9248 Commits

Author SHA1 Message Date
Josef Bacik
5121711eb8 fs: enable pre-content events on supported file systems
Now that all the code has been added for pre-content events, and the
various file systems that need the page fault hooks for fsnotify have
been updated, add SB_I_ALLOW_HSM to the supported file systems.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/46960dcb2725fa0317895ed66a8409ba1c306a82.1731684329.git.josef@toxicpanda.com
2024-12-11 17:28:41 +01:00
Josef Bacik
7f4796a465 xfs: add pre-content fsnotify hook for DAX faults
xfs has it's own handling for DAX faults, so we need to add the
pre-content fsnotify hook for this case. Other faults go through
filemap_fault so they're handled properly there.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/9eccdf59a65b72f0a1a5e2f2b9bff8eda2d4f2d9.1731684329.git.josef@toxicpanda.com
2024-12-11 17:28:41 +01:00
Linus Torvalds
9141c5d389 Bug fixes for 6.13-rc2
* Use xchg() in xlog_cil_insert_pcp_aggregate()
 * Fix ABBA deadlock on a race between mount and log shutdown
 * Fix quota softlimit incoherency on delalloc
 * Fix sparse inode limits on runt AG
 * remove unknown compat feature checks in SB write valdation
 * Eliminate a lockdep false positive
 -----BEGIN PGP SIGNATURE-----
 
 iJUEABMJAB0WIQQMHYkcUKcy4GgPe2RGdaER5QtfpgUCZ072iwAKCRBGdaER5Qtf
 prtCAX4kKOVnDzn2dX4YWpFaPAFvaWbiH0GIIVIiRuQLqzARya/lurNXjfanuotc
 4oJ3JacBgJ1MWYiBX2j95AEHJaes/G3Nm+EsXeqefWWxxQvrCcQt5kdtw1fVY8kz
 5NCMUtxjIQ==
 =FM4s
 -----END PGP SIGNATURE-----

Merge tag 'xfs-fixes-6.13-rc2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Carlos Maiolino:

 - Use xchg() in xlog_cil_insert_pcp_aggregate()

 - Fix ABBA deadlock on a race between mount and log shutdown

 - Fix quota softlimit incoherency on delalloc

 - Fix sparse inode limits on runt AG

 - remove unknown compat feature checks in SB write valdation

 - Eliminate a lockdep false positive

* tag 'xfs-fixes-6.13-rc2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: don't call xfs_bmap_same_rtgroup in xfs_bmap_add_extent_hole_delay
  xfs: Use xchg() in xlog_cil_insert_pcp_aggregate()
  xfs: prevent mount and log shutdown race
  xfs: delalloc and quota softlimit timers are incoherent
  xfs: fix sparse inode limits on runt AG
  xfs: remove unknown compat feature check in superblock write validation
  xfs: eliminate lockdep false positives in xfs_attr_shortform_list
2024-12-03 10:46:49 -08:00
Christoph Hellwig
cc2dba08cc xfs: don't call xfs_bmap_same_rtgroup in xfs_bmap_add_extent_hole_delay
xfs_bmap_add_extent_hole_delay works entirely on delalloc extents, for
which xfs_bmap_same_rtgroup doesn't make sense.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-28 12:54:22 +01:00
Uros Bizjak
214093534f xfs: Use xchg() in xlog_cil_insert_pcp_aggregate()
try_cmpxchg() loop with constant "new" value can be substituted
with just xchg() to atomically get and clear the location.

The code on x86_64 improves from:

    1e7f:	48 89 4c 24 10       	mov    %rcx,0x10(%rsp)
    1e84:	48 03 14 c5 00 00 00 	add    0x0(,%rax,8),%rdx
    1e8b:	00
			1e88: R_X86_64_32S	__per_cpu_offset
    1e8c:	8b 02                	mov    (%rdx),%eax
    1e8e:	41 89 c5             	mov    %eax,%r13d
    1e91:	31 c9                	xor    %ecx,%ecx
    1e93:	f0 0f b1 0a          	lock cmpxchg %ecx,(%rdx)
    1e97:	75 f5                	jne    1e8e <xlog_cil_commit+0x84e>
    1e99:	48 8b 4c 24 10       	mov    0x10(%rsp),%rcx
    1e9e:	45 01 e9             	add    %r13d,%r9d

to just:

    1e7f:	48 03 14 cd 00 00 00 	add    0x0(,%rcx,8),%rdx
    1e86:	00
			1e83: R_X86_64_32S	__per_cpu_offset
    1e87:	31 c9                	xor    %ecx,%ecx
    1e89:	87 0a                	xchg   %ecx,(%rdx)
    1e8b:	41 01 cb             	add    %ecx,%r11d

No functional change intended.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Chandan Babu R <chandan.babu@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <elder@riscstar.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-28 12:42:10 +01:00
Linus Torvalds
5c00ff742b - The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection algorithm.
   This leads to improved memory savings.
 
 - Wei Yang has gone to town on the mapletree code, contributing several
   series which clean up the implementation:
 
 	- "refine mas_mab_cp()"
 	- "Reduce the space to be cleared for maple_big_node"
 	- "maple_tree: simplify mas_push_node()"
 	- "Following cleanup after introduce mas_wr_store_type()"
 	- "refine storing null"
 
 - The series "selftests/mm: hugetlb_fault_after_madv improvements" from
   David Hildenbrand fixes this selftest for s390.
 
 - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
   implements some rationaizations and cleanups in the page mapping code.
 
 - The series "mm: optimize shadow entries removal" from Shakeel Butt
   optimizes the file truncation code by speeding up the handling of shadow
   entries.
 
 - The series "Remove PageKsm()" from Matthew Wilcox completes the
   migration of this flag over to being a folio-based flag.
 
 - The series "Unify hugetlb into arch_get_unmapped_area functions" from
   Oscar Salvador implements a bunch of consolidations and cleanups in the
   hugetlb code.
 
 - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
   takes away the wp-fault time practice of turning a huge zero page into
   small pages.  Instead we replace the whole thing with a THP.  More
   consistent cleaner and potentiall saves a large number of pagefaults.
 
 - The series "percpu: Add a test case and fix for clang" from Andy
   Shevchenko enhances and fixes the kernel's built in percpu test code.
 
 - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
   optimizes mremap() by avoiding doing things which we didn't need to do.
 
 - The series "Improve the tmpfs large folio read performance" from
   Baolin Wang teaches tmpfs to copy data into userspace at the folio size
   rather than as individual pages.  A 20% speedup was observed.
 
 - The series "mm/damon/vaddr: Fix issue in
   damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting.
 
 - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt
   removes the long-deprecated memcgv2 charge moving feature.
 
 - The series "fix error handling in mmap_region() and refactor" from
   Lorenzo Stoakes cleanup up some of the mmap() error handling and
   addresses some potential performance issues.
 
 - The series "x86/module: use large ROX pages for text allocations" from
   Mike Rapoport teaches x86 to use large pages for read-only-execute
   module text.
 
 - The series "page allocation tag compression" from Suren Baghdasaryan
   is followon maintenance work for the new page allocation profiling
   feature.
 
 - The series "page->index removals in mm" from Matthew Wilcox remove
   most references to page->index in mm/.  A slow march towards shrinking
   struct page.
 
 - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
   interface tests" from Andrew Paniakin performs maintenance work for
   DAMON's self testing code.
 
 - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
   improves zswap's batching of compression and decompression.  It is a
   step along the way towards using Intel IAA hardware acceleration for
   this zswap operation.
 
 - The series "kasan: migrate the last module test to kunit" from
   Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests
   over to the KUnit framework.
 
 - The series "implement lightweight guard pages" from Lorenzo Stoakes
   permits userapace to place fault-generating guard pages within a single
   VMA, rather than requiring that multiple VMAs be created for this.
   Improved efficiencies for userspace memory allocators are expected.
 
 - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
   tracepoints to provide increased visibility into memcg stats flushing
   activity.
 
 - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
   fixes a zram buglet which potentially affected performance.
 
 - The series "mm: add more kernel parameters to control mTHP" from
   Maíra Canal enhances our ability to control/configuremultisize THP from
   the kernel boot command line.
 
 - The series "kasan: few improvements on kunit tests" from Sabyrzhan
   Tasbolatov has a couple of fixups for the KASAN KUnit tests.
 
 - The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
   from Kairui Song optimizes list_lru memory utilization when lockdep is
   enabled.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA
 jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq
 xyyenpibWgUoShU2wZ/Ha8FE5WDINwg=
 =JfWR
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - The series "zram: optimal post-processing target selection" from
   Sergey Senozhatsky improves zram's post-processing selection
   algorithm. This leads to improved memory savings.

 - Wei Yang has gone to town on the mapletree code, contributing several
   series which clean up the implementation:
	- "refine mas_mab_cp()"
	- "Reduce the space to be cleared for maple_big_node"
	- "maple_tree: simplify mas_push_node()"
	- "Following cleanup after introduce mas_wr_store_type()"
	- "refine storing null"

 - The series "selftests/mm: hugetlb_fault_after_madv improvements" from
   David Hildenbrand fixes this selftest for s390.

 - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
   implements some rationaizations and cleanups in the page mapping
   code.

 - The series "mm: optimize shadow entries removal" from Shakeel Butt
   optimizes the file truncation code by speeding up the handling of
   shadow entries.

 - The series "Remove PageKsm()" from Matthew Wilcox completes the
   migration of this flag over to being a folio-based flag.

 - The series "Unify hugetlb into arch_get_unmapped_area functions" from
   Oscar Salvador implements a bunch of consolidations and cleanups in
   the hugetlb code.

 - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
   takes away the wp-fault time practice of turning a huge zero page
   into small pages. Instead we replace the whole thing with a THP. More
   consistent cleaner and potentiall saves a large number of pagefaults.

 - The series "percpu: Add a test case and fix for clang" from Andy
   Shevchenko enhances and fixes the kernel's built in percpu test code.

 - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
   optimizes mremap() by avoiding doing things which we didn't need to
   do.

 - The series "Improve the tmpfs large folio read performance" from
   Baolin Wang teaches tmpfs to copy data into userspace at the folio
   size rather than as individual pages. A 20% speedup was observed.

 - The series "mm/damon/vaddr: Fix issue in
   damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
   splitting.

 - The series "memcg-v1: fully deprecate charge moving" from Shakeel
   Butt removes the long-deprecated memcgv2 charge moving feature.

 - The series "fix error handling in mmap_region() and refactor" from
   Lorenzo Stoakes cleanup up some of the mmap() error handling and
   addresses some potential performance issues.

 - The series "x86/module: use large ROX pages for text allocations"
   from Mike Rapoport teaches x86 to use large pages for
   read-only-execute module text.

 - The series "page allocation tag compression" from Suren Baghdasaryan
   is followon maintenance work for the new page allocation profiling
   feature.

 - The series "page->index removals in mm" from Matthew Wilcox remove
   most references to page->index in mm/. A slow march towards shrinking
   struct page.

 - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
   interface tests" from Andrew Paniakin performs maintenance work for
   DAMON's self testing code.

 - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
   improves zswap's batching of compression and decompression. It is a
   step along the way towards using Intel IAA hardware acceleration for
   this zswap operation.

 - The series "kasan: migrate the last module test to kunit" from
   Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
   tests over to the KUnit framework.

 - The series "implement lightweight guard pages" from Lorenzo Stoakes
   permits userapace to place fault-generating guard pages within a
   single VMA, rather than requiring that multiple VMAs be created for
   this. Improved efficiencies for userspace memory allocators are
   expected.

 - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
   tracepoints to provide increased visibility into memcg stats flushing
   activity.

 - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
   fixes a zram buglet which potentially affected performance.

 - The series "mm: add more kernel parameters to control mTHP" from
   Maíra Canal enhances our ability to control/configuremultisize THP
   from the kernel boot command line.

 - The series "kasan: few improvements on kunit tests" from Sabyrzhan
   Tasbolatov has a couple of fixups for the KASAN KUnit tests.

 - The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
   from Kairui Song optimizes list_lru memory utilization when lockdep
   is enabled.

* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
  cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
  mm/kfence: add a new kunit test test_use_after_free_read_nofault()
  zram: fix NULL pointer in comp_algorithm_show()
  memcg/hugetlb: add hugeTLB counters to memcg
  vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
  mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
  zram: ZRAM_DEF_COMP should depend on ZRAM
  MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
  Docs/mm/damon: recommend academic papers to read and/or cite
  mm: define general function pXd_init()
  kmemleak: iommu/iova: fix transient kmemleak false positive
  mm/list_lru: simplify the list_lru walk callback function
  mm/list_lru: split the lock to per-cgroup scope
  mm/list_lru: simplify reparenting and initial allocation
  mm/list_lru: code clean up for reparenting
  mm/list_lru: don't export list_lru_add
  mm/list_lru: don't pass unnecessary key parameters
  kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
  kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
  kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
  ...
2024-11-23 09:58:07 -08:00
Dave Chinner
a858109960 xfs: prevent mount and log shutdown race
I recently had an fstests hang where there were two internal tasks
stuck like so:

[ 6559.010870] task:kworker/24:45   state:D stack:12152 pid:631308 tgid:631308 ppid:2      flags:0x00004000
[ 6559.016984] Workqueue: xfs-buf/dm-2 xfs_buf_ioend_work
[ 6559.020349] Call Trace:
[ 6559.022002]  <TASK>
[ 6559.023426]  __schedule+0x650/0xb10
[ 6559.025734]  schedule+0x6d/0xf0
[ 6559.027835]  schedule_timeout+0x31/0x180
[ 6559.030582]  wait_for_common+0x10c/0x1e0
[ 6559.033495]  wait_for_completion+0x1d/0x30
[ 6559.036463]  __flush_workqueue+0xeb/0x490
[ 6559.039479]  ? mempool_alloc_slab+0x15/0x20
[ 6559.042537]  xlog_cil_force_seq+0xa1/0x2f0
[ 6559.045498]  ? bio_alloc_bioset+0x1d8/0x510
[ 6559.048578]  ? submit_bio_noacct+0x2f2/0x380
[ 6559.051665]  ? xlog_force_shutdown+0x3b/0x170
[ 6559.054819]  xfs_log_force+0x77/0x230
[ 6559.057455]  xlog_force_shutdown+0x3b/0x170
[ 6559.060507]  xfs_do_force_shutdown+0xd4/0x200
[ 6559.063798]  ? xfs_buf_rele+0x1bd/0x580
[ 6559.066541]  xfs_buf_ioend_handle_error+0x163/0x2e0
[ 6559.070099]  xfs_buf_ioend+0x61/0x200
[ 6559.072728]  xfs_buf_ioend_work+0x15/0x20
[ 6559.075706]  process_scheduled_works+0x1d4/0x400
[ 6559.078814]  worker_thread+0x234/0x2e0
[ 6559.081300]  kthread+0x147/0x170
[ 6559.083462]  ? __pfx_worker_thread+0x10/0x10
[ 6559.086295]  ? __pfx_kthread+0x10/0x10
[ 6559.088771]  ret_from_fork+0x3e/0x50
[ 6559.091153]  ? __pfx_kthread+0x10/0x10
[ 6559.093624]  ret_from_fork_asm+0x1a/0x30
[ 6559.096227]  </TASK>

[ 6559.109304] Workqueue: xfs-cil/dm-2 xlog_cil_push_work
[ 6559.112673] Call Trace:
[ 6559.114333]  <TASK>
[ 6559.115760]  __schedule+0x650/0xb10
[ 6559.118084]  schedule+0x6d/0xf0
[ 6559.120175]  schedule_timeout+0x31/0x180
[ 6559.122776]  ? call_rcu+0xee/0x2f0
[ 6559.125034]  __down_common+0xbe/0x1f0
[ 6559.127470]  __down+0x1d/0x30
[ 6559.129458]  down+0x48/0x50
[ 6559.131343]  ? xfs_buf_item_unpin+0x8d/0x380
[ 6559.134213]  xfs_buf_lock+0x3d/0xe0
[ 6559.136544]  xfs_buf_item_unpin+0x8d/0x380
[ 6559.139253]  xlog_cil_committed+0x287/0x520
[ 6559.142019]  ? sched_clock+0x10/0x30
[ 6559.144384]  ? sched_clock_cpu+0x10/0x190
[ 6559.147039]  ? psi_group_change+0x48/0x310
[ 6559.149735]  ? _raw_spin_unlock+0xe/0x30
[ 6559.152340]  ? finish_task_switch+0xbc/0x310
[ 6559.155163]  xlog_cil_process_committed+0x6d/0x90
[ 6559.158265]  xlog_state_shutdown_callbacks+0x53/0x110
[ 6559.161564]  ? xlog_cil_push_work+0xa70/0xaf0
[ 6559.164441]  xlog_state_release_iclog+0xba/0x1b0
[ 6559.167483]  xlog_cil_push_work+0xa70/0xaf0
[ 6559.170260]  process_scheduled_works+0x1d4/0x400
[ 6559.173286]  worker_thread+0x234/0x2e0
[ 6559.175779]  kthread+0x147/0x170
[ 6559.177933]  ? __pfx_worker_thread+0x10/0x10
[ 6559.180748]  ? __pfx_kthread+0x10/0x10
[ 6559.183231]  ret_from_fork+0x3e/0x50
[ 6559.185601]  ? __pfx_kthread+0x10/0x10
[ 6559.188092]  ret_from_fork_asm+0x1a/0x30
[ 6559.190692]  </TASK>

This is an ABBA deadlock where buffer IO completion is triggering a
forced shutdown with the buffer lock held. It is waiting for the CIL
to flush as part of the log force. The CIL flush is blocked doing
shutdown processing of all it's objects, trying to unpin a buffer
item. That requires taking the buffer lock....

For the CIL to be doing shutdown processing, the log must be marked
with XLOG_IO_ERROR, but that doesn't happen until after the log
force is issued. Hence for xfs_do_force_shutdown() to be forcing
the log on a shut down log, we must have had a racing
xlog_force_shutdown and xfs_force_shutdown like so:

p0			p1			CIL push

   			<holds buffer lock>
xlog_force_shutdown
  xfs_log_force
   test_and_set_bit(XLOG_IO_ERROR)
   						xlog_state_release_iclog()
						  sees XLOG_IO_ERROR
						  xlog_state_shutdown_callbacks
						    ....
						    xfs_buf_item_unpin
						    xfs_buf_lock
						    <blocks on buffer p1 holds>

   			xfs_force_shutdown
			  xfs_set_shutdown(mp) wins
			    xlog_force_shutdown
			      xfs_log_force
			        <blocks on CIL push>

  xfs_set_shutdown(mp) fails
  <shuts down rest of log>

The deadlock can be mitigated by avoiding the log force on the
second pass through xlog_force_shutdown. Do this by adding another
atomic state bit (XLOG_OP_PENDING_SHUTDOWN) that is set on entry to
xlog_force_shutdown() but doesn't mark the log as shutdown.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-22 11:24:51 +01:00
Dave Chinner
c9c293240e xfs: delalloc and quota softlimit timers are incoherent
I've been seeing this failure on during xfs/050 recently:

 XFS: Assertion failed: dst->d_spc_timer != 0, file: fs/xfs/xfs_qm_syscalls.c, line: 435
....
 Call Trace:
  <TASK>
  xfs_qm_scall_getquota_fill_qc+0x2a2/0x2b0
  xfs_qm_scall_getquota_next+0x69/0xa0
  xfs_fs_get_nextdqblk+0x62/0xf0
  quota_getnextxquota+0xbf/0x320
  do_quotactl+0x1a1/0x410
  __se_sys_quotactl+0x126/0x310
  __x64_sys_quotactl+0x21/0x30
  x64_sys_call+0x2819/0x2ee0
  do_syscall_64+0x68/0x130
  entry_SYSCALL_64_after_hwframe+0x76/0x7e

It turns out that the _qmount call has silently been failing to
unmount and mount the filesystem, so when the softlimit is pushed
past with a buffered write, it is not getting synced to disk before
the next quota report is being run.

Hence when the quota report runs, we have 300 blocks of delalloc
data on an inode, with a soft limit of 200 blocks. XFS dquots
account delalloc reservations as used space, hence the dquot is over
the soft limit.

However, we don't update the soft limit timers until we do a
transactional update of the dquot. That is, the dquot sits over the
soft limit without a softlimit timer being started until writeback
occurs and the allocation modifies the dquot and we call
xfs_qm_adjust_dqtimers() from xfs_trans_apply_dquot_deltas() in
xfs_trans_commit() context.

This isn't really a problem, except for this debug code in
xfs_qm_scall_getquota_fill_qc():

        if (xfs_dquot_is_enforced(dqp) && dqp->q_id != 0) {
                if ((dst->d_space > dst->d_spc_softlimit) &&
                    (dst->d_spc_softlimit > 0)) {
                        ASSERT(dst->d_spc_timer != 0);
                }
....

It asserts taht if the used block count is over the soft limit,
it *must* have a soft limit timer running. This is clearly not
the case, because we haven't committed the delalloc space to disk
yet. Hence the soft limit is only exceeded temporarily in memory
(which isn't an issue) and we start the timer the moment we exceed
the soft limit in journalled metadata.

This debug was introduced in:

commit 0d5ad8383061fbc0a9804fbb98218750000fe032
Author: Supriya Wickrematillake <sup@sgi.com>
Date:   Wed May 15 22:44:44 1996 +0000

    initial checkin
    quotactl syscall functions.

The very first quota support commit back in 1996. This is zero-day
debug for Irix and, as it turns out, a zero-day bug in the debug
code because the delalloc code on Irix didn't update the softlimit
timers, either.

IOWs, this issue has been in the code for 28 years.

We obviously don't care if soft limit timers are a bit rubbery when
we have delalloc reservations in memory. Production systems running
quota reports have been exposed to this situation for 28 years and
nobody has noticed it, so the debug code is essentially worthless at
this point in time.

We also have the on-disk dquot verifiers checking that the soft
limit timer is running whenever the dquot is over the soft limit
before we write it to disk and after we read it from disk. These
aren't firing, so it is clear the issue is purely a temporary
in-memory incoherency that I never would have noticed had the test
not silently failed to unmount the filesystem.

Hence I'm simply going to trash this runtime debug because it isn't
useful in the slightest for catching quota bugs.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-22 11:24:45 +01:00
Dave Chinner
1332533358 xfs: fix sparse inode limits on runt AG
The runt AG at the end of a filesystem is almost always smaller than
the mp->m_sb.sb_agblocks. Unfortunately, when setting the max_agbno
limit for the inode chunk allocation, we do not take this into
account. This means we can allocate a sparse inode chunk that
overlaps beyond the end of an AG. When we go to allocate an inode
from that sparse chunk, the irec fails validation because the
agbno of the start of the irec is beyond valid limits for the runt
AG.

Prevent this from happening by taking into account the size of the
runt AG when allocating inode chunks. Also convert the various
checks for valid inode chunk agbnos to use xfs_ag_block_count()
so that they will also catch such issues in the future.

Fixes: 56d1115c9bc7 ("xfs: allocate sparse inode chunks on full chunk allocation failure")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-22 11:24:40 +01:00
Long Li
652f03db89 xfs: remove unknown compat feature check in superblock write validation
Compat features are new features that older kernels can safely ignore,
allowing read-write mounts without issues. The current sb write validation
implementation returns -EFSCORRUPTED for unknown compat features,
preventing filesystem write operations and contradicting the feature's
definition.

Additionally, if the mounted image is unclean, the log recovery may need
to write to the superblock. Returning an error for unknown compat features
during sb write validation can cause mount failures.

Although XFS currently does not use compat feature flags, this issue
affects current kernels' ability to mount images that may use compat
feature flags in the future.

Since superblock read validation already warns about unknown compat
features, it's unnecessary to repeat this warning during write validation.
Therefore, the relevant code in write validation is being removed.

Fixes: 9e037cb7972f ("xfs: check for unknown v5 feature bits in superblock write verifier")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-22 10:20:55 +01:00
Long Li
45f69d091b xfs: eliminate lockdep false positives in xfs_attr_shortform_list
xfs_attr_shortform_list() only called from a non-transactional context, it
hold ilock before alloc memory and maybe trapped in memory reclaim. Since
commit 204fae32d5f7("xfs: clean up remaining GFP_NOFS users") removed
GFP_NOFS flag, lockdep warning will be report as [1]. Eliminate lockdep
false positives by use __GFP_NOLOCKDEP to alloc memory
in xfs_attr_shortform_list().

[1] https://lore.kernel.org/linux-xfs/000000000000e33add0616358204@google.com/

Reported-by: syzbot+4248e91deb3db78358a2@syzkaller.appspotmail.com
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-22 09:52:03 +01:00
Linus Torvalds
2edc8f933d New xfs code for 6.13
* convert perag to use xarrays
 * create a new generic allocation group structure
 * Add metadata inode dir trees
 * Create in-core rt allocation groups
 * Shard the RT section into allocation groups
 * Persist quota options with the enw metadata dir tree
 * Enable quota for RT volumes
 * Enable metadata directory trees
 * Some bugfixes
 
 Signed-off-by: Carlos Maiolino <cem@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iJUEABMJAB0WIQQMHYkcUKcy4GgPe2RGdaER5QtfpgUCZzyNwAAKCRBGdaER5Qtf
 psV3AYCncK/pVhFfKQSFbnCvgPSoAe7N9n0Wt5gmjy0Ill2mbQXVl9ADXkH6a015
 gcGM3t4BgIHLJQndL/Uz+3a0L5IriEb9QkAfzmx8t3vjiRBzBe3WfywEx9Yt7kZe
 xbxEJ2HQpA==
 =3ngC
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.13-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Carlos Maiolino:
 "The bulk of this pull request is a major rework that Darrick and
  Christoph have been doing on XFS's real-time volume, coupled with a
  few features to support this rework. It does also includes some bug
  fixes.

   - convert perag to use xarrays

   - create a new generic allocation group structure

   - add metadata inode dir trees

   - create in-core rt allocation groups

   - shard the RT section into allocation groups

   - persist quota options with the enw metadata dir tree

   - enable quota for RT volumes

   - enable metadata directory trees

   - some bugfixes"

* tag 'xfs-6.13-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (146 commits)
  xfs: port ondisk structure checks from xfs/122 to the kernel
  xfs: separate space btree structures in xfs_ondisk.h
  xfs: convert struct typedefs in xfs_ondisk.h
  xfs: enable metadata directory feature
  xfs: enable realtime quota again
  xfs: update sb field checks when metadir is turned on
  xfs: reserve quota for realtime files correctly
  xfs: create quota preallocation watermarks for realtime quota
  xfs: report realtime block quota limits on realtime directories
  xfs: persist quota flags with metadir
  xfs: advertise realtime quota support in the xqm stat files
  xfs: scrub quota file metapaths
  xfs: fix chown with rt quota
  xfs: use metadir for quota inodes
  xfs: refactor xfs_qm_destroy_quotainos
  xfs: use rtgroup busy extent list for FITRIM
  xfs: implement busy extent tracking for rtgroups
  xfs: port the perag discard code to handle generic groups
  xfs: move the min and max group block numbers to xfs_group
  xfs: adjust min_block usage in xfs_verify_agbno
  ...
2024-11-21 09:20:07 -08:00
Linus Torvalds
0f25f0e4ef the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same
 scope where they'd been created, getting rid of reassignments
 and passing them by reference, converting to CLASS(fd{,_pos,_raw}).
 
 We are getting very close to having the memory safety of that stuff
 trivial to verify.
 
 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ
 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9
 CN18glYmD3wRyU6Bwl4vGODouSJvDgA=
 =gVH3
 -----END PGP SIGNATURE-----

Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull 'struct fd' class updates from Al Viro:
 "The bulk of struct fd memory safety stuff

  Making sure that struct fd instances are destroyed in the same scope
  where they'd been created, getting rid of reassignments and passing
  them by reference, converting to CLASS(fd{,_pos,_raw}).

  We are getting very close to having the memory safety of that stuff
  trivial to verify"

* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits)
  deal with the last remaing boolean uses of fd_file()
  css_set_fork(): switch to CLASS(fd_raw, ...)
  memcg_write_event_control(): switch to CLASS(fd)
  assorted variants of irqfd setup: convert to CLASS(fd)
  do_pollfd(): convert to CLASS(fd)
  convert do_select()
  convert vfs_dedupe_file_range().
  convert cifs_ioctl_copychunk()
  convert media_request_get_by_fd()
  convert spu_run(2)
  switch spufs_calls_{get,put}() to CLASS() use
  convert cachestat(2)
  convert do_preadv()/do_pwritev()
  fdget(), more trivial conversions
  fdget(), trivial conversions
  privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget()
  o2hb_region_dev_store(): avoid goto around fdget()/fdput()
  introduce "fd_pos" class, convert fdget_pos() users to it.
  fdget_raw() users: switch to CLASS(fd_raw)
  convert vmsplice() to CLASS(fd)
  ...
2024-11-18 12:24:06 -08:00
Linus Torvalds
241c7ed4d4 vfs-6.13.untorn.writes
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcopwAKCRCRxhvAZXjc
 oitWAQD68PGFI6/ES9x+qGsDFEZBH08icuO+a9dyaZXyNRosDgD/ex2zHj6F7IzS
 Ghgb9jiqWQ8l2+PDYfisxa/0jiqCbAk=
 =DmXf
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.13.untorn.writes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs untorn write support from Christian Brauner:
 "An atomic write is a write issed with torn-write protection. This
  means for a power failure or any hardware failure all or none of the
  data from the write will be stored, never a mix of old and new data.

  This work is already supported for block devices. If a block device is
  opened with O_DIRECT and the block device supports atomic write, then
  FMODE_CAN_ATOMIC_WRITE is added to the file of the opened block
  device.

  This contains the work to expand atomic write support to filesystems,
  specifically ext4 and XFS. Currently, only support for writing exactly
  one filesystem block atomically is added.

  Since it's now possible to have filesystem block size > page size for
  XFS, it's possible to write 4K+ blocks atomically on x86"

* tag 'vfs-6.13.untorn.writes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  iomap: drop an obsolete comment in iomap_dio_bio_iter
  ext4: Do not fallback to buffered-io for DIO atomic write
  ext4: Support setting FMODE_CAN_ATOMIC_WRITE
  ext4: Check for atomic writes support in write iter
  ext4: Add statx support for atomic writes
  xfs: Support setting FMODE_CAN_ATOMIC_WRITE
  xfs: Validate atomic writes
  xfs: Support atomic write for statx
  fs: iomap: Atomic write support
  fs: Export generic_atomic_write_valid()
  block: Add bdev atomic write limits helpers
  fs/block: Check for IOCB_DIRECT in generic_atomic_write_valid()
  block/fs: Pass an iocb to generic_atomic_write_valid()
2024-11-18 11:30:09 -08:00
Linus Torvalds
6ac81fd55e vfs-6.13.mgtime
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcScQAKCRCRxhvAZXjc
 oj+5AP4k822a77wc/3iPFk379naIvQ4dsrgemh0/Pb6ZvzvkFQEAi3vFCfzCDR2x
 SkJF/RwXXKZv6U31QXMRt2Qo6wfBuAc=
 =nVlm
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs multigrain timestamps from Christian Brauner:
 "This is another try at implementing multigrain timestamps. This time
  with significant help from the timekeeping maintainers to reduce the
  performance impact.

  Thomas provided a base branch that contains the required timekeeping
  interfaces for the VFS. It serves as the base for the multi-grain
  timestamp work:

   - Multigrain timestamps allow the kernel to use fine-grained
     timestamps when an inode's attributes is being actively observed
     via ->getattr(). With this support, it's possible for a file to get
     a fine-grained timestamp, and another modified after it to get a
     coarse-grained stamp that is earlier than the fine-grained time. If
     this happens then the files can appear to have been modified in
     reverse order, which breaks VFS ordering guarantees.

     To prevent this, a floor value is maintained for multigrain
     timestamps. Whenever a fine-grained timestamp is handed out, record
     it, and when later coarse-grained stamps are handed out, ensure
     they are not earlier than that value. If the coarse-grained
     timestamp is earlier than the fine-grained floor, return the floor
     value instead.

     The timekeeper changes add a static singleton atomic64_t into
     timekeeper.c that is used to keep track of the latest fine-grained
     time ever handed out. This is tracked as a monotonic ktime_t value
     to ensure that it isn't affected by clock jumps. Because it is
     updated at different times than the rest of the timekeeper object,
     the floor value is managed independently of the timekeeper via a
     cmpxchg() operation, and sits on its own cacheline.

     Two new public timekeeper interfaces are added:

      (1) ktime_get_coarse_real_ts64_mg() fills a timespec64 with the
          later of the coarse-grained clock and the floor time

      (2) ktime_get_real_ts64_mg() gets the fine-grained clock value,
          and tries to swap it into the floor. A timespec64 is filled
          with the result.

   - The VFS has always used coarse-grained timestamps when updating the
     ctime and mtime after a change. This has the benefit of allowing
     filesystems to optimize away a lot metadata updates, down to around
     1 per jiffy, even when a file is under heavy writes.

     Unfortunately, this has always been an issue when we're exporting
     via NFSv3, which relies on timestamps to validate caches. A lot of
     changes can happen in a jiffy, so timestamps aren't sufficient to
     help the client decide when to invalidate the cache. Even with
     NFSv4, a lot of exported filesystems don't properly support a
     change attribute and are subject to the same problems with
     timestamp granularity. Other applications have similar issues with
     timestamps (e.g backup applications).

     If we were to always use fine-grained timestamps, that would
     improve the situation, but that becomes rather expensive, as the
     underlying filesystem would have to log a lot more metadata
     updates.

     This adds a way to only use fine-grained timestamps when they are
     being actively queried. Use the (unused) top bit in
     inode->i_ctime_nsec as a flag that indicates whether the current
     timestamps have been queried via stat() or the like. When it's set,
     we allow the kernel to use a fine-grained timestamp iff it's
     necessary to make the ctime show a different value.

     This solves the problem of being able to distinguish the timestamp
     between updates, but introduces a new problem: it's now possible
     for a file being changed to get a fine-grained timestamp. A file
     that is altered just a bit later can then get a coarse-grained one
     that appears older than the earlier fine-grained time. This
     violates timestamp ordering guarantees.

     This is where the earlier mentioned timkeeping interfaces help. A
     global monotonic atomic64_t value is kept that acts as a timestamp
     floor. When we go to stamp a file, we first get the latter of the
     current floor value and the current coarse-grained time. If the
     inode ctime hasn't been queried then we just attempt to stamp it
     with that value.

     If it has been queried, then first see whether the current coarse
     time is later than the existing ctime. If it is, then we accept
     that value. If it isn't, then we get a fine-grained time and try to
     swap that into the global floor. Whether that succeeds or fails, we
     take the resulting floor time, convert it to realtime and try to
     swap that into the ctime.

     We take the result of the ctime swap whether it succeeds or fails,
     since either is just as valid.

     Filesystems can opt into this by setting the FS_MGTIME fstype flag.
     Others should be unaffected (other than being subject to the same
     floor value as multigrain filesystems)"

* tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  fs: reduce pointer chasing in is_mgtime() test
  tmpfs: add support for multigrain timestamps
  btrfs: convert to multigrain timestamps
  ext4: switch to multigrain timestamps
  xfs: switch to multigrain timestamps
  Documentation: add a new file documenting multigrain timestamps
  fs: add percpu counters for significant multigrain timestamp events
  fs: tracepoints around multigrain timestamp events
  fs: handle delegated timestamps in setattr_copy_mgtime
  timekeeping: Add percpu counter for tracking floor swap events
  timekeeping: Add interfaces for handling timestamps with a floor value
  fs: have setattr_copy handle multigrain timestamps appropriately
  fs: add infrastructure for multigrain timestamps
2024-11-18 09:15:39 -08:00
Carlos Maiolino
5877dc24be xfs: improve ondisk structure checks [v5.5 10/10]
Reorganize xfs_ondisk.h to group the build checks by type, then add a
 bunch of missing checks that were in xfs/122 but not the build system.
 With this, we can get rid of xfs/122.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 ph8MAP4nWT1zCLAEDpFqVQmJO7wjlS02x5xFTHEzcms30ptsIwEA73ycS74tAmP5
 CGsPxFVzhG8oMkWgrWXnXuOGfpQBPQo=
 =Dx2e
 -----END PGP SIGNATURE-----

Merge tag 'better-ondisk-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: improve ondisk structure checks [v5.5 10/10]

Reorganize xfs_ondisk.h to group the build checks by type, then add a
bunch of missing checks that were in xfs/122 but not the build system.
With this, we can get rid of xfs/122.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:03:15 +01:00
Carlos Maiolino
052378aef8 xfs: enable metadir [v5.5 09/10]
Actually enable this very large feature, which adds metadata directory
 trees, allocation groups on the realtime volume, persistent quota
 options, and quota for realtime files.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pvjKAP9A1v0QwkBo65ARf1gQb2AZYlebV8o6faSrpc+10vOPxgD/SV3GKhxQrtaT
 gOswA6f9QJN3E82IJ6fR2PZgSke+iQs=
 =xjZL
 -----END PGP SIGNATURE-----

Merge tag 'metadir-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: enable metadir [v5.5 09/10]

Actually enable this very large feature, which adds metadata directory
trees, allocation groups on the realtime volume, persistent quota
options, and quota for realtime files.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:02:55 +01:00
Carlos Maiolino
8ca118e17a xfs: enable quota for realtime volumes [v5.5 08/10]
At some point, I realized that I've refactored enough of the quota code
 in XFS that I should evaluate whether or not quota actually works on
 realtime volumes.  It turns out that it nearly works: the only broken
 pieces are chown and delayed allocation, and reporting of project
 quotas in the statvfs output for projinherit+rtinherit directories.
 
 Fix these things and we can have realtime quotas again after 20 years.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pkh4AQCtjI73mwU9rhzs2MO5nLNlpg9bgOxute+G4eqGCP02CwEAvg/LpT9yA6qk
 1jM5x8C6xy03yIWTUc+DcMPqoCqJzwc=
 =2QMv
 -----END PGP SIGNATURE-----

Merge tag 'realtime-quotas-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: enable quota for realtime volumes [v5.5 08/10]

At some point, I realized that I've refactored enough of the quota code
in XFS that I should evaluate whether or not quota actually works on
realtime volumes.  It turns out that it nearly works: the only broken
pieces are chown and delayed allocation, and reporting of project
quotas in the statvfs output for projinherit+rtinherit directories.

Fix these things and we can have realtime quotas again after 20 years.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:02:25 +01:00
Carlos Maiolino
93c0f79edf xfs: persist quota options with metadir [v5.5 07/10]
Store the quota files in the metadata directory tree instead of the
 superblock.  Since we're introducing a new incompat feature flag, let's
 also make the mount process bring up quotas in whatever state they were
 when the filesystem was last unmounted, instead of requiring sysadmins
 to remember that themselves.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pod/AP9+FSHh3UF9ccpBQXMAG0NmhXYJBQ7grnAp4q89ko6fCAD+JyUsqi55zDw6
 KnLSWZgNuO+aaCmMKXX4hEttA0//gAY=
 =0YFz
 -----END PGP SIGNATURE-----

Merge tag 'metadir-quotas-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: persist quota options with metadir [v5.5 07/10]

Store the quota files in the metadata directory tree instead of the
superblock.  Since we're introducing a new incompat feature flag, let's
also make the mount process bring up quotas in whatever state they were
when the filesystem was last unmounted, instead of requiring sysadmins
to remember that themselves.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:01:12 +01:00
Carlos Maiolino
b939bcdca3 xfs: shard the realtime section [v5.5 06/10]
Right now, the realtime section uses a single pair of metadata inodes to
 store the free space information.  This presents a scalability problem
 since every thread trying to allocate or free rt extents have to lock
 these files.  Solve this problem by sharding the realtime section into
 separate realtime allocation groups.
 
 While we're at it, define a superblock to be stamped into the start of
 the rt section.  This enables utilities such as blkid to identify block
 devices containing realtime sections, and avoids the situation where
 anything written into block 0 of the realtime extent can be
 misinterpreted as file data.
 
 The best advantage for rtgroups will become evident later when we get to
 adding rmap and reflink to the realtime volume, since the geometry
 constraints are the same for rt groups and AGs.  Hence we can reuse all
 that code directly.
 
 This is a very large patchset, but it catches us up with 20 years of
 technical debt that have accumulated.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pqk4AQD31pupAefiZ39TFLz0oA1+Q2WUOoLxH/3Ovqin1GJNPgD9EG04/14fDmRU
 WDUSVfU8JKKJYEXXZnLeJLsvEUL2EQ0=
 =1/oh
 -----END PGP SIGNATURE-----

Merge tag 'realtime-groups-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: shard the realtime section [v5.5 06/10]

Right now, the realtime section uses a single pair of metadata inodes to
store the free space information.  This presents a scalability problem
since every thread trying to allocate or free rt extents have to lock
these files.  Solve this problem by sharding the realtime section into
separate realtime allocation groups.

While we're at it, define a superblock to be stamped into the start of
the rt section.  This enables utilities such as blkid to identify block
devices containing realtime sections, and avoids the situation where
anything written into block 0 of the realtime extent can be
misinterpreted as file data.

The best advantage for rtgroups will become evident later when we get to
adding rmap and reflink to the realtime volume, since the geometry
constraints are the same for rt groups and AGs.  Hence we can reuse all
that code directly.

This is a very large patchset, but it catches us up with 20 years of
technical debt that have accumulated.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:00:42 +01:00
Carlos Maiolino
cb288c9fb2 xfs: preparation for realtime allocation groups [v5.5 05/10]
Prepare for realtime groups by adding a few bug fixes and generic code
 that will be necessary.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pgmeAP980iZAY49aL85dhr/QNl0G5YmuLOx6UW8DiAALCJxyxAEAnD5ilA7vQz40
 80/cn+Y77fT3LptpAHTM5/FY+42IOgM=
 =AzwL
 -----END PGP SIGNATURE-----

Merge tag 'rtgroups-prep-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: preparation for realtime allocation groups [v5.5 05/10]

Prepare for realtime groups by adding a few bug fixes and generic code
that will be necessary.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:00:16 +01:00
Carlos Maiolino
6b3582aca3 xfs: create incore rt allocation groups [v5.5 04/10]
Add in-memory data structures for sharding the realtime volume into
 independent allocation groups.  For existing filesystems, the entire rt
 volume is modelled as having a single large group, with (potentially) a
 number of rt extents exceeding 2^32 blocks, though these are not likely
 to exist because the codebase has been a bit broken for decades.  The
 next series fills in the ondisk format and other supporting structures.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 ptrrAP41PURivFpHWXqg0sajsIUUezhuAdfg41fJqOop81qWDAEA2CsLf1z0c9/P
 CQS/tlQ3xdwZ0MYZMaw2o0EgSHYjwg8=
 =qVdv
 -----END PGP SIGNATURE-----

Merge tag 'incore-rtgroups-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: create incore rt allocation groups [v5.5 04/10]

Add in-memory data structures for sharding the realtime volume into
independent allocation groups.  For existing filesystems, the entire rt
volume is modelled as having a single large group, with (potentially) a
number of rt extents exceeding 2^32 blocks, though these are not likely
to exist because the codebase has been a bit broken for decades.  The
next series fills in the ondisk format and other supporting structures.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 10:59:34 +01:00
Carlos Maiolino
d7a5b69bf0 xfs: metadata inode directory trees [v5.5 03/10]
This series delivers a new feature -- metadata inode directories.  This
 is a separate directory tree (rooted in the superblock) that contains
 only inodes that contain filesystem metadata.  Different metadata
 objects can be looked up with regular paths.
 
 Start by creating xfs_imeta{dir,file}* functions to mediate access to
 the metadata directory tree.  By the end of this mega series, all
 existing metadata inodes (rt+quota) will use this directory tree instead
 of the superblock.
 
 Next, define the metadir on-disk format, which consists of marking
 inodes with a new iflag that says they're metadata.  This prevents
 bulkstat and friends from ever getting their hands on fs metadata files.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 ppNiAP9JgPFENv3P0UCJiCDqtWZlNWfz8a9ngAehm4AQMA0P9gD/XgVYNKZRY2Q3
 P+3Sh1TVZ63dcEENlmEFE3myKjeJKAQ=
 =IJLc
 -----END PGP SIGNATURE-----

Merge tag 'metadata-directory-tree-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: metadata inode directory trees [v5.5 03/10]

This series delivers a new feature -- metadata inode directories.  This
is a separate directory tree (rooted in the superblock) that contains
only inodes that contain filesystem metadata.  Different metadata
objects can be looked up with regular paths.

Start by creating xfs_imeta{dir,file}* functions to mediate access to
the metadata directory tree.  By the end of this mega series, all
existing metadata inodes (rt+quota) will use this directory tree instead
of the superblock.

Next, define the metadir on-disk format, which consists of marking
inodes with a new iflag that says they're metadata.  This prevents
bulkstat and friends from ever getting their hands on fs metadata files.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 10:59:05 +01:00
Carlos Maiolino
28cf0d1a34 xfs: create a generic allocation group structure [v5.5 02/10]
Soon we'll be sharding the realtime volume into separate allocation
 groups.  These rt groups will /mostly/ behave the same as the ones on
 the data device, but since rt groups don't have quite the same set of
 struct fields as perags, let's hoist the parts that will be shared by
 both into a common xfs_group object.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pnJDAQCh14f3aSCHslr4XeG1YkT7NZ44AtMjBqEi5GRN26wC0wD+PeaVSRgt+5wy
 nONT/nFqU5pApe1w2pq78SoJ+vLJxAk=
 =la16
 -----END PGP SIGNATURE-----

Merge tag 'generic-groups-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: create a generic allocation group structure [v5.5 02/10]

Soon we'll be sharding the realtime volume into separate allocation
groups.  These rt groups will /mostly/ behave the same as the ones on
the data device, but since rt groups don't have quite the same set of
struct fields as perags, let's hoist the parts that will be shared by
both into a common xfs_group object.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 10:58:27 +01:00
Carlos Maiolino
131ffe5e69 xfs: convert perag to use xarrays [v5.5 01/10]
Convert the xfs_mount perag tree to use an xarray instead of a radix
 tree.  There should be no functional changes here.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQcwAKCRBKO3ySh0YR
 pmKsAQDko7YQ/dJZsjDvBJRUEnjrJqK9ukR9Ovc00ak0WXIDYQD/cdm8xzkixHn2
 yfwsuFxIm6k0PPzb9koSCDT/CQS6QAA=
 =WGih
 -----END PGP SIGNATURE-----

Merge tag 'perag-xarray-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: convert perag to use xarrays [v5.5 01/10]

Convert the xfs_mount perag tree to use an xarray instead of a radix
tree.  There should be no functional changes here.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 10:57:32 +01:00
Kairui Song
da0c02516c mm/list_lru: simplify the list_lru walk callback function
Now isolation no longer takes the list_lru global node lock, only use the
per-cgroup lock instead.  And this lock is inside the list_lru_one being
walked, no longer needed to pass the lock explicitly.

Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11 17:22:26 -08:00
Kairui Song
fb56fdf8b9 mm/list_lru: split the lock to per-cgroup scope
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node.  This lock contention is heavy
when multiple cgroups modify the same list_lru.

This lock can be split into per-cgroup scope to reduce contention.

To achieve this, we need a stable list_lru_one for every cgroup.  This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.

Reparenting will switch the list_lru_one instances one by one.  By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.

Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.

The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}.  But it's only used by zswap and that's also based on
objcg, so it's fine.

This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.

prepare() {
    mkdir /tmp/test-fs
    modprobe brd rd_nr=1 rd_size=33554432
    mkfs.xfs -f /dev/ram0
    mount -t xfs /dev/ram0 /tmp/test-fs
    for i in $(seq 1 512); do
        mkdir "/tmp/test-fs/$i"
        for j in $(seq 1 10240); do
            echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
        done &
    done; wait
}

do_test() {
    read_worker() {
        sleep 1
        tar -cv "$1" &>/dev/null
    }
    read_in_all() {
        cd "/tmp/test-fs" && ls
        for i in $(seq 1 512); do
            (exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
            read_worker "$i" &
        done; wait
    }
    for i in $(seq 1 512); do
        mkdir -p "/sys/fs/cgroup/benchmark/$i"
    done
    echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
    echo 512M > /sys/fs/cgroup/benchmark/memory.max
    echo 3 > /proc/sys/vm/drop_caches
    time read_in_all
}

Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:

Before:
real      0m7.762s user      0m11.340s sys       3m11.224s
real      0m8.123s user      0m11.548s sys       3m2.549s
real      0m7.736s user      0m11.515s sys       3m11.171s
real      0m8.539s user      0m11.508s sys       3m7.618s
real      0m7.928s user      0m11.349s sys       3m13.063s
real      0m8.105s user      0m11.128s sys       3m14.313s

After this commit (about ~15% faster):
real      0m6.953s user      0m11.327s sys       2m42.912s
real      0m7.453s user      0m11.343s sys       2m51.942s
real      0m6.916s user      0m11.269s sys       2m43.957s
real      0m6.894s user      0m11.528s sys       2m45.346s
real      0m6.911s user      0m11.095s sys       2m43.168s
real      0m6.773s user      0m11.518s sys       2m40.774s

Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11 17:22:26 -08:00
Darrick J. Wong
13877bc79d xfs: port ondisk structure checks from xfs/122 to the kernel
Check this with every kernel and userspace build, so we can drop the
nonsense in xfs/122.  Roughly drafted with:

sed -e 's/^offsetof/\tXFS_CHECK_OFFSET/g' \
	-e 's/^sizeof/\tXFS_CHECK_STRUCT_SIZE/g' \
	-e 's/ = \([0-9]*\)/,\t\t\t\1);/g' \
	-e 's/xfs_sb_t/struct xfs_dsb/g' \
	-e 's/),/,/g' \
	-e 's/xfs_\([a-z0-9_]*\)_t,/struct xfs_\1,/g' \
	< tests/xfs/122.out | sort

and then manual fixups.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:47 -08:00
Darrick J. Wong
131a883fff xfs: separate space btree structures in xfs_ondisk.h
Create a separate section for space management btrees so that they're
not mixed in with file structures.  Ignore the dsb stuff sprinkled
around for now, because we'll deal with that in a subsequent patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:47 -08:00
Darrick J. Wong
89b38282d1 xfs: convert struct typedefs in xfs_ondisk.h
Replace xfs_foo_t with struct xfs_foo where appropriate.  The next patch
will import more checks from xfs/122, and it's easier to automate
deduplication if we don't have to reason about typedefs.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:47 -08:00
Darrick J. Wong
ea079efd36 xfs: enable metadata directory feature
Enable the metadata directory feature.  With this feature, all metadata
inodes are placed in the metadata directory, and the only inumbers in
the superblock are the roots of the two directory trees.

The RT device is now sharded into a number of rtgroups, where 0 rtgroups
mean that no RT extents are supported, and the traditional XFS stub RT
bitmap and summary inodes don't exist.  A single rtgroup gives roughly
identical behavior to the traditional RT setup, but now with checksummed
and self identifying free space metadata.

For quota, the quota options are read from the superblock unless
explicitly overridden via mount options.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
edc038f7f3 xfs: enable realtime quota again
Enable quotas for the realtime device.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
28d756d4d5 xfs: update sb field checks when metadir is turned on
When metadir is enabled, we want to check the two new rtgroups fields,
and we don't want to check the old inumbers that are now in the metadir.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
b7020ba86a xfs: reserve quota for realtime files correctly
Fix xfs_quota_reserve_blkres to reserve rt block quota whenever we're
dealing with a realtime file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
5dd70852b0 xfs: create quota preallocation watermarks for realtime quota
Refactor the quota preallocation watermarking code so that it'll work
for realtime quota too.  Convert the do_div calls into div_u64 for
compactness.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
9a17ebfea9 xfs: report realtime block quota limits on realtime directories
On the data device, calling statvfs on a projinherit directory results
in the block and avail counts being curtailed to the project quota block
limits, if any are set.  Do the same for realtime files or directories,
only use the project quota rt block limits.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
d5d9dd5b30 xfs: persist quota flags with metadir
It's annoying that one has to keep reminding XFS about what quota
options it should mount with, since the quota flags recording the
previous state are sitting right there in the primary superblock.  Even
more strangely, there exists a noquota option to disable quotas
completely, so it's odder still that providing no options is the same as
noquota.

Starting with metadir, let's change the behavior so that if the user
does not specify any quota-related mount options at all, the ondisk
quota flags will be used to bring up quota.  In other words, the
filesystem will mount in the same state and with the same functionality
as it had during the last mount.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
184c619f55 xfs: advertise realtime quota support in the xqm stat files
Add a fifth column to this (really old) stat file to advertise that the
kernel supports quota for realtime volumes.  This will be used by
fstests to detect kernel support.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
128a055291 xfs: scrub quota file metapaths
Enable online fsck for quota file metadata directory paths.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
b28564cae1 xfs: fix chown with rt quota
Make chown's quota adjustments work with realtime files.  This is mostly
a matter of calling xfs_inode_count_blocks on a given file to figure out
the number of blocks allocated to the data device and to the realtime
device, and using those quantities to update the quota accounting when
the id changes.  Delayed allocation reservations are moved from the old
dquot's incore reservation to the new dquot's incore reservation.

Note that there was a missing ILOCK bug in xfs_qm_dqusage_adjust that we
must fix before calling xfs_iread_extents.  Prior to 2.6.37 the locking
was correct, but then someone removed the ILOCK as part of a cleanup.
Nobody noticed because nowhere in the git history have we ever supported
rt+quota so nobody can use this.

I'm leaving git breadcrumbs in case anyone is desperate enough to try to
backport the rtquota code to old kernels.

Not-Cc: <stable@vger.kernel.org> # v2.6.37
Fixes: 52fda114249578 ("xfs: simplify xfs_qm_dqusage_adjust")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
e80fbe1ad8 xfs: use metadir for quota inodes
Store the quota inodes in the /quota metadata directory if metadir is
enabled.  This enables us to stop using the sb_[ugp]uotino fields in the
superblock.  From this point on, all metadata files will be children of
the metadata directory tree root.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
fc23a426ce xfs: refactor xfs_qm_destroy_quotainos
Reuse this function instead of open-coding the logic.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:45 -08:00
Darrick J. Wong
a3315d1130 xfs: use rtgroup busy extent list for FITRIM
For filesystems that have rtgroups and hence use the busy extent list
for freed rt space, use that busy extent list so that FITRIM can issue
discard commands asynchronously without worrying about other callers
accidentally allocating and using space that is being discarded.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
7e85fc2394 xfs: implement busy extent tracking for rtgroups
For rtgroups filesystems, track newly freed (rt) space through the log
until the rt EFIs have been committed to disk.  This way we ensure that
space cannot be reused until all traces of the old owner are gone.

As a fringe benefit, we now support -o discard on the realtime device.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
0c271d906e xfs: port the perag discard code to handle generic groups
Port xfs_discard_extents and its tracepoints to handle generic groups
instead of just perags.  This is needed to enable busy extent tracking
for rtgroups.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
e0b5b97dde xfs: move the min and max group block numbers to xfs_group
Move the min and max agblock numbers to the generic xfs_group structure
so that we can start building validators for extents within an rtgroup.
While we're at it, use check_add_overflow for the extent length
computation because that has much better overflow checking.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
ceaa0bd773 xfs: adjust min_block usage in xfs_verify_agbno
There's some weird logic in xfs_verify_agbno -- min_block ought to be
the first agblock number in the AG that can be used by non-static
metadata.  However, we initialize it to the last agblock of the static
metadata, which works due to the <= check, even though this isn't
technically correct.

Change the check to < and set min_block to the next agblock past the
static metadata.  This hasn't been an issue up to now, but we're going
to move these things into the generic group struct, and this will cause
problems with rtgroups, where min_block can be zero for an rtgroup that
doesn't have a rt superblock.

Note that there's no user-visible impact with the old logic, so this
isn't a bug fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
7195f240c6 xfs: make xfs_rtblock_t a segmented address like xfs_fsblock_t
Now that we've finished adding allocation groups to the realtime volume,
let's make the file block mapping address (xfs_rtblock_t) a segmented
value just like we do on the data device.  This means that group number
and block number conversions can be done with shifting and masking
instead of integer division.

While in theory we could continue caching the rgno shift value in
m_rgblklog, the fact that we now always use the shift value means that
we have an opportunity to increase the redundancy of the rt geometry by
storing it in the ondisk superblock and adding more sb verifier code.
Extend the sueprblock to store the rgblklog value.

Now that we have segmented addresses, set the correct values in
m_groups[XG_TYPE_RTG] so that the xfs_group helpers work correctly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:44 -08:00
Darrick J. Wong
3f0205ebe7 xfs: create helpers to deal with rounding xfs_filblks_t to rtx boundaries
We're about to segment xfs_rtblock_t addresses, so we must create
type-specific helpers to do rt extent rounding of file mapping block
lengths because the rtb helpers soon will not do the right thing there.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:43 -08:00
Darrick J. Wong
fd7588fa64 xfs: create helpers to deal with rounding xfs_fileoff_t to rtx boundaries
We're about to segment xfs_rtblock_t addresses, so we must create
type-specific helpers to do rt extent rounding of file block offsets
because the rtb helpers soon will not do the right thing there.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:43 -08:00