc)
static struct pt_cmd_queue *pt_get_cmd_queue(struct pt_device *pt, struct pt_dma_chan *chan)
{
struct ae4_cmd_queue *ae4cmd_q;
struct pt_cmd_queue *cmd_q;
struct ae4_device *ae4;
if (pt->ver == AE4_DMA_VERSION) {
ae4 = container_of(pt, struct ae4_device, pt);
ae4cmd_q = &ae4->ae4cmd_q[chan->id];
cmd_q = &ae4cmd_q->cmd_q;
} else {
cmd_q = &pt->cmd_q;
}
return cmd_q;
}
static int ae4_core_execute_cmd(struct ae4dma_desc *desc, struct ae4_cmd_queue *ae4cmd_q)
{
bool soc = FIELD_GET(DWORD0_SOC, desc->dwouv.dw0);
struct pt_cmd_queue *cmd_q = &ae4cmd_q->cmd_q;
if (soc) {
desc->dwouv.dw0 |= FIELD_PREP(DWORD0_IOC, desc->dwouv.dw0);
desc->dwouv.dw0 &= ~DWORD0_SOC;
}
mutex_lock(&ae4cmd_q->cmd_lock);
memcpy(&cmd_q->qbase[ae4cmd_q->tail_wi], desc, sizeof(struct ae4dma_desc));
ae4cmd_q->q_cmd_count++;
ae4cmd_q->tail_wi = (ae4cmd_q->tail_wi + 1) % CMD_Q_LEN;
writel(ae4cmd_q->tail_wi, cmd_q->reg_control + AE4_WR_IDX_OFF);
mutex_unlock(&ae4cmd_q->cmd_lock);
wake_up(&ae4cmd_q->q_w);
return 0;
}
static int pt_core_perform_passthru_ae4(struct pt_cmd_queue *cmd_q,
struct pt_passthru_engine *pt_engine)
{
struct ae4_cmd_queue *ae4cmd_q = container_of(cmd_q, struct ae4_cmd_queue, cmd_q);
struct ae4dma_desc desc;
cmd_q->cmd_error = 0;
cmd_q->total_pt_ops++;
memset(&desc, 0, sizeof(desc));
desc.dwouv.dws.byte0 = CMD_AE4_DESC_DW0_VAL;
desc.dw1.status = 0;
desc.dw1.err_code = 0;
desc.dw1.desc_id = 0;
desc.length = pt_engine->src_len;
desc.src_lo = upper_32_bits(pt_engine->src_dma);
desc.src_hi = lower_32_bits(pt_engine->src_dma);
desc.dst_lo = upper_32_bits(pt_engine->dst_dma);
desc.dst_hi = lower_32_bits(pt_engine->dst_dma);
return ae4_core_execute_cmd(&desc, ae4cmd_q);
}
static int pt_dma_start_desc(struct pt_dma_desc *desc, struct pt_dma_chan *chan)
{
struct pt_passthru_engine *pt_engine;
struct pt_device *pt;
@ -56,13 +169,18 @@ static int pt_dma_start_desc(struct pt_dma_desc *desc)
pt_cmd = &desc->pt_cmd;
pt = pt_cmd->pt;
cmd_q = &pt->cmd_q;
cmd_q = pt_get_cmd_queue(pt, chan);
pt_engine = &pt_cmd->passthru;
pt->tdata.cmd = pt_cmd;
/* Execute the command */
pt_cmd->ret = pt_core_perform_passthru(cmd_q, pt_engine);
if (pt->ver == AE4_DMA_VERSION)
pt_cmd->ret = pt_core_perform_passthru_ae4(cmd_q, pt_engine);
else
pt_cmd->ret = pt_core_perform_passthru(cmd_q, pt_engine);
return 0;
}
@ -151,7 +269,7 @@ static void pt_cmd_callback(void *data, int err)
if (!desc)
break;
ret = pt_dma_start_desc(desc);
ret = pt_dma_start_desc(desc, chan);
if (!ret)
break;
@ -186,7 +304,10 @@ static struct pt_dma_desc *pt_create_desc(struct dma_chan *dma_chan,
{
struct pt_dma_chan *chan = to_pt_chan(dma_chan);
struct pt_passthru_engine *pt_engine;
struct pt_device *pt = chan->pt;
struct ae4_cmd_queue *ae4cmd_q;
struct pt_dma_desc *desc;
struct ae4_device *ae4;
struct pt_cmd *pt_cmd;
desc = pt_alloc_dma_desc(chan, flags);
@ -194,7 +315,7 @@ static struct pt_dma_desc *pt_create_desc(struct dma_chan *dma_chan,
return NULL;
pt_cmd = &desc->pt_cmd;
pt_cmd->pt = chan->pt;
pt_cmd->pt = pt;
pt_engine = &pt_cmd->passthru;
pt_cmd->engine = PT_ENGINE_PASSTHRU;
pt_engine->src_dma = src;
@ -205,6 +326,14 @@ static struct pt_dma_desc *pt_create_desc(struct dma_chan *dma_chan,
desc->len = len;
if (pt->ver == AE4_DMA_VERSION) {
ae4 = container_of(pt, struct ae4_device, pt);
ae4cmd_q = &ae4->ae4cmd_q[chan->id];
mutex_lock(&ae4cmd_q->cmd_lock);
list_add_tail(&pt_cmd->entry, &ae4cmd_q->cmd);
mutex_unlock(&ae4cmd_q->cmd_lock);
}
return desc;
}
@ -258,24 +387,43 @@ static void pt_issue_pending(struct dma_chan *dma_chan)
pt_cmd_callback(desc, 0);
}
static void pt_check_status_trans_ae4(struct pt_device *pt, struct pt_cmd_queue *cmd_q)
{
struct ae4_cmd_queue *ae4cmd_q = container_of(cmd_q, struct ae4_cmd_queue, cmd_q);
int i;
for (i = 0; i < CMD_Q_LEN; i++)
ae4_check_status_error(ae4cmd_q, i);
}
static enum dma_status
pt_tx_status(struct dma_chan *c, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct pt_device *pt = to_pt_chan(c)->pt;
struct pt_cmd_queue *cmd_q = &pt->cmd_q;
struct pt_dma_chan *chan = to_pt_chan(c);
struct pt_device *pt = chan->pt;
struct pt_cmd_queue *cmd_q;
cmd_q = pt_get_cmd_queue(pt, chan);
if (pt->ver == AE4_DMA_VERSION)
pt_check_status_trans_ae4(pt, cmd_q);
else
pt_check_status_trans(pt, cmd_q);
pt_check_status_trans(pt, cmd_q);
return dma_cookie_status(c, cookie, txstate);
}
static int pt_pause(struct dma_chan *dma_chan)
{
struct pt_dma_chan *chan = to_pt_chan(dma_chan);
struct pt_device *pt = chan->pt;
struct pt_cmd_queue *cmd_q;
unsigned long flags;
spin_lock_irqsave(&chan->vc.lock, flags);
pt_stop_queue(&chan->pt->cmd_q);
cmd_q = pt_get_cmd_queue(pt, chan);
pt_stop_queue(cmd_q);
spin_unlock_irqrestore(&chan->vc.lock, flags);
return 0;
@ -285,10 +433,13 @@ static int pt_resume(struct dma_chan *dma_chan)
{
struct pt_dma_chan *chan = to_pt_chan(dma_chan);
struct pt_dma_desc *desc = NULL;
struct pt_device *pt = chan->pt;
struct pt_cmd_queue *cmd_q;
unsigned long flags;
spin_lock_irqsave(&chan->vc.lock, flags);
pt_start_queue(&chan->pt->cmd_q);
cmd_q = pt_get_cmd_queue(pt, chan);
pt_start_queue(cmd_q);
desc = pt_next_dma_desc(chan);
spin_unlock_irqrestore(&chan->vc.lock, flags);
@ -302,11 +453,17 @@ static int pt_resume(struct dma_chan *dma_chan)
static int pt_terminate_all(struct dma_chan *dma_chan)
{
struct pt_dma_chan *chan = to_pt_chan(dma_chan);
struct pt_device *pt = chan->pt;
struct pt_cmd_queue *cmd_q;
unsigned long flags;
struct pt_cmd_queue *cmd_q = &chan->pt->cmd_q;
LIST_HEAD(head);
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010);
cmd_q = pt_get_cmd_queue(pt, chan);
if (pt->ver == AE4_DMA_VERSION)
pt_stop_queue(cmd_q);
else
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010);
spin_lock_irqsave(&chan->vc.lock, flags);
vchan_get_all_descriptors(&chan->vc, &head);
spin_unlock_irqrestore(&chan->vc.lock, flags);
@ -319,14 +476,24 @@ static int pt_terminate_all(struct dma_chan *dma_chan)
int pt_dmaengine_register(struct pt_device *pt)
{
struct pt_dma_chan *chan;
struct dma_device *dma_dev = &pt->dma_dev;
char *cmd_cache_name;
struct ae4_cmd_queue *ae4cmd_q = NULL;
struct ae4_device *ae4 = NULL;
struct pt_dma_chan *chan;
char *desc_cache_name;
int ret;
char *cmd_cache_name;
int ret, i;
if (pt->ver == AE4_DMA_VERSION)
ae4 = container_of(pt, struct ae4_device, pt);
if (ae4)
pt->pt_dma_chan = devm_kcalloc(pt->dev, ae4->cmd_q_count,
sizeof(*pt->pt_dma_chan), GFP_KERNEL);
else
pt->pt_dma_chan = devm_kzalloc(pt->dev, sizeof(*pt->pt_dma_chan),
GFP_KERNEL);
pt->pt_dma_chan = devm_kzalloc(pt->dev, sizeof(*pt->pt_dma_chan),
GFP_KERNEL);
if (!pt->pt_dma_chan)
return -ENOMEM;
@ -368,9 +535,6 @@ int pt_dmaengine_register(struct pt_device *pt)
INIT_LIST_HEAD(&dma_dev->channels);
chan = pt->pt_dma_chan;
chan->pt = pt;
/* Set base and prep routines */
dma_dev->device_free_chan_resources = pt_free_chan_resources;
dma_dev->device_prep_dma_memcpy = pt_prep_dma_memcpy;
@ -382,8 +546,21 @@ int pt_dmaengine_register(struct pt_device *pt)
dma_dev->device_terminate_all = pt_terminate_all;
dma_dev->device_synchronize = pt_synchronize;
chan->vc.desc_free = pt_do_cleanup;
vchan_init(&chan->vc, dma_dev);
if (ae4) {
for (i = 0; i < ae4->cmd_q_count; i++) {
chan = pt->pt_dma_chan + i;
ae4cmd_q = &ae4->ae4cmd_q[i];
chan->id = ae4cmd_q->id;
chan->pt = pt;
chan->vc.desc_free = pt_do_cleanup;
vchan_init(&chan->vc, dma_dev);
}
} else {
chan = pt->pt_dma_chan;
chan->pt = pt;
chan->vc.desc_free = pt_do_cleanup;
vchan_init(&chan->vc, dma_dev);
}
ret = dma_async_device_register(dma_dev);
if (ret)
@ -399,6 +576,7 @@ int pt_dmaengine_register(struct pt_device *pt)
return ret;
}
EXPORT_SYMBOL_GPL(pt_dmaengine_register);
void pt_dmaengine_unregister(struct pt_device *pt)
{

View File

@ -22,7 +22,7 @@
#include <linux/wait.h>
#include <linux/dmapool.h>
#include "../virt-dma.h"
#include "../../virt-dma.h"
#define MAX_PT_NAME_LEN 16
#define MAX_DMAPOOL_NAME_LEN 32
@ -184,6 +184,7 @@ struct pt_dma_desc {
struct pt_dma_chan {
struct virt_dma_chan vc;
struct pt_device *pt;
u32 id;
};
struct pt_cmd_queue {
@ -262,6 +263,7 @@ struct pt_device {
unsigned long total_interrupts;
struct pt_tasklet_data tdata;
int ver;
};
/*

View File

@ -283,16 +283,20 @@ static int qdma_check_queue_status(struct qdma_device *qdev,
static int qdma_clear_queue_context(const struct qdma_queue *queue)
{
enum qdma_ctxt_type h2c_types[] = { QDMA_CTXT_DESC_SW_H2C,
QDMA_CTXT_DESC_HW_H2C,
QDMA_CTXT_DESC_CR_H2C,
QDMA_CTXT_PFTCH, };
enum qdma_ctxt_type c2h_types[] = { QDMA_CTXT_DESC_SW_C2H,
QDMA_CTXT_DESC_HW_C2H,
QDMA_CTXT_DESC_CR_C2H,
QDMA_CTXT_PFTCH, };
static const enum qdma_ctxt_type h2c_types[] = {
QDMA_CTXT_DESC_SW_H2C,
QDMA_CTXT_DESC_HW_H2C,
QDMA_CTXT_DESC_CR_H2C,
QDMA_CTXT_PFTCH,
};
static const enum qdma_ctxt_type c2h_types[] = {
QDMA_CTXT_DESC_SW_C2H,
QDMA_CTXT_DESC_HW_C2H,
QDMA_CTXT_DESC_CR_C2H,
QDMA_CTXT_PFTCH,
};
struct qdma_device *qdev = queue->qdev;
enum qdma_ctxt_type *type;
const enum qdma_ctxt_type *type;
int ret, num, i;
if (queue->dir == DMA_MEM_TO_DEV) {

View File

@ -28,7 +28,6 @@ struct idxd_cdev_context {
* global to avoid conflict file names.
*/
static DEFINE_IDA(file_ida);
static DEFINE_MUTEX(ida_lock);
/*
* ictx is an array based off of accelerator types. enum idxd_type
@ -123,9 +122,7 @@ static void idxd_file_dev_release(struct device *dev)
struct idxd_device *idxd = wq->idxd;
int rc;
mutex_lock(&ida_lock);
ida_free(&file_ida, ctx->id);
mutex_unlock(&ida_lock);
/* Wait for in-flight operations to complete. */
if (wq_shared(wq)) {
@ -284,9 +281,7 @@ static int idxd_cdev_open(struct inode *inode, struct file *filp)
}
idxd_cdev = wq->idxd_cdev;
mutex_lock(&ida_lock);
ctx->id = ida_alloc(&file_ida, GFP_KERNEL);
mutex_unlock(&ida_lock);
if (ctx->id < 0) {
dev_warn(dev, "ida alloc failure\n");
goto failed_ida;

View File

@ -78,6 +78,8 @@ static struct pci_device_id idxd_pci_tbl[] = {
{ PCI_DEVICE_DATA(INTEL, IAX_SPR0, &idxd_driver_data[IDXD_TYPE_IAX]) },
/* IAA on DMR platforms */
{ PCI_DEVICE_DATA(INTEL, IAA_DMR, &idxd_driver_data[IDXD_TYPE_IAX]) },
/* IAA PTL platforms */
{ PCI_DEVICE_DATA(INTEL, IAA_PTL, &idxd_driver_data[IDXD_TYPE_IAX]) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, idxd_pci_tbl);

View File

@ -9,6 +9,7 @@
#define PCI_DEVICE_ID_INTEL_DSA_GNRD 0x11fb
#define PCI_DEVICE_ID_INTEL_DSA_DMR 0x1212
#define PCI_DEVICE_ID_INTEL_IAA_DMR 0x1216
#define PCI_DEVICE_ID_INTEL_IAA_PTL 0xb02d
#define DEVICE_VERSION_1 0x100
#define DEVICE_VERSION_2 0x200

View File

@ -1,13 +0,0 @@
# SPDX-License-Identifier: GPL-2.0-only
config AMD_PTDMA
tristate "AMD PassThru DMA Engine"
depends on X86_64 && PCI
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the AMD PTDMA controller. This controller
provides DMA capabilities to perform high bandwidth memory to
memory and IO copy operations. It performs DMA transfer through
queue-based descriptor management. This DMA controller is intended
to be used with AMD Non-Transparent Bridge devices and not for
general purpose peripheral DMA.

View File

@ -2023,6 +2023,10 @@ static const struct of_device_id rcar_dmac_of_ids[] = {
.compatible = "renesas,rcar-gen4-dmac",
.data = &rcar_gen4_dmac_data,
}, {
/*
* Backward compatibility for between v5.12 - v5.19
* which didn't combined with "renesas,rcar-gen4-dmac"
*/
.compatible = "renesas,dmac-r8a779a0",
.data = &rcar_gen4_dmac_data,
},

View File

@ -13,7 +13,9 @@
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
@ -31,12 +33,21 @@
#define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
#define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
#define SUNIV_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 24)
#define SUNIV_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 8)
#define SUN4I_MAX_BURST 8
#define SUNIV_MAX_BURST 4
/** Normal DMA register values **/
/* Normal DMA source/destination data request type values */
#define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
#define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
#define SUNIV_NDMA_DRQ_TYPE_SDRAM 0x11
#define SUNIV_NDMA_DRQ_TYPE_LIMIT (0x17 + 1)
/** Normal DMA register layout **/
/* Dedicated DMA source/destination address mode values */
@ -50,6 +61,9 @@
#define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
#define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
#define SUNIV_NDMA_CFG_CONT_MODE BIT(29)
#define SUNIV_NDMA_CFG_WAIT_STATE(n) ((n) << 26)
/** Dedicated DMA register values **/
/* Dedicated DMA source/destination address mode values */
@ -62,6 +76,9 @@
#define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
#define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
#define SUNIV_DDMA_DRQ_TYPE_SDRAM 0x1
#define SUNIV_DDMA_DRQ_TYPE_LIMIT (0x9 + 1)
/** Dedicated DMA register layout **/
/* Dedicated DMA configuration register layout */
@ -115,6 +132,11 @@
#define SUN4I_DMA_NR_MAX_VCHANS \
(SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
#define SUNIV_NDMA_NR_MAX_CHANNELS 4
#define SUNIV_DDMA_NR_MAX_CHANNELS 4
#define SUNIV_NDMA_NR_MAX_VCHANS (24 * 2 - 1)
#define SUNIV_DDMA_NR_MAX_VCHANS 10
/* This set of SUN4I_DDMA timing parameters were found experimentally while
* working with the SPI driver and seem to make it behave correctly */
#define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
@ -132,6 +154,33 @@
#define SUN4I_DDMA_MAX_SEG_SIZE SZ_16M
#define SUN4I_DMA_MAX_SEG_SIZE SUN4I_NDMA_MAX_SEG_SIZE
/*
* Hardware channels / ports representation
*
* The hardware is used in several SoCs, with differing numbers
* of channels and endpoints. This structure ties those numbers
* to a certain compatible string.
*/
struct sun4i_dma_config {
u32 ndma_nr_max_channels;
u32 ndma_nr_max_vchans;
u32 ddma_nr_max_channels;
u32 ddma_nr_max_vchans;
u32 dma_nr_max_channels;
void (*set_dst_data_width)(u32 *p_cfg, s8 data_width);
void (*set_src_data_width)(u32 *p_cfg, s8 data_width);
int (*convert_burst)(u32 maxburst);
u8 ndma_drq_sdram;
u8 ddma_drq_sdram;
u8 max_burst;
bool has_reset;
};
struct sun4i_dma_pchan {
/* Register base of channel */
void __iomem *base;
@ -170,7 +219,7 @@ struct sun4i_dma_contract {
};
struct sun4i_dma_dev {
DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
unsigned long *pchans_used;
struct dma_device slave;
struct sun4i_dma_pchan *pchans;
struct sun4i_dma_vchan *vchans;
@ -178,6 +227,8 @@ struct sun4i_dma_dev {
struct clk *clk;
int irq;
spinlock_t lock;
const struct sun4i_dma_config *cfg;
struct reset_control *rst;
};
static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
@ -200,7 +251,27 @@ static struct device *chan2dev(struct dma_chan *chan)
return &chan->dev->device;
}
static int convert_burst(u32 maxburst)
static void set_dst_data_width_a10(u32 *p_cfg, s8 data_width)
{
*p_cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(data_width);
}
static void set_src_data_width_a10(u32 *p_cfg, s8 data_width)
{
*p_cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(data_width);
}
static void set_dst_data_width_f1c100s(u32 *p_cfg, s8 data_width)
{
*p_cfg |= SUNIV_DMA_CFG_DST_DATA_WIDTH(data_width);
}
static void set_src_data_width_f1c100s(u32 *p_cfg, s8 data_width)
{
*p_cfg |= SUNIV_DMA_CFG_SRC_DATA_WIDTH(data_width);
}
static int convert_burst_a10(u32 maxburst)
{
if (maxburst > 8)
return -EINVAL;
@ -209,6 +280,15 @@ static int convert_burst(u32 maxburst)
return (maxburst >> 2);
}
static int convert_burst_f1c100s(u32 maxburst)
{
if (maxburst > 4)
return -EINVAL;
/* 1 -> 0, 4 -> 1 */
return (maxburst >> 2);
}
static int convert_buswidth(enum dma_slave_buswidth addr_width)
{
if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
@ -233,15 +313,15 @@ static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
int i, max;
/*
* pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
* SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
* pchans 0-priv->cfg->ndma_nr_max_channels are normal, and
* priv->cfg->ndma_nr_max_channels+ are dedicated ones
*/
if (vchan->is_dedicated) {
i = SUN4I_NDMA_NR_MAX_CHANNELS;
max = SUN4I_DMA_NR_MAX_CHANNELS;
i = priv->cfg->ndma_nr_max_channels;
max = priv->cfg->dma_nr_max_channels;
} else {
i = 0;
max = SUN4I_NDMA_NR_MAX_CHANNELS;
max = priv->cfg->ndma_nr_max_channels;
}
spin_lock_irqsave(&priv->lock, flags);
@ -444,6 +524,7 @@ generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
size_t len, struct dma_slave_config *sconfig,
enum dma_transfer_direction direction)
{
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
struct sun4i_dma_promise *promise;
int ret;
@ -467,13 +548,13 @@ generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
sconfig->src_addr_width, sconfig->dst_addr_width);
/* Source burst */
ret = convert_burst(sconfig->src_maxburst);
ret = priv->cfg->convert_burst(sconfig->src_maxburst);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
/* Destination burst */
ret = convert_burst(sconfig->dst_maxburst);
ret = priv->cfg->convert_burst(sconfig->dst_maxburst);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
@ -482,13 +563,13 @@ generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
ret = convert_buswidth(sconfig->src_addr_width);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
priv->cfg->set_src_data_width(&promise->cfg, ret);
/* Destination bus width */
ret = convert_buswidth(sconfig->dst_addr_width);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
priv->cfg->set_dst_data_width(&promise->cfg, ret);
return promise;
@ -510,6 +591,7 @@ static struct sun4i_dma_promise *
generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
size_t len, struct dma_slave_config *sconfig)
{
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
struct sun4i_dma_promise *promise;
int ret;
@ -524,13 +606,13 @@ generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
/* Source burst */
ret = convert_burst(sconfig->src_maxburst);
ret = priv->cfg->convert_burst(sconfig->src_maxburst);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
/* Destination burst */
ret = convert_burst(sconfig->dst_maxburst);
ret = priv->cfg->convert_burst(sconfig->dst_maxburst);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
@ -539,13 +621,13 @@ generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
ret = convert_buswidth(sconfig->src_addr_width);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
priv->cfg->set_src_data_width(&promise->cfg, ret);
/* Destination bus width */
ret = convert_buswidth(sconfig->dst_addr_width);
if (ret < 0)
goto fail;
promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
priv->cfg->set_dst_data_width(&promise->cfg, ret);
return promise;
@ -622,6 +704,7 @@ static struct dma_async_tx_descriptor *
sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
struct dma_slave_config *sconfig = &vchan->cfg;
struct sun4i_dma_promise *promise;
@ -638,8 +721,8 @@ sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
*/
sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
sconfig->src_maxburst = 8;
sconfig->dst_maxburst = 8;
sconfig->src_maxburst = priv->cfg->max_burst;
sconfig->dst_maxburst = priv->cfg->max_burst;
if (vchan->is_dedicated)
promise = generate_ddma_promise(chan, src, dest, len, sconfig);
@ -654,11 +737,13 @@ sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
/* Configure memcpy mode */
if (vchan->is_dedicated) {
promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
promise->cfg |=
SUN4I_DMA_CFG_SRC_DRQ_TYPE(priv->cfg->ddma_drq_sdram) |
SUN4I_DMA_CFG_DST_DRQ_TYPE(priv->cfg->ddma_drq_sdram);
} else {
promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
promise->cfg |=
SUN4I_DMA_CFG_SRC_DRQ_TYPE(priv->cfg->ndma_drq_sdram) |
SUN4I_DMA_CFG_DST_DRQ_TYPE(priv->cfg->ndma_drq_sdram);
}
/* Fill the contract with our only promise */
@ -673,6 +758,7 @@ sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
size_t period_len, enum dma_transfer_direction dir,
unsigned long flags)
{
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
struct dma_slave_config *sconfig = &vchan->cfg;
struct sun4i_dma_promise *promise;
@ -696,11 +782,11 @@ sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
if (vchan->is_dedicated) {
io_mode = SUN4I_DDMA_ADDR_MODE_IO;
linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
ram_type = priv->cfg->ddma_drq_sdram;
} else {
io_mode = SUN4I_NDMA_ADDR_MODE_IO;
linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
ram_type = priv->cfg->ndma_drq_sdram;
}
if (dir == DMA_MEM_TO_DEV) {
@ -793,6 +879,7 @@ sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
struct dma_slave_config *sconfig = &vchan->cfg;
struct sun4i_dma_promise *promise;
@ -818,11 +905,11 @@ sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
if (vchan->is_dedicated) {
io_mode = SUN4I_DDMA_ADDR_MODE_IO;
linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
ram_type = priv->cfg->ddma_drq_sdram;
} else {
io_mode = SUN4I_NDMA_ADDR_MODE_IO;
linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
ram_type = priv->cfg->ndma_drq_sdram;
}
if (dir == DMA_MEM_TO_DEV)
@ -1150,6 +1237,10 @@ static int sun4i_dma_probe(struct platform_device *pdev)
if (!priv)
return -ENOMEM;
priv->cfg = of_device_get_match_data(&pdev->dev);
if (!priv->cfg)
return -ENODEV;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
@ -1164,6 +1255,13 @@ static int sun4i_dma_probe(struct platform_device *pdev)
return PTR_ERR(priv->clk);
}
if (priv->cfg->has_reset) {
priv->rst = devm_reset_control_get_exclusive_deasserted(&pdev->dev, NULL);
if (IS_ERR(priv->rst))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->rst),
"Failed to get reset control\n");
}
platform_set_drvdata(pdev, priv);
spin_lock_init(&priv->lock);
@ -1197,23 +1295,26 @@ static int sun4i_dma_probe(struct platform_device *pdev)
priv->slave.dev = &pdev->dev;
priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
priv->pchans = devm_kcalloc(&pdev->dev, priv->cfg->dma_nr_max_channels,
sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
if (!priv->vchans || !priv->pchans)
priv->pchans_used = devm_kcalloc(&pdev->dev,
BITS_TO_LONGS(priv->cfg->dma_nr_max_channels),
sizeof(unsigned long), GFP_KERNEL);
if (!priv->vchans || !priv->pchans || !priv->pchans_used)
return -ENOMEM;
/*
* [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
* [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
* [0..priv->cfg->ndma_nr_max_channels) are normal pchans, and
* [priv->cfg->ndma_nr_max_channels..priv->cfg->dma_nr_max_channels) are
* dedicated ones
*/
for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
for (i = 0; i < priv->cfg->ndma_nr_max_channels; i++)
priv->pchans[i].base = priv->base +
SUN4I_NDMA_CHANNEL_REG_BASE(i);
for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
for (j = 0; i < priv->cfg->dma_nr_max_channels; i++, j++) {
priv->pchans[i].base = priv->base +
SUN4I_DDMA_CHANNEL_REG_BASE(j);
priv->pchans[i].is_dedicated = 1;
@ -1284,8 +1385,51 @@ static void sun4i_dma_remove(struct platform_device *pdev)
clk_disable_unprepare(priv->clk);
}
static struct sun4i_dma_config sun4i_a10_dma_cfg = {
.ndma_nr_max_channels = SUN4I_NDMA_NR_MAX_CHANNELS,
.ndma_nr_max_vchans = SUN4I_NDMA_NR_MAX_VCHANS,
.ddma_nr_max_channels = SUN4I_DDMA_NR_MAX_CHANNELS,
.ddma_nr_max_vchans = SUN4I_DDMA_NR_MAX_VCHANS,
.dma_nr_max_channels = SUN4I_DMA_NR_MAX_CHANNELS,
.set_dst_data_width = set_dst_data_width_a10,
.set_src_data_width = set_src_data_width_a10,
.convert_burst = convert_burst_a10,
.ndma_drq_sdram = SUN4I_NDMA_DRQ_TYPE_SDRAM,
.ddma_drq_sdram = SUN4I_DDMA_DRQ_TYPE_SDRAM,
.max_burst = SUN4I_MAX_BURST,
.has_reset = false,
};
static struct sun4i_dma_config suniv_f1c100s_dma_cfg = {
.ndma_nr_max_channels = SUNIV_NDMA_NR_MAX_CHANNELS,
.ndma_nr_max_vchans = SUNIV_NDMA_NR_MAX_VCHANS,
.ddma_nr_max_channels = SUNIV_DDMA_NR_MAX_CHANNELS,
.ddma_nr_max_vchans = SUNIV_DDMA_NR_MAX_VCHANS,
.dma_nr_max_channels = SUNIV_NDMA_NR_MAX_CHANNELS +
SUNIV_DDMA_NR_MAX_CHANNELS,
.set_dst_data_width = set_dst_data_width_f1c100s,
.set_src_data_width = set_src_data_width_f1c100s,
.convert_burst = convert_burst_f1c100s,
.ndma_drq_sdram = SUNIV_NDMA_DRQ_TYPE_SDRAM,
.ddma_drq_sdram = SUNIV_DDMA_DRQ_TYPE_SDRAM,
.max_burst = SUNIV_MAX_BURST,
.has_reset = true,
};
static const struct of_device_id sun4i_dma_match[] = {
{ .compatible = "allwinner,sun4i-a10-dma" },
{ .compatible = "allwinner,sun4i-a10-dma", .data = &sun4i_a10_dma_cfg },
{ .compatible = "allwinner,suniv-f1c100s-dma",
.data = &suniv_f1c100s_dma_cfg },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, sun4i_dma_match);

View File

@ -390,15 +390,11 @@ static int xdma_xfer_start(struct xdma_chan *xchan)
*/
static int xdma_xfer_stop(struct xdma_chan *xchan)
{
int ret;
struct xdma_device *xdev = xchan->xdev_hdl;
/* clear run stop bit to prevent any further auto-triggering */
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
CHAN_CTRL_RUN_STOP);
if (ret)
return ret;
return ret;
return regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
CHAN_CTRL_RUN_STOP);
}
/**

View File

@ -1404,16 +1404,18 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
j = chan->desc_submitcount;
reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
if (chan->direction == DMA_MEM_TO_DEV) {
reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
} else {
reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
if (config->park) {
j = chan->desc_submitcount;
reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
if (chan->direction == DMA_MEM_TO_DEV) {
reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
} else {
reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
}
dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
}
dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
/* Start the hardware */
xilinx_dma_start(chan);