Commit Graph

6 Commits

Author SHA1 Message Date
Matthew Wilcox (Oracle)
0386aaa6e9 bootmem: stop using page->index
Encode the type into the bottom four bits of page->private and the info
into the remaining bits.  Also turn the bootmem type into a named enum.

[arnd@arndb.de: bootmem: add bootmem_type stub function]
  Link: https://lkml.kernel.org/r/20241015143802.577613-1-arnd@kernel.org
[akpm@linux-foundation.org: fix build with !CONFIG_HAVE_BOOTMEM_INFO_NODE]
 Link: https://lore.kernel.org/oe-kbuild-all/202410090311.eaqcL7IZ-lkp@intel.com/
Link: https://lkml.kernel.org/r/20241005200121.3231142-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-07 14:38:07 -08:00
Liu Shixin
6d4e2cda62 bootmem: use kmemleak_free_part_phys in put_page_bootmem
Patch series "Some bugfix about kmemleak", v3.

Some bugfixes for kmemleak and the printed info from debug mode.


This patch (of 7):

Since kmemleak_alloc_phys() rather than kmemleak_alloc() was called from
memblock_alloc_range_nid(), kmemleak_free_part_phys() should be used to
delete kmemleak object in put_page_bootmem().  In debug mode, there are
following warning:

 kmemleak: Partially freeing unknown object at 0xffff97345aff7000 (size 4096)

Link: https://lkml.kernel.org/r/20231018102952.3339837-1-liushixin2@huawei.com
Link: https://lkml.kernel.org/r/20231018102952.3339837-2-liushixin2@huawei.com
Fixes: dd0ff4d12d ("bootmem: remove the vmemmap pages from kmemleak in put_page_bootmem")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
dd0ff4d12d bootmem: remove the vmemmap pages from kmemleak in put_page_bootmem
The vmemmap pages is marked by kmemleak when allocated from memblock. 
Remove it from kmemleak when freeing the page.  Otherwise, when we reuse
the page, kmemleak may report such an error and then stop working.

 kmemleak: Cannot insert 0xffff98fb6eab3d40 into the object search tree (overlaps existing)
 kmemleak: Kernel memory leak detector disabled
 kmemleak: Object 0xffff98fb6be00000 (size 335544320):
 kmemleak:   comm "swapper", pid 0, jiffies 4294892296
 kmemleak:   min_count = 0
 kmemleak:   count = 0
 kmemleak:   flags = 0x1
 kmemleak:   checksum = 0
 kmemleak:   backtrace:

Link: https://lkml.kernel.org/r/20220819094005.2928241-1-liushixin2@huawei.com
Fixes: f41f2ed43c (mm: hugetlb: free the vmemmap pages associated with each HugeTLB page)
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-28 14:02:45 -07:00
Matthew Wilcox (Oracle)
c5e97ed154 bootmem: Use page->index instead of page->freelist
page->freelist is for the use of slab.  Using page->index is the same
set of bits as page->freelist, and by using an integer instead of a
pointer, we can avoid casts.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: <x86@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
2022-01-06 12:27:03 +01:00
Muchun Song
cdcfc631c8 mm/bootmem_info.c: mark __init on register_page_bootmem_info_section
register_page_bootmem_info_section() is only called from __init functions,
so mark it __init as well.

Link: https://lkml.kernel.org/r/20210817042221.77172-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:14 -07:00
Muchun Song
426e5c429d mm: memory_hotplug: factor out bootmem core functions to bootmem_info.c
Patch series "Free some vmemmap pages of HugeTLB page", v23.

This patch series will free some vmemmap pages(struct page structures)
associated with each HugeTLB page when preallocated to save memory.

In order to reduce the difficulty of the first version of code review.  In
this version, we disable PMD/huge page mapping of vmemmap if this feature
was enabled.  This acutely eliminates a bunch of the complex code doing
page table manipulation.  When this patch series is solid, we cam add the
code of vmemmap page table manipulation in the future.

The struct page structures (page structs) are used to describe a physical
page frame.  By default, there is an one-to-one mapping from a page frame
to it's corresponding page struct.

The HugeTLB pages consist of multiple base page size pages and is
supported by many architectures.  See hugetlbpage.rst in the Documentation
directory for more details.  On the x86 architecture, HugeTLB pages of
size 2MB and 1GB are currently supported.  Since the base page size on x86
is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB
page consists of 4096 base pages.  For each base page, there is a
corresponding page struct.

Within the HugeTLB subsystem, only the first 4 page structs are used to
contain unique information about a HugeTLB page.  HUGETLB_CGROUP_MIN_ORDER
provides this upper limit.  The only 'useful' information in the remaining
page structs is the compound_head field, and this field is the same for
all tail pages.

By removing redundant page structs for HugeTLB pages, memory can returned
to the buddy allocator for other uses.

When the system boot up, every 2M HugeTLB has 512 struct page structs which
size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE).

    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | -------------> |     1     |
 |           |                     +-----------+                +-----------+
 |           |                     |     2     | -------------> |     2     |
 |           |                     +-----------+                +-----------+
 |           |                     |     3     | -------------> |     3     |
 |           |                     +-----------+                +-----------+
 |           |                     |     4     | -------------> |     4     |
 |    2MB    |                     +-----------+                +-----------+
 |           |                     |     5     | -------------> |     5     |
 |           |                     +-----------+                +-----------+
 |           |                     |     6     | -------------> |     6     |
 |           |                     +-----------+                +-----------+
 |           |                     |     7     | -------------> |     7     |
 |           |                     +-----------+                +-----------+
 |           |
 |           |
 |           |
 +-----------+

The value of page->compound_head is the same for all tail pages.  The
first page of page structs (page 0) associated with the HugeTLB page
contains the 4 page structs necessary to describe the HugeTLB.  The only
use of the remaining pages of page structs (page 1 to page 7) is to point
to page->compound_head.  Therefore, we can remap pages 2 to 7 to page 1.
Only 2 pages of page structs will be used for each HugeTLB page.  This
will allow us to free the remaining 6 pages to the buddy allocator.

Here is how things look after remapping.

    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | -------------> |     1     |
 |           |                     +-----------+                +-----------+
 |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
 |           |                     +-----------+                   | | | | |
 |           |                     |     3     | ------------------+ | | | |
 |           |                     +-----------+                     | | | |
 |           |                     |     4     | --------------------+ | | |
 |    2MB    |                     +-----------+                       | | |
 |           |                     |     5     | ----------------------+ | |
 |           |                     +-----------+                         | |
 |           |                     |     6     | ------------------------+ |
 |           |                     +-----------+                           |
 |           |                     |     7     | --------------------------+
 |           |                     +-----------+
 |           |
 |           |
 |           |
 +-----------+

When a HugeTLB is freed to the buddy system, we should allocate 6 pages
for vmemmap pages and restore the previous mapping relationship.

Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page.  It is similar
to the 2MB HugeTLB page.  We also can use this approach to free the
vmemmap pages.

In this case, for the 1GB HugeTLB page, we can save 4094 pages.  This is a
very substantial gain.  On our server, run some SPDK/QEMU applications
which will use 1024GB HugeTLB page.  With this feature enabled, we can
save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory.

Because there are vmemmap page tables reconstruction on the
freeing/allocating path, it increases some overhead.  Here are some
overhead analysis.

1) Allocating 10240 2MB HugeTLB pages.

   a) With this patch series applied:
   # time echo 10240 > /proc/sys/vm/nr_hugepages

   real     0m0.166s
   user     0m0.000s
   sys      0m0.166s

   # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
     kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [8K, 16K)           5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [16K, 32K)          4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |
   [32K, 64K)             4 |                                                    |

   b) Without this patch series:
   # time echo 10240 > /proc/sys/vm/nr_hugepages

   real     0m0.067s
   user     0m0.000s
   sys      0m0.067s

   # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
     kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [4K, 8K)           10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [8K, 16K)             93 |                                                    |

   Summarize: this feature is about ~2x slower than before.

2) Freeing 10240 2MB HugeTLB pages.

   a) With this patch series applied:
   # time echo 0 > /proc/sys/vm/nr_hugepages

   real     0m0.213s
   user     0m0.000s
   sys      0m0.213s

   # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
     kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [8K, 16K)              6 |                                                    |
   [16K, 32K)         10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [32K, 64K)             7 |                                                    |

   b) Without this patch series:
   # time echo 0 > /proc/sys/vm/nr_hugepages

   real     0m0.081s
   user     0m0.000s
   sys      0m0.081s

   # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
     kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [4K, 8K)            6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [8K, 16K)           3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |
   [16K, 32K)             8 |                                                    |

   Summary: The overhead of __free_hugepage is about ~2-3x slower than before.

Although the overhead has increased, the overhead is not significant.
Like Mike said, "However, remember that the majority of use cases create
HugeTLB pages at or shortly after boot time and add them to the pool.  So,
additional overhead is at pool creation time.  There is no change to
'normal run time' operations of getting a page from or returning a page to
the pool (think page fault/unmap)".

Despite the overhead and in addition to the memory gains from this series.
The following data is obtained by Joao Martins.  Very thanks to his
effort.

There's an additional benefit which is page (un)pinners will see an improvement
and Joao presumes because there are fewer memmap pages and thus the tail/head
pages are staying in cache more often.

Out of the box Joao saw (when comparing linux-next against linux-next +
this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages):

	get_user_pages(): ~32k -> ~9k
	unpin_user_pages(): ~75k -> ~70k

Usually any tight loop fetching compound_head(), or reading tail pages
data (e.g.  compound_head) benefit a lot.  There's some unpinning
inefficiencies Joao was fixing[2], but with that in added it shows even
more:

	unpin_user_pages(): ~27k -> ~3.8k

[1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/

This patch (of 9):

Move bootmem info registration common API to individual bootmem_info.c.
And we will use {get,put}_page_bootmem() to initialize the page for the
vmemmap pages or free the vmemmap pages to buddy in the later patch.  So
move them out of CONFIG_MEMORY_HOTPLUG_SPARSE.  This is just code movement
without any functional change.

Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00