Commit Graph

15 Commits

Author SHA1 Message Date
Jisheng Zhang
4e90d0522a
riscv: support PREEMPT_DYNAMIC with static keys
Currently, each architecture can support PREEMPT_DYNAMIC through
either static calls or static keys. To support PREEMPT_DYNAMIC on
riscv, we face three choices:

1. only add static calls support to riscv
As Mark pointed out in commit 99cf983cc8 ("sched/preempt: Add
PREEMPT_DYNAMIC using static keys"), static keys "...should have
slightly lower overhead than non-inline static calls, as this
effectively inlines each trampoline into the start of its callee. This
may avoid redundant work, and may integrate better with CFI schemes."
So even we add static calls(without inline static calls) to riscv,
static keys is still a better choice.

2. add static calls and inline static calls to riscv
Per my understanding, inline static calls requires objtool support
which is not easy.

3. use static keys

While riscv doesn't have static calls support, it supports static keys
perfectly. So this patch selects HAVE_PREEMPT_DYNAMIC_KEY to enable
support for PREEMPT_DYNAMIC on riscv, so that the preemption model can
be chosen at boot time. It also patches asm-generic/preempt.h, mainly
to add __preempt_schedule() and __preempt_schedule_notrace() macros
for PREEMPT_DYNAMIC case. Other architectures which use generic
preempt.h can also benefit from this patch by simply selecting
HAVE_PREEMPT_DYNAMIC_KEY to enable PREEMPT_DYNAMIC if they supports
static keys.

Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230716164925.1858-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-08-31 00:18:34 -07:00
Valentin Schneider
f1a0a376ca sched/core: Initialize the idle task with preemption disabled
As pointed out by commit

  de9b8f5dcb ("sched: Fix crash trying to dequeue/enqueue the idle thread")

init_idle() can and will be invoked more than once on the same idle
task. At boot time, it is invoked for the boot CPU thread by
sched_init(). Then smp_init() creates the threads for all the secondary
CPUs and invokes init_idle() on them.

As the hotplug machinery brings the secondaries to life, it will issue
calls to idle_thread_get(), which itself invokes init_idle() yet again.
In this case it's invoked twice more per secondary: at _cpu_up(), and at
bringup_cpu().

Given smp_init() already initializes the idle tasks for all *possible*
CPUs, no further initialization should be required. Now, removing
init_idle() from idle_thread_get() exposes some interesting expectations
with regards to the idle task's preempt_count: the secondary startup always
issues a preempt_disable(), requiring some reset of the preempt count to 0
between hot-unplug and hotplug, which is currently served by
idle_thread_get() -> idle_init().

Given the idle task is supposed to have preemption disabled once and never
see it re-enabled, it seems that what we actually want is to initialize its
preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove
init_idle() from idle_thread_get().

Secondary startups were patched via coccinelle:

  @begone@
  @@

  -preempt_disable();
  ...
  cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
2021-05-12 13:01:45 +02:00
Thomas Gleixner
c1a280b68d sched/preempt: Use CONFIG_PREEMPTION where appropriate
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.

Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.

That's the first step towards RT in that area. The more complex changes are
coming separately.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-31 19:03:34 +02:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Peter Zijlstra
2e636d5e66 sched/preempt: Fix preempt_count manipulations
Vikram reported that his ARM64 compiler managed to 'optimize' away the
preempt_count manipulations in code like:

	preempt_enable_no_resched();
	put_user();
	preempt_disable();

Irrespective of that fact that that is horrible code that should be
fixed for many reasons, it does highlight a deficiency in the generic
preempt_count manipulators. As it is never right to combine/elide
preempt_count manipulations like this.

Therefore sprinkle some volatile in the two generic accessors to
ensure the compiler is aware of the fact that the preempt_count is
observed outside of the regular program-order view and thus cannot be
optimized away like this.

x86; the only arch not using the generic code is not affected as we
do all this in asm in order to use the segment base per-cpu stuff.

Reported-by: Vikram Mulukutla <markivx@codeaurora.org>
Tested-by: Vikram Mulukutla <markivx@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: a787870924 ("sched, arch: Create asm/preempt.h")
Link: http://lkml.kernel.org/r/20160516131751.GH3205@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-17 12:24:21 +02:00
Peter Zijlstra
609ca06638 sched/core: Create preempt_count invariant
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers.

Now that TASK_DEAD no longer results in preempt_count() == 3 during
scheduling, we will always call context_switch() with preempt_count()
== 2.

However, we don't always end up with preempt_count() == 2 in
finish_task_switch() because new tasks get created with
preempt_count() == 1.

Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right
places. Note that we cannot use INIT_PREEMPT_COUNT as that serves
another purpose (boot).

After this, preempt_count() is invariant across the context switch,
with exception of PREEMPT_ACTIVE.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:08:14 +02:00
Konstantin Khlebnikov
fe32d3cd5e sched/preempt: Fix cond_resched_lock() and cond_resched_softirq()
These functions check should_resched() before unlocking spinlock/bh-enable:
preempt_count always non-zero => should_resched() always returns false.
cond_resched_lock() worked iff spin_needbreak is set.

This patch adds argument "preempt_offset" to should_resched().

preempt_count offset constants for that:

  PREEMPT_DISABLE_OFFSET  - offset after preempt_disable()
  PREEMPT_LOCK_OFFSET     - offset after spin_lock()
  SOFTIRQ_DISABLE_OFFSET  - offset after local_bh_distable()
  SOFTIRQ_LOCK_OFFSET     - offset after spin_lock_bh()

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: bdb4380658 ("sched: Extract the basic add/sub preempt_count modifiers")
Link: http://lkml.kernel.org/r/20150715095204.12246.98268.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:21:24 +02:00
Frederic Weisbecker
4eaca0a887 preempt: Use preempt_schedule_context() as the official tracing preemption point
preempt_schedule_context() is a tracing safe preemption point but it's
only used when CONFIG_CONTEXT_TRACKING=y. Other configs have tracing
recursion issues since commit:

  b30f0e3ffe ("sched/preempt: Optimize preemption operations on __schedule() callers")

introduced function based preemp_count_*() ops.

Lets make it available on all configs and give it a more appropriate
name for its new position.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 15:57:42 +02:00
Oleg Nesterov
e2336f6e51 sched: Kill task_preempt_count()
task_preempt_count() is pointless if preemption counter is per-cpu,
currently this is x86 only. It is only valid if the task is not
running, and even in this case the only info it can provide is the
state of PREEMPT_ACTIVE bit.

Change its single caller to check p->on_rq instead, this should be
the same if p->state != TASK_RUNNING, and kill this helper.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20141008183348.GC17495@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:56 +01:00
Peter Zijlstra
ba1f14fbe7 sched: Remove PREEMPT_NEED_RESCHED from generic code
While hunting a preemption issue with Alexander, Ben noticed that the
currently generic PREEMPT_NEED_RESCHED stuff is horribly broken for
load-store architectures.

We currently rely on the IPI to fold TIF_NEED_RESCHED into
PREEMPT_NEED_RESCHED, but when this IPI lands while we already have
a load for the preempt-count but before the store, the store will erase
the PREEMPT_NEED_RESCHED change.

The current preempt-count only works on load-store archs because
interrupts are assumed to be completely balanced wrt their preempt_count
fiddling; the previous preempt_count load will match the preempt_count
state after the interrupt and therefore nothing gets lost.

This patch removes the PREEMPT_NEED_RESCHED usage from generic code and
pushes it into x86 arch code; the generic code goes back to relying on
TIF_NEED_RESCHED.

Boot tested on x86_64 and compile tested on ppc64.

Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reported-and-Tested-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131128132641.GP10022@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-12-11 15:52:32 +01:00
Peter Zijlstra
75f93fed50 sched: Revert need_resched() to look at TIF_NEED_RESCHED
Yuanhan reported a serious throughput regression in his pigz
benchmark. Using the ftrace patch I found that several idle
paths need more TLC before we can switch the generic
need_resched() over to preempt_need_resched.

The preemption paths benefit most from preempt_need_resched and
do indeed use it; all other need_resched() users don't really
care that much so reverting need_resched() back to
tif_need_resched() is the simple and safe solution.

Reported-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: lkp@linux.intel.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20130927153003.GF15690@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-28 10:04:47 +02:00
Peter Zijlstra
1a338ac32c sched, x86: Optimize the preempt_schedule() call
Remove the bloat of the C calling convention out of the
preempt_enable() sites by creating an ASM wrapper which allows us to
do an asm("call ___preempt_schedule") instead.

calling.h bits by Andi Kleen

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-tk7xdi1cvvxewixzke8t8le1@git.kernel.org
[ Fixed build error. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:23:07 +02:00
Peter Zijlstra
bdb4380658 sched: Extract the basic add/sub preempt_count modifiers
Rewrite the preempt_count macros in order to extract the 3 basic
preempt_count value modifiers:

  __preempt_count_add()
  __preempt_count_sub()

and the new:

  __preempt_count_dec_and_test()

And since we're at it anyway, replace the unconventional
$op_preempt_count names with the more conventional preempt_count_$op.

Since these basic operators are equivalent to the previous _notrace()
variants, do away with the _notrace() versions.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:54 +02:00
Peter Zijlstra
0102874755 sched: Create more preempt_count accessors
We need a few special preempt_count accessors:
 - task_preempt_count() for when we're interested in the preemption
   count of another (non-running) task.
 - init_task_preempt_count() for properly initializing the preemption
   count.
 - init_idle_preempt_count() a special case of the above for the idle
   threads.

With these no generic code ever touches thread_info::preempt_count
anymore and architectures could choose to remove it.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-jf5swrio8l78j37d06fzmo4r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:52 +02:00
Peter Zijlstra
a787870924 sched, arch: Create asm/preempt.h
In order to prepare to per-arch implementations of preempt_count move
the required bits into an asm-generic header and use this for all
archs.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-h5j0c1r3e3fk015m30h8f1zx@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:50 +02:00