The only caller of btrfs_verify_level_key() is read_block_for_search() and
it's passing 3 arguments to it that can be extracted from its on stack
variable of type struct btrfs_tree_parent_check.
So change btrfs_verify_level_key() to accept an argument of type
struct btrfs_tree_parent_check instead of level, first key and parent
transid arguments.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are some reports about invalid data backref objectids, the report
looks like this:
BTRFS critical (device sda): corrupt leaf: block=333654787489792 slot=110 extent bytenr=333413935558656 len=65536 invalid data ref objectid value 2543
The data ref objectid is the inode number inside the subvolume.
But in above case, the value is completely sane, not really showing the
problem.
[CAUSE]
The root cause of the problem is the deprecated feature, inode cache.
This feature results a special inode number, -12ULL, and it's no longer
recognized by tree-checker, triggering the error.
The direct problem here is the output of data ref objectid. The value
shown is in fact the dref_root (subvolume id), not the dref_objectid
(inode number).
[FIX]
Fix the output to use dref_objectid instead.
Reported-by: Neil Parton <njparton@gmail.com>
Reported-by: Archange <archange@archlinux.org>
Link: https://lore.kernel.org/linux-btrfs/CAAYHqBbrrgmh6UmW3ANbysJX9qG9Pbg3ZwnKsV=5mOpv_qix_Q@mail.gmail.com/
Link: https://lore.kernel.org/linux-btrfs/9541deea-9056-406e-be16-a996b549614d@archlinux.org/
Fixes: f333a3c7e832 ("btrfs: tree-checker: validate dref root and objectid")
CC: stable@vger.kernel.org # 6.11
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[REPORT]
There is a corruption report that btrfs refused to mount a fs that has
overlapping dev extents:
BTRFS error (device sdc): dev extent devid 4 physical offset 14263979671552 overlap with previous dev extent end 14263980982272
BTRFS error (device sdc): failed to verify dev extents against chunks: -117
BTRFS error (device sdc): open_ctree failed
[CAUSE]
The direct cause is very obvious, there is a bad dev extent item with
incorrect length.
With btrfs check reporting two overlapping extents, the second one shows
some clue on the cause:
ERROR: dev extent devid 4 offset 14263979671552 len 6488064 overlap with previous dev extent end 14263980982272
ERROR: dev extent devid 13 offset 2257707008000 len 6488064 overlap with previous dev extent end 2257707270144
ERROR: errors found in extent allocation tree or chunk allocation
The second one looks like a bitflip happened during new chunk
allocation:
hex(2257707008000) = 0x20da9d30000
hex(2257707270144) = 0x20da9d70000
diff = 0x00000040000
So it looks like a bitflip happened during new dev extent allocation,
resulting the second overlap.
Currently we only do the dev-extent verification at mount time, but if the
corruption is caused by memory bitflip, we really want to catch it before
writing the corruption to the storage.
Furthermore the dev extent items has the following key definition:
(<device id> DEV_EXTENT <physical offset>)
Thus we can not just rely on the generic key order check to make sure
there is no overlapping.
[ENHANCEMENT]
Introduce dedicated dev extent checks, including:
- Fixed member checks
* chunk_tree should always be BTRFS_CHUNK_TREE_OBJECTID (3)
* chunk_objectid should always be
BTRFS_FIRST_CHUNK_CHUNK_TREE_OBJECTID (256)
- Alignment checks
* chunk_offset should be aligned to sectorsize
* length should be aligned to sectorsize
* key.offset should be aligned to sectorsize
- Overlap checks
If the previous key is also a dev-extent item, with the same
device id, make sure we do not overlap with the previous dev extent.
Reported: Stefan N <stefannnau@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+W5K0rSO3koYTo=nzxxTm1-Pdu1HYgVxEpgJ=aGc7d=E8mGEg@mail.gmail.com/
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[REPORT]
There is a bug report that kernel is rejecting a mismatching inode mode
and its dir item:
[ 1881.553937] BTRFS critical (device dm-0): inode mode mismatch with
dir: inode mode=040700 btrfs type=2 dir type=0
[CAUSE]
It looks like the inode mode is correct, while the dir item type
0 is BTRFS_FT_UNKNOWN, which should not be generated by btrfs at all.
This may be caused by a memory bit flip.
[ENHANCEMENT]
Although tree-checker is not able to do any cross-leaf verification, for
this particular case we can at least reject any dir type with
BTRFS_FT_UNKNOWN.
So here we enhance the dir type check from [0, BTRFS_FT_MAX), to
(0, BTRFS_FT_MAX).
Although the existing corruption can not be fixed just by such enhanced
checking, it should prevent the same 0x2->0x0 bitflip for dir type to
reach disk in the future.
Reported-by: Kota <nospam@kota.moe>
Link: https://lore.kernel.org/linux-btrfs/CACsxjPYnQF9ZF-0OhH16dAx50=BXXOcP74MxBc3BG+xae4vTTw@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmapmOQACgkQxWXV+ddt
WDsXVhAAi4X+xt3o4jcN3IAu08JCQAAyXnFWC3lvn7sqYjSrcccI6ZT4/gAbHss+
qrifakRGoYQ7fAjYBmhw48HqPmHtI2OQjIUDaIqHQOS68aXShBo9HiE460HRY4GT
QV/KT0w37E2/R0EDR9gyjLq3ZA3/raxN1n+LNCFhRWmtsAEZrk4XzsADWb05YkIq
1QBa92DzEhVpd04X8YHIYBgRidWbcYST6xhoWdyL9VZ1pzZsISq5LH67D4f/J1KU
gXNf+ZnF9DXsQnptJrMsjhx61seJ2F0/vozFZ+l6SjRr0jeysmrJI0dxqQc/hUga
gbLmdha6ztKdn03JOIL+lfdZYzICFl/2fekSWI2SNcag+TYszACjlFOyHusOgKsa
3qQwzVB699FheWO5nrOOvOtgq0ZqGsrIvhIXLhA7/bVpNavPnUB7IQCcs8n89ImQ
hUIebfX1FZnYXTrB6Hhm92LUb0lyLSlW1we3SSmaAMiy1TiXHG7hO2G/sIbOPAJC
5VzdHf0DEjzEdjmTrGOV7JBfy5JmMK56oN8viZS95p70DYxNGvEOhLs/8n5twpri
MWV8GElcOjjC+KnGnUH72spsnEKONpdzyccG9kiZEgkEi4csgHSxrkSmAehYD6i6
MFYk+i7jvZ1VsbOulmdGOLbHS7whxi9pWb/CT3KKF1Ei5/v07bU=
=JdOX
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix regression in extent map rework when handling insertion of
overlapping compressed extent
- fix unexpected file length when appending to a file using direct io
and buffer not faulted in
- in zoned mode, fix accounting of unusable space when flipping
read-only block group back to read-write
- fix page locking when COWing an inline range, assertion failure found
by syzbot
- fix calculation of space info in debugging print
- tree-checker, add validation of data reference item
- fix a few -Wmaybe-uninitialized build warnings
* tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: initialize location to fix -Wmaybe-uninitialized in btrfs_lookup_dentry()
btrfs: fix corruption after buffer fault in during direct IO append write
btrfs: zoned: fix zone_unusable accounting on making block group read-write again
btrfs: do not subtract delalloc from avail bytes
btrfs: make cow_file_range_inline() honor locked_page on error
btrfs: fix corrupt read due to bad offset of a compressed extent map
btrfs: tree-checker: validate dref root and objectid
We only had a couple of array[] declarations, and changing them to just
use 'MAX()' instead of 'max()' fixes the issue.
This will allow us to simplify our min/max macros enormously, since they
can now unconditionally use temporary variables to avoid using the
argument values multiple times.
Cc: David Laight <David.Laight@aculab.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[CORRUPTION]
There is a bug report that btrfs flips RO due to a corruption in the
extent tree, the involved dumps looks like this:
item 188 key (402811572224 168 4096) itemoff 14598 itemsize 79
extent refs 3 gen 3678544 flags 1
ref#0: extent data backref root 13835058055282163977 objectid 281473384125923 offset 81432576 count 1
ref#1: shared data backref parent 1947073626112 count 1
ref#2: shared data backref parent 1156030103552 count 1
BTRFS critical (device vdc1: state EA): unable to find ref byte nr 402811572224 parent 0 root 265 owner 28703026 offset 81432576 slot 189
BTRFS error (device vdc1: state EA): failed to run delayed ref for logical 402811572224 num_bytes 4096 type 178 action 2 ref_mod 1: -2
[CAUSE]
The corrupted entry is ref#0 of item 188.
The root number 13835058055282163977 is beyond the upper limit for root
items (the current limit is 1 << 48), and the objectid also looks
suspicious.
Only the offset and count is correct.
[ENHANCEMENT]
Although it's still unknown why we have such many bytes corrupted
randomly, we can still enhance the tree-checker for data backrefs by:
- Validate the root value
For now there should only be 3 types of roots can have data backref:
* subvolume trees
* data reloc trees
* root tree
Only for v1 space cache
- validate the objectid value
The objectid should be a valid inode number.
Hopefully we can catch such problem in the future with the new checkers.
Reported-by: Kai Krakow <hurikhan77@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAMthOuPjg5RDT-G_LXeBBUUtzt3cq=JywF+D1_h+JYxe=WKp-Q@mail.gmail.com/#t
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is to ensure non-compressed file extents (both regular and
prealloc) should have matching ram_bytes and disk_num_bytes.
This is only for CONFIG_BTRFS_DEBUG and CONFIG_BTRFS_ASSERT case,
furthermore this will not return error, but just a kernel warning to
inform developers.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the encoding field from 'struct btrfs_stripe_extent'. It was
originally intended to encode the RAID type as well as if we're a data
or a parity stripe.
But the RAID type can be inferred form the block-group and the data vs.
parity differentiation can be done easier with adding a new key type
for parity stripes in the RAID stripe tree.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are open coded tests of BTRFS_FS_STATE_DUMMY_FS_INFO and we have a
wrapper for that that's a compile-time constant when self-tests are not
built in. As this is only for development we can save some bytes and
conditions on release configs by using the helper in the remaining
cases.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We previously would call btrfs_check_leaf() if we had the check
integrity code enabled, which meant that we could only run the extended
leaf checks if we had WRITTEN set on the header flags.
This leaves a gap in our checking, because we could end up with
corruption on disk where WRITTEN isn't set on the leaf, and then the
extended leaf checks don't get run which we rely on to validate all of
the item pointers to make sure we don't access memory outside of the
extent buffer.
However, since 732fab95abe2 ("btrfs: check-integrity: remove
CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call
btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only
ever call it on blocks that are being written out, and thus have WRITTEN
set, or that are being read in, which should have WRITTEN set.
Add checks to make sure we have WRITTEN set appropriately, and then make
sure __btrfs_check_leaf() always does the item checking. This will
protect us from file systems that have been corrupted and no longer have
WRITTEN set on some of the blocks.
This was hit on a crafted image tweaking the WRITTEN bit and reported by
KASAN as out-of-bound access in the eb accessors. The example is a dir
item at the end of an eb.
[2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2
[2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
[2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f]
[2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1
[2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0
[2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206
[2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0
[2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748
[2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9
[2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a
[2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8
[2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
[2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0
[2.621] Call Trace:
[2.621] <TASK>
[2.621] ? show_regs+0x74/0x80
[2.621] ? die_addr+0x46/0xc0
[2.621] ? exc_general_protection+0x161/0x2a0
[2.621] ? asm_exc_general_protection+0x26/0x30
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? btrfs_get_16+0x34b/0x6d0
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? __pfx_btrfs_get_16+0x10/0x10
[2.621] ? __pfx_mutex_unlock+0x10/0x10
[2.621] btrfs_match_dir_item_name+0x101/0x1a0
[2.621] btrfs_lookup_dir_item+0x1f3/0x280
[2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10
[2.621] btrfs_get_tree+0xd25/0x1910
Reported-by: lei lu <llfamsec@gmail.com>
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy more details from report ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report about very suspicious tree-checker got triggered:
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
SELinux: inode_doinit_use_xattr: getxattr returned 117 for dev=dm-0
ino=5737268
[ANALYZE]
The root cause is still unclear, but there are some clues already:
- Unaligned eb bytenr
The block bytenr is 8550954455682405139, which is not even aligned to
2.
This bytenr is fetched from extent buffer header, not from eb->start.
This means, at the initial time of read, eb header bytenr is still
correct (the very basis check to continue read), but later something
wrong happened, got at least the first page corrupted.
Thus we got such obviously incorrect value.
- Invalid extent buffer header owner
The read itself is triggered for subvolume 256, but the eb header
owner is 11858205567642294356, which is not really possible.
The problem here is, subvolume id is limited to (1 << 48 - 1),
and this one definitely goes beyond that limit.
So this value is another garbage.
We already got two garbage from an extent buffer, which passed the
initial bytenr and csum checks, but later the contents become garbage at
some point.
This looks like a page lifespan problem (e.g. we didn't properly hold the
page).
[ENHANCEMENT]
The current tree-checker only outputs things from the extent buffer,
nothing with the page status.
So this patch would enhance the tree-checker output by also dumping the
first page, which would look like this:
page:00000000aa9f3ce8 refcount:4 mapcount:0 mapping:00000000169aa6b6 index:0x1d0c pfn:0x1022e5
memcg:ffff888103456000
aops:btree_aops [btrfs] ino:1
flags: 0x2ffff0000008000(private|node=0|zone=2|lastcpupid=0xffff)
page_type: 0xffffffff()
raw: 02ffff0000008000 0000000000000000 dead000000000122 ffff88811e06e220
raw: 0000000000001d0c ffff888102fdb1d8 00000004ffffffff ffff888103456000
page dumped because: eb page dump
BTRFS critical (device dm-3): corrupt leaf: root=5 block=30457856 slot=6 ino=257 file_offset=0, invalid disk_bytenr for file extent, have 10617606235235216665, should be aligned to 4096
BTRFS error (device dm-3): read time tree block corruption detected on logical 30457856 mirror 1
From the dump we can see some extra info, something can help us to do
extra cross-checks:
- Page refcount
if it's too low, it definitely means something bad.
- Page aops
Any mapped eb page should have btree_aops with inode number 1.
- Page index
Since a mapped eb page should has its bytenr matching the page
position, (index << PAGE_SHIFT) should match the bytenr of the
bytenr from the critical line.
- Page Private flags
A mapped eb page should have Private flag set to indicate it's managed
by btrfs.
Link: https://lore.kernel.org/linux-btrfs/CAHk-=whNdMaN9ntZ47XRKP6DBes2E5w7fi-0U3H2+PS18p+Pzw@mail.gmail.com/
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error message should accurately reflect the size rather than the
type.
Fixes: f82d1c7ca8ae ("btrfs: tree-checker: Add EXTENT_ITEM and METADATA_ITEM check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report that ntfs2btrfs had a bug that it can lead to
transaction abort and the filesystem flips to read-only.
[CAUSE]
For inline backref items, kernel has a strict requirement for their
ordered, they must follow the following rules:
- All btrfs_extent_inline_ref::type should be in an ascending order
- Within the same type, the items should follow a descending order by
their sequence number
For EXTENT_DATA_REF type, the sequence number is result from
hash_extent_data_ref().
For other types, their sequence numbers are
btrfs_extent_inline_ref::offset.
Thus if there is any code not following above rules, the resulted
inline backrefs can prevent the kernel to locate the needed inline
backref and lead to transaction abort.
[FIX]
Ntrfs2btrfs has already fixed the problem, and btrfs-progs has added the
ability to detect such problems.
For kernel, let's be more noisy and be more specific about the order, so
that the next time kernel hits such problem we would reject it in the
first place, without leading to transaction abort.
Link: https://github.com/kdave/btrfs-progs/pull/622
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the last_trans_committed field of struct btrfs_fs_info is
modified and read without any locking or other protection. For example
early in the fsync path, skip_inode_logging() is called which reads
fs_info->last_trans_committed, but at the same time we can have a
transaction commit completing and updating that field.
In the case of an fsync this is harmless and any data race should be
rare and at most cause an unnecessary logging of an inode.
To avoid data race warnings from tools like KCSAN and other issues such
as load and store tearing (amongst others, see [1]), create helpers to
access the last_trans_committed field of struct btrfs_fs_info using
READ_ONCE() and WRITE_ONCE(), and use these helpers everywhere.
[1] https://lwn.net/Articles/793253/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to implement simple quota groups, we need to be able to
associate a data extent with the subvolume that created it. Once you
account for reflink, this information cannot be recovered without
explicitly storing it. Options for storing it are:
- a new key/item
- a new extent inline ref item
The former is backwards compatible, but wastes space, the latter is
incompat, but is efficient in space and reuses the existing inline ref
machinery, while only abusing it a tiny amount -- specifically, the new
item is not a ref, per-se.
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a tree checker support for RAID stripe tree items, verify:
- alignment
- presence of the incompat bit
- supported encoding
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is related to the name hashing for dir items, move it into
dir-item.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmTXzuUACgkQxWXV+ddt
WDvQVg/+PwDYtfsFBBxWboR/Ehu+nGj+PGRGH5kUumCt03760GtVMYqJzakinAoA
TUg7N+SvC0i6STUQ1LxkqdyU+eHxk0D1qwK7HJtbqNQJ+kwaEPlilHwsptMmuuM/
xaei+C8gLmQreL5ZH6ZsnLfV4aaFR7Ur8KSiAq28H6dKXGnh4q9yio2BspeFoc4Y
8cD2Q8eOUxLBbGkAy9RHeMWf6OMOv2jyzdA761NZrjxUe23bDWSdRM6cRhfdJIh+
gfwW1IVH2EVOwo+FeaIpMSf4dpnenOYOKOftTncrz7XS0VEN/wJYQXGjNbLa7u4d
RxV2RujzRPePAUKDbLRakfXotcuKdSQuX2epLSYkQTfGQ0KRYu5YIDQgkm3r7Yky
cF5mkyEyI8lFCiop7Bgi3MqnzoY5ZgWAkWSy9/TzjQ4yRhjiZ3fmk5JgoJ8gwUc3
Fle4czcmKvk6ZqQAn90b0qGtW9FXzVAekZjLAH26O7+dgEn+CCAfwT9GuG7h+ATM
9Bh+5U5PWxWmNPTYU8Sn+WR9HpVL6+1maxrax/Ftb8/FuFlQXFHxK+OnTcKx9K+y
OGsv0r/4Zv517k1qqlHvf397Jvz7MmYLyOwkqu5xyomCGtrKIBkkEGF/9sHrZJVM
YokgphDZL8AILrnnPwCOgt4lsph1VKS/Sgvu7XKovnZbvvh8S+M=
=csAj
-----END PGP SIGNATURE-----
Merge tag 'for-6.5-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"More fixes, some of them going back to older releases and there are
fixes for hangs in stress tests regarding space caching:
- fixes and progress tracking for hangs in free space caching, found
by test generic/475
- writeback fixes, write pages in integrity mode and skip writing
pages that have been written meanwhile
- properly clear end of extent range after an error
- relocation fixes:
- fix race betwen qgroup tree creation and relocation
- detect and report invalid reloc roots"
* tag 'for-6.5-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: set cache_block_group_error if we find an error
btrfs: reject invalid reloc tree root keys with stack dump
btrfs: exit gracefully if reloc roots don't match
btrfs: avoid race between qgroup tree creation and relocation
btrfs: properly clear end of the unreserved range in cow_file_range
btrfs: don't wait for writeback on clean pages in extent_write_cache_pages
btrfs: don't stop integrity writeback too early
btrfs: wait for actual caching progress during allocation
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes.
CC: stable@vger.kernel.org # 5.15+
Reported-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmSZ0YUACgkQxWXV+ddt
WDuF9g/+OsEZflGYIZj11trG0l5HWApnINKqhZ524J0TNy9KxY0KOTqPCOg0O41E
Vt7uJCMG06+ifvVEby8srjzUZxUutIuMeGIP91VyXUbt+CleAWunxnL8aKcTPS3T
QxyGx0VmukO2UHYCXhXQLRXo/+zPcBxnk6UgVzcBCIOecOMTB1KCeblBmqd3q86f
NVFse+BTkmtm86u/1rzEDqgY6lMHQ+jNoHhpRVGpzmSnSX8GELyOW3QnixS0LCo2
no0vvW0QXkRJ+S68V5zBWlqa3xr21jOYcmON2Ra2G8Etsjx7W5XKS3I9k/4uonxb
LbITmBwEZWt/aTzmLFT16S5M9BlRqH5Ffmsw7Ls+NDmdvH/f1zM8XeNAb7kpFTrn
T3aALjkcd65/JFmgyVmzdt4BSmrUkYm0EEmLirQec86HJ4NlQJpJ2B7cfMWKPyal
+VgaT4S+fLTc/HJD3nObMXTCxZrMf0sBUhU4/QXqL7TTjqqosSn26mlGNUocw7Ty
HaESk7j2L9TMPt640r1G98j9ND7sWmyBmiYsah8F3MKZCIS892qhtFs0m5g2tA1F
sjPv9u6M5Pi6ie5Eo8xs+SqKa7TPPVsbZ9XcMRBuzDc5AtUPAm6ii9QVwref8wTq
qO379jDepgPj4HZkXMzQKxd6rw6wrF854304XhjHZefk+ChhIc4=
=nN4X
-----END PGP SIGNATURE-----
Merge tag 'for-6.5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Mainly core changes, refactoring and optimizations.
Performance is improved in some areas, overall there may be a
cumulative improvement due to refactoring that removed lookups in the
IO path or simplified IO submission tracking.
Core:
- submit IO synchronously for fast checksums (crc32c and xxhash),
remove high priority worker kthread
- read extent buffer in one go, simplify IO tracking, bio submission
and locking
- remove additional tracking of redirtied extent buffers, originally
added for zoned mode but actually not needed
- track ordered extent pointer in bio to avoid rbtree lookups during
IO
- scrub, use recovered data stripes as cache to avoid unnecessary
read
- in zoned mode, optimize logical to physical mappings of extents
- remove PageError handling, not set by VFS nor writeback
- cleanups, refactoring, better structure packing
- lots of error handling improvements
- more assertions, lockdep annotations
- print assertion failure with the exact line where it happens
- tracepoint updates
- more debugging prints
Performance:
- speedup in fsync(), better tracking of inode logged status can
avoid transaction commit
- IO path structures track logical offsets in data structures and
does not need to look it up
User visible changes:
- don't commit transaction for every created subvolume, this can
reduce time when many subvolumes are created in a batch
- print affected files when relocation fails
- trigger orphan file cleanup during START_SYNC ioctl
Notable fixes:
- fix crash when disabling quota and relocation
- fix crashes when removing roots from drity list
- fix transacion abort during relocation when converting from newer
profiles not covered by fallback
- in zoned mode, stop reclaiming block groups if filesystem becomes
read-only
- fix rare race condition in tree mod log rewind that can miss some
btree node slots
- with enabled fsverity, drop up-to-date page bit in case the
verification fails"
* tag 'for-6.5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (194 commits)
btrfs: fix race between quota disable and relocation
btrfs: add comment to struct btrfs_fs_info::dirty_cowonly_roots
btrfs: fix race when deleting free space root from the dirty cow roots list
btrfs: fix race when deleting quota root from the dirty cow roots list
btrfs: tracepoints: also show actual number of the outstanding extents
btrfs: update i_version in update_dev_time
btrfs: make btrfs_compressed_bioset static
btrfs: add handling for RAID1C23/DUP to btrfs_reduce_alloc_profile
btrfs: scrub: remove btrfs_fs_info::scrub_wr_completion_workers
btrfs: scrub: remove scrub_ctx::csum_list member
btrfs: do not BUG_ON after failure to migrate space during truncation
btrfs: do not BUG_ON on failure to get dir index for new snapshot
btrfs: send: do not BUG_ON() on unexpected symlink data extent
btrfs: do not BUG_ON() when dropping inode items from log root
btrfs: replace BUG_ON() at split_item() with proper error handling
btrfs: do not BUG_ON() on tree mod log failures at btrfs_del_ptr()
btrfs: do not BUG_ON() on tree mod log failures at insert_ptr()
btrfs: do not BUG_ON() on tree mod log failure at insert_new_root()
btrfs: do not BUG_ON() on tree mod log failures at push_nodes_for_insert()
btrfs: abort transaction at update_ref_for_cow() when ref count is zero
...
There was regression caused by a97699d1d610 ("btrfs: replace
map_lookup->stripe_len by BTRFS_STRIPE_LEN") and supposedly fixed by
a7299a18a179 ("btrfs: fix u32 overflows when left shifting stripe_nr").
To avoid code churn the fix was open coding the type casts but
unfortunately missed one which was still possible to hit [1].
The missing place was assignment of bioc->full_stripe_logical inside
btrfs_map_block().
Fix it by adding a helper that does the safe calculation of the offset
and use it everywhere even though it may not be strictly necessary due
to already using u64 types. This replaces all remaining
"<< BTRFS_STRIPE_LEN_SHIFT" calls.
[1] https://lore.kernel.org/linux-btrfs/20230622065438.86402-1-wqu@suse.com/
Fixes: a7299a18a179 ("btrfs: fix u32 overflows when left shifting stripe_nr")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
These are more related to the inode item flags on disk than the
in-memory btrfs_inode, move the helpers to inode-item.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is more a buffer validation helper, move it into the tree-checker
files where it makes more sense.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This helper returns a btrfs_tree_block_status for the various errors,
and then btrfs_check_node() will return -EUCLEAN if it gets anything
other than BTRFS_TREE_BLOCK_CLEAN which will be used by the kernel. In
the future btrfs-progs will use this helper instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of blanket returning -EUCLEAN for all the failures in
btrfs_check_leaf, use btrfs_tree_block_status and return the appropriate
status for each failure. Rename the helper to __btrfs_check_leaf and
then make a wrapper of btrfs_check_leaf that will return -EUCLEAN to
non-clean error codes. This will allow us to have the
__btrfs_check_leaf variant in btrfs-progs while keeping the behavior in
the kernel consistent.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a variety of item specific errors that can occur. For now
simply put these under the umbrella of BTRFS_TREE_BLOCK_INVALID_ITEM,
this can be fleshed out as we need in the future.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have two helpers for checking leaves, because we have an extra check
for debugging in btrfs_mark_buffer_dirty(), and at that stage we may
have item data that isn't consistent yet. However we can handle this
case internally in the helper, if BTRFS_HEADER_FLAG_WRITTEN is set we
know the buffer should be internally consistent, otherwise we need to
skip checking the item data.
Simplify this helper down a single helper and handle the item data
checking logic internally to the helper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are quite some div64 calls inside btrfs_map_block() and its
variants.
Such calls are for @stripe_nr, where @stripe_nr is the number of
stripes before our logical bytenr inside a chunk.
However we can eliminate such div64 calls by just reducing the width of
@stripe_nr from 64 to 32.
This can be done because our chunk size limit is already 10G, with fixed
stripe length 64K.
Thus a U32 is definitely enough to contain the number of stripes.
With such width reduction, we can get rid of slower div64, and extra
warning for certain 32bit arch.
This patch would do:
- Add a new tree-checker chunk validation on chunk length
Make sure no chunk can reach 256G, which can also act as a bitflip
checker.
- Reduce the width from u64 to u32 for @stripe_nr variables
- Replace unnecessary div64 calls with regular modulo and division
32bit division and modulo are much faster than 64bit operations, and
we are finally free of the div64 fear at least in those involved
functions.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is actually a change for extent tree v2, but it exists in
btrfs-progs but not in the kernel. This makes it annoying to sync
accessors.h with btrfs-progs, and since this is the way I need it for
extent-tree v2 simply update these helpers to take the extent buffer in
order to make syncing possible now, and make the extent tree v2 stuff
easier moving forward.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These helpers use functions that are in multiple places, which makes it
tricky to sync them into btrfs-progs. Move them to file-item.h and then
include file-item.h in places that use these helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For directories with encrypted files/filenames, we need to store a flag
indicating this fact. There's no room in other fields, so we'll need to
borrow a bit from dir_type. Since it's now a combination of type and
flags, we rename it to dir_flags to reflect its new usage.
The new flag, FT_ENCRYPTED, indicates a directory containing encrypted
data, which is orthogonal to file type; therefore, add the new
flag, and make conversion from directory type to file type strip the
flag.
As the file types almost never change we can afford to use the bits.
Actual usage will be guarded behind an incompat bit, this patch only
adds the support for later use by fscrypt.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
We have a bunch of printk helpers that are in ctree.h. These have
nothing to do with ctree.c, so move them into their own header.
Subsequent patches will cleanup the printk helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're seeing a weird problem in production where we have overlapping
extent items in the extent tree. It's unclear where these are coming
from, and in debugging we realized there's no check in the tree checker
for this sort of problem. Add a check to the tree-checker to make sure
that the extents do not overlap each other.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs doesn't check whether the tree block respects the root owner.
This means, if a tree block referred by a parent in extent tree, but has
owner of 5, btrfs can still continue reading the tree block, as long as
it doesn't trigger other sanity checks.
Normally this is fine, but combined with the empty tree check in
check_leaf(), if we hit an empty extent tree, but the root node has
csum tree owner, we can let such extent buffer to sneak in.
Shrink the hole by:
- Do extra eb owner check at tree read time
- Make sure the root owner extent buffer exactly matches the root id.
Unfortunately we can't yet completely patch the hole, there are several
call sites can't pass all info we need:
- For reloc/log trees
Their owner is key::offset, not key::objectid.
We need the full root key to do that accurate check.
For now, we just skip the ownership check for those trees.
- For add_data_references() of relocation
That call site doesn't have any parent/ownership info, as all the
bytenrs are all from btrfs_find_all_leafs().
- For direct backref items walk
Direct backref items records the parent bytenr directly, thus unlike
indirect backref item, we don't do a full tree search.
Thus in that case, we don't have full parent owner to check.
For the later two cases, they all pass 0 as @owner_root, thus we can
skip those cases if @owner_root is 0.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With extent tree v2 you will be able to create multiple csum, extent,
and free space trees. They will be used based on the block group, which
will now use the block_group_item->chunk_objectid to point to the set of
global roots that it will use. When allocating new block groups we'll
simply mod the gigabyte offset of the block group against the number of
global roots we have and that will be the block groups global id.
>From there we can take the bytenr that we're modifying in the respective
tree, look up the block group and get that block groups corresponding
global root id. From there we can get to the appropriate global root
for that bytenr.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For extent tree v2 we can definitely have empty extent roots, so skip
this particular check if we have that set.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
User reported there is an array-index-out-of-bounds access while
mounting the crafted image:
[350.411942 ] loop0: detected capacity change from 0 to 262144
[350.427058 ] BTRFS: device fsid a62e00e8-e94e-4200-8217-12444de93c2e devid 1 transid 8 /dev/loop0 scanned by systemd-udevd (1044)
[350.428564 ] BTRFS info (device loop0): disk space caching is enabled
[350.428568 ] BTRFS info (device loop0): has skinny extents
[350.429589 ]
[350.429619 ] UBSAN: array-index-out-of-bounds in fs/btrfs/struct-funcs.c:161:1
[350.429636 ] index 1048096 is out of range for type 'page *[16]'
[350.429650 ] CPU: 0 PID: 9 Comm: kworker/u8:1 Not tainted 5.16.0-rc4
[350.429652 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[350.429653 ] Workqueue: btrfs-endio-meta btrfs_work_helper [btrfs]
[350.429772 ] Call Trace:
[350.429774 ] <TASK>
[350.429776 ] dump_stack_lvl+0x47/0x5c
[350.429780 ] ubsan_epilogue+0x5/0x50
[350.429786 ] __ubsan_handle_out_of_bounds+0x66/0x70
[350.429791 ] btrfs_get_16+0xfd/0x120 [btrfs]
[350.429832 ] check_leaf+0x754/0x1a40 [btrfs]
[350.429874 ] ? filemap_read+0x34a/0x390
[350.429878 ] ? load_balance+0x175/0xfc0
[350.429881 ] validate_extent_buffer+0x244/0x310 [btrfs]
[350.429911 ] btrfs_validate_metadata_buffer+0xf8/0x100 [btrfs]
[350.429935 ] end_bio_extent_readpage+0x3af/0x850 [btrfs]
[350.429969 ] ? newidle_balance+0x259/0x480
[350.429972 ] end_workqueue_fn+0x29/0x40 [btrfs]
[350.429995 ] btrfs_work_helper+0x71/0x330 [btrfs]
[350.430030 ] ? __schedule+0x2fb/0xa40
[350.430033 ] process_one_work+0x1f6/0x400
[350.430035 ] ? process_one_work+0x400/0x400
[350.430036 ] worker_thread+0x2d/0x3d0
[350.430037 ] ? process_one_work+0x400/0x400
[350.430038 ] kthread+0x165/0x190
[350.430041 ] ? set_kthread_struct+0x40/0x40
[350.430043 ] ret_from_fork+0x1f/0x30
[350.430047 ] </TASK>
[350.430047 ]
[350.430077 ] BTRFS warning (device loop0): bad eb member start: ptr 0xffe20f4e start 20975616 member offset 4293005178 size 2
btrfs check reports:
corrupt leaf: root=3 block=20975616 physical=20975616 slot=1, unexpected
item end, have 4294971193 expect 3897
The first slot item offset is 4293005033 and the size is 1966160.
In check_leaf, we use btrfs_item_end() to check item boundary versus
extent_buffer data size. However, return type of btrfs_item_end() is u32.
(u32)(4293005033 + 1966160) == 3897, overflow happens and the result 3897
equals to leaf data size reasonably.
Fix it by use u64 variable to store item data end in check_leaf() to
avoid u32 overflow.
This commit does solve the invalid memory access showed by the stack
trace. However, its metadata profile is DUP and another copy of the
leaf is fine. So the image can be mounted successfully. But when umount
is called, the ASSERT btrfs_mark_buffer_dirty() will be triggered
because the only node in extent tree has 0 item and invalid owner. It's
solved by another commit
"btrfs: check extent buffer owner against the owner rootid".
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=215299
Reported-by: Wenqing Liu <wenqingliu0120@gmail.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Check item size before accessing the device item to avoid out of bound
access, similar to inode_item check.
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name btrfs_item_end_nr() is a bit of a misnomer, as it's actually
the offset of the end of the data the item points to. In fact all of
the helpers that we use btrfs_item_end_nr() use data in their name, like
BTRFS_LEAF_DATA_SIZE() and leaf_data(). Rename to btrfs_item_data_end()
to make it clear what this helper is giving us.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, inode flags are fully backwards incompatible in btrfs. If we
introduce a new inode flag, then tree-checker will detect it and fail.
This can even cause us to fail to mount entirely. To make it possible to
introduce new flags which can be read-only compatible, like VERITY, we
add new ro flags to btrfs without treating them quite so harshly in
tree-checker. A read-only file system can survive an unexpected flag,
and can be mounted.
As for the implementation, it unfortunately gets a little complicated.
The on-disk representation of the inode, btrfs_inode_item, has an __le64
for flags but the in-memory representation, btrfs_inode, uses a u32.
David Sterba had the nice idea that we could reclaim those wasted 32 bits
on disk and use them for the new ro_compat flags.
It turns out that the tree-checker code which checks for unknown flags
is broken, and ignores the upper 32 bits we are hoping to use. The issue
is that the flags use the literal 1 rather than 1ULL, so the flags are
signed ints, and one of them is specifically (1 << 31). As a result, the
mask which ORs the flags is a negative integer on machines where int is
32 bit twos complement. When tree-checker evaluates the expression:
btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK)
The mask is something like 0x80000abc, which gets promoted to u64 with
sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves
all the upper bits zeroed, and we can't detect unexpected flags.
This suggests that we can't use those bits after all. Luckily, we have
good reason to believe that they are zero anyway. Inode flags are
metadata, which is always checksummed, so any bit flips that would
introduce 1s would cause a checksum failure anyway (excluding the
improbable case of the checksum getting corrupted exactly badly).
Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit
inode flag should preserve its value and not add leading zeroes
(at least for twos complement). The only place that flag
(BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in
the root item, and indeed for that inode we see 0xffffffff80000000 as
the flags on disk. However, that inode is never seen by tree checker,
nor is it used in a context where verity might be meaningful.
Theoretically, a future ro flag might cause trouble on that inode, so we
should proactively clean up that mess before it does.
With the introduction of the new ro flags, keep two separate unsigned
masks and check them against the appropriate u32. Since we no longer run
afoul of sign extension, this also stops writing out 0xffffffff80000000
in root_item inodes going forward.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The stripe checks for raid1c3/raid1c4 are missing in the sequence in
btrfs_check_chunk_valid.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are hardcoded values in several checks regarding chunks and stripe
constraints. We have that defined in the raid table and ought to use it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to validate that a data extent item does not have the
FULL_BACKREF flag set on its flags.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system. Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like
key.objectid = <bytenr>
key.type = <BTRFS_EXTENT_DATA_REF_KEY|BTRFS_TREE_BLOCK_REF_KEY>
key.offset = hash(tree, owner, offset)
However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction. This is relatively easy to
reproduce, simply do something like the following
xfs_io -f -c "pwrite 0 1M" file
offset=2
for i in {0..10000}
do
xfs_io -c "reflink file 0 ${offset}M 1M" file
offset=$(( offset + 2 ))
done
xfs_io -c "reflink file 0 17999258914816 1M" file
xfs_io -c "reflink file 0 35998517829632 1M" file
xfs_io -c "reflink file 0 53752752058368 1M" file
btrfs filesystem sync
And the sync will error out because we'll abort the transaction. The
magic values above are used because they generate hash collisions with
the first file in the main subvol.
The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.
Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com>
Fixes: 0785a9aacf9d ("btrfs: tree-checker: Add EXTENT_DATA_REF check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment]
Signed-off-by: David Sterba <dsterba@suse.com>