Commit Graph

5 Commits

Author SHA1 Message Date
Vladimir Oltean
41d7ea3049 lib: packing: add pack_fields() and unpack_fields()
This is new API which caters to the following requirements:

- Pack or unpack a large number of fields to/from a buffer with a small
  code footprint. The current alternative is to open-code a large number
  of calls to pack() and unpack(), or to use packing() to reduce that
  number to half. But packing() is not const-correct.

- Use unpacked numbers stored in variables smaller than u64. This
  reduces the rodata footprint of the stored field arrays.

- Perform error checking at compile time, rather than runtime, and return
  void from the API functions. Because the C preprocessor can't generate
  variable length code (loops), this is a bit tricky to do with macros.

  To handle this, implement macros which sanity check the packed field
  definitions based on their size. Finally, a single macro with a chain of
  __builtin_choose_expr() is used to select the appropriate macros. We
  enforce the use of ascending or descending order to avoid O(N^2) scaling
  when checking for overlap. Note that the macros are written with care to
  ensure that the compilers can correctly evaluate the resulting code at
  compile time. In particular, care was taken with avoiding too many nested
  statement expressions. Nested statement expressions trip up some
  compilers, especially when passing down variables created in previous
  statement expressions.

  There are two key design choices intended to keep the overall macro code
  size small. First, the definition of each CHECK_PACKED_FIELDS_N macro is
  implemented recursively, by calling the N-1 macro. This avoids needing
  the code to repeat multiple times.

  Second, the CHECK_PACKED_FIELD macro enforces that the fields in the
  array are sorted in order. This allows checking for overlap only with
  neighboring fields, rather than the general overlap case where each field
  would need to be checked against other fields.

  The overlap checks use the first two fields to determine the order of the
  remaining fields, thus allowing either ascending or descending order.
  This enables drivers the flexibility to keep the fields ordered in which
  ever order most naturally fits their hardware design and its associated
  documentation.

  The CHECK_PACKED_FIELDS macro is directly called from within pack_fields
  and unpack_fields, ensuring that all drivers using the API receive the
  benefits of the compile-time checks. Users do not need to directly call
  any of the macros directly.

  The CHECK_PACKED_FIELDS and its helper macros CHECK_PACKED_FIELDS_(0..50)
  are generated using a simple C program in scripts/gen_packed_field_checks.c
  This program can be compiled on demand and executed to generate the
  macro code in include/linux/packing.h. This will aid in the event that a
  driver needs more than 50 fields. The generator can be updated with a new
  size, and used to update the packing.h header file. In practice, the ice
  driver will need to support 27 fields, and the sja1105 driver will need
  to support 0 fields. This on-demand generation avoids the need to modify
  Kbuild. We do not anticipate the maximum number of fields to grow very
  often.

- Reduced rodata footprint for the storage of the packed field arrays.
  To that end, we have struct packed_field_u8 and packed_field_u16, which
  define the fields with the associated type. More can be added as
  needed (unlikely for now). On these types, the same generic pack_fields()
  and unpack_fields() API can be used, thanks to the new C11 _Generic()
  selection feature, which can call pack_fields_u8() or pack_fields_16(),
  depending on the type of the "fields" array - a simplistic form of
  polymorphism. It is evaluated at compile time which function will actually
  be called.

Over time, packing() is expected to be completely replaced either with
pack() or with pack_fields().

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Co-developed-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20241210-packing-pack-fields-and-ice-implementation-v10-3-ee56a47479ac@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-12-11 20:13:00 -08:00
Vladimir Oltean
1405981bbb lib: packing: catch kunit_kzalloc() failure in the pack() test
kunit_kzalloc() may fail. Other call sites verify that this is the case,
either using a direct comparison with the NULL pointer, or the
KUNIT_ASSERT_NOT_NULL() or KUNIT_ASSERT_NOT_ERR_OR_NULL().

Pick KUNIT_ASSERT_NOT_NULL() as the error handling method that made most
sense to me. It's an unlikely thing to happen, but at least we call
__kunit_abort() instead of dereferencing this NULL pointer.

Fixes: e9502ea6db ("lib: packing: add KUnit tests adapted from selftests")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20241004110012.1323427-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-07 16:36:25 -07:00
Jacob Keller
e7fdf5dddc lib: packing: fix QUIRK_MSB_ON_THE_RIGHT behavior
The QUIRK_MSB_ON_THE_RIGHT quirk is intended to modify pack() and unpack()
so that the most significant bit of each byte in the packed layout is on
the right.

The way the quirk is currently implemented is broken whenever the packing
code packs or unpacks any value that is not exactly a full byte.

The broken behavior can occur when packing any values smaller than one
byte, when packing any value that is not exactly a whole number of bytes,
or when the packing is not aligned to a byte boundary.

This quirk is documented in the following way:

  1. Normally (no quirks), we would do it like this:

  ::

    63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
    7                       6                       5                        4
    31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
    3                       2                       1                        0

  <snip>

  2. If QUIRK_MSB_ON_THE_RIGHT is set, we do it like this:

  ::

    56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39
    7                       6                        5                       4
    24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23  8  9 10 11 12 13 14 15  0  1  2  3  4  5  6  7
    3                       2                        1                       0

  That is, QUIRK_MSB_ON_THE_RIGHT does not affect byte positioning, but
  inverts bit offsets inside a byte.

Essentially, the mapping for physical bit offsets should be reserved for a
given byte within the payload. This reversal should be fixed to the bytes
in the packing layout.

The logic to implement this quirk is handled within the
adjust_for_msb_right_quirk() function. This function does not work properly
when dealing with the bytes that contain only a partial amount of data.

In particular, consider trying to pack or unpack the range 53-44. We should
always be mapping the bits from the logical ordering to their physical
ordering in the same way, regardless of what sequence of bits we are
unpacking.

This, we should grab the following logical bits:

  Logical: 55 54 53 52 51 50 49 48 47 45 44 43 42 41 40 39
                  ^  ^  ^  ^  ^  ^  ^  ^  ^

And pack them into the physical bits:

   Physical: 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47
    Logical: 48 49 50 51 52 53                   44 45 46 47
              ^  ^  ^  ^  ^  ^                    ^  ^  ^  ^

The current logic in adjust_for_msb_right_quirk is broken. I believe it is
intending to map according to the following:

  Physical: 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47
   Logical:       48 49 50 51 52 53 44 45 46 47
                   ^  ^  ^  ^  ^  ^  ^  ^  ^  ^

That is, it tries to keep the bits at the start and end of a packing
together. This is wrong, as it makes the packing change what bit is being
mapped to what based on which bits you're currently packing or unpacking.

Worse, the actual calculations within adjust_for_msb_right_quirk don't make
sense.

Consider the case when packing the last byte of an unaligned packing. It
might have a start bit of 7 and an end bit of 5. This would have a width of
3 bits. The new_start_bit will be calculated as the width - the box_end_bit
- 1. This will underflow and produce a negative value, which will
ultimate result in generating a new box_mask of all 0s.

For any other values, the result of the calculations of the
new_box_end_bit, new_box_start_bit, and the new box_mask will result in the
exact same values for the box_end_bit, box_start_bit, and box_mask. This
makes the calculations completely irrelevant.

If box_end_bit is 0, and box_start_bit is 7, then the entire function of
adjust_for_msb_right_quirk will boil down to just:

    *to_write = bitrev8(*to_write)

The other adjustments are attempting (incorrectly) to keep the bits in the
same place but just reversed. This is not the right behavior even if
implemented correctly, as it leaves the mapping dependent on the bit values
being packed or unpacked.

Remove adjust_for_msb_right_quirk() and just use bitrev8 to reverse the
byte order when interacting with the packed data.

In particular, for packing, we need to reverse both the box_mask and the
physical value being packed. This is done after shifting the value by
box_end_bit so that the reversed mapping is always aligned to the physical
buffer byte boundary. The box_mask is reversed as we're about to use it to
clear any stale bits in the physical buffer at this block.

For unpacking, we need to reverse the contents of the physical buffer
*before* masking with the box_mask. This is critical, as the box_mask is a
logical mask of the bit layout before handling the QUIRK_MSB_ON_THE_RIGHT.

Add several new tests which cover this behavior. These tests will fail
without the fix and pass afterwards. Note that no current drivers make use
of QUIRK_MSB_ON_THE_RIGHT. I suspect this is why there have been no reports
of this inconsistency before.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Link: https://patch.msgid.link/20241002-packing-kunit-tests-and-split-pack-unpack-v2-8-8373e551eae3@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-03 15:32:04 -07:00
Jacob Keller
fcd6dd91d0 lib: packing: add additional KUnit tests
While reviewing the initial KUnit tests for lib/packing, Przemek pointed
out that the test values have duplicate bytes in the input sequence.

In addition, I noticed that the unit tests pack and unpack on a byte
boundary, instead of crossing bytes. Thus, we lack good coverage of the
corner cases of the API.

Add additional unit tests to cover packing and unpacking byte buffers which
do not have duplicate bytes in the unpacked value, and which pack and
unpack to an unaligned offset.

A careful reviewer may note the lack tests for QUIRK_MSB_ON_THE_RIGHT. This
is because I found issues with that quirk during test implementation. This
quirk will be fixed and the tests will be included in a future change.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Link: https://patch.msgid.link/20241002-packing-kunit-tests-and-split-pack-unpack-v2-7-8373e551eae3@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-03 15:32:04 -07:00
Jacob Keller
e9502ea6db lib: packing: add KUnit tests adapted from selftests
Add 24 simple KUnit tests for the lib/packing.c pack() and unpack() APIs.

The first 16 tests exercise all combinations of quirks with a simple magic
number value on a 16-byte buffer. The remaining 8 tests cover
non-multiple-of-4 buffer sizes.

These tests were originally written by Vladimir as simple selftest
functions. I adapted them to KUnit, refactoring them into a table driven
approach. This will aid in adding additional tests in the future.

Co-developed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20241002-packing-kunit-tests-and-split-pack-unpack-v2-6-8373e551eae3@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-03 15:32:04 -07:00