12 Commits

Author SHA1 Message Date
Masahiro Yamada
409ca45526 x86/kconfig: Disable CONFIG_GENERIC_HWEIGHT and remove __HAVE_ARCH_SW_HWEIGHT
Remove an unnecessary arch complication:

arch/x86/include/asm/arch_hweight.h uses __sw_hweight{32,64} as
alternatives, and they are implemented in arch/x86/lib/hweight.S

x86 does not rely on the generic C implementation lib/hweight.c
at all, so CONFIG_GENERIC_HWEIGHT should be disabled.

__HAVE_ARCH_SW_HWEIGHT is not necessary either.

No change in functionality intended.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uros Bizjak <ubizjak@gmail.com>
Link: http://lkml.kernel.org/r/1557665521-17570-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-13 11:07:33 +02:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Borislav Petkov
f5967101e9 x86/hweight: Get rid of the special calling convention
People complained about ARCH_HWEIGHT_CFLAGS and how it throws a wrench
into kcov, lto, etc, experimentations.

Add asm versions for __sw_hweight{32,64}() and do explicit saving and
restoring of clobbered registers. This gets rid of the special calling
convention. We get to call those functions on !X86_FEATURE_POPCNT CPUs.

We still need to hardcode POPCNT and register operands as some old gas
versions which we support, do not know about POPCNT.

Btw, remove redundant REX prefix from 32-bit POPCNT because alternatives
can do padding now.

Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1464605787-20603-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-08 15:01:02 +02:00
Linus Torvalds
72d9310460 Make ARCH_HAS_FAST_MULTIPLIER a real config variable
It used to be an ad-hoc hack defined by the x86 version of
<asm/bitops.h> that enabled a couple of library routines to know whether
an integer multiply is faster than repeated shifts and additions.

This just makes it use the real Kconfig system instead, and makes x86
(which was the only architecture that did this) select the option.

NOTE! Even for x86, this really is kind of wrong.  If we cared, we would
probably not enable this for builds optimized for netburst (P4), where
shifts-and-adds are generally faster than multiplies.  This patch does
*not* change that kind of logic, though, it is purely a syntactic change
with no code changes.

This was triggered by the fact that we have other places that really
want to know "do I want to expand multiples by constants by hand or
not", particularly the hash generation code.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-13 11:14:53 -07:00
Paul Gortmaker
8bc3bcc93a lib: reduce the use of module.h wherever possible
For files only using THIS_MODULE and/or EXPORT_SYMBOL, map
them onto including export.h -- or if the file isn't even
using those, then just delete the include.  Fix up any implicit
include dependencies that were being masked by module.h along
the way.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-03-07 15:04:04 -05:00
Borislav Petkov
d61931d89b x86: Add optimized popcnt variants
Add support for the hardware version of the Hamming weight function,
popcnt, present in CPUs which advertize it under CPUID, Function
0x0000_0001_ECX[23]. On CPUs which don't support it, we fallback to the
default lib/hweight.c sw versions.

A synthetic benchmark comparing popcnt with __sw_hweight64 showed almost
a 3x speedup on a F10h machine.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100318112015.GC11152@aftab>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-04-06 15:52:11 -07:00
Peter Zijlstra
1527bc8b92 bitops: Optimize hweight() by making use of compile-time evaluation
Rename the extisting runtime hweight() implementations to
__arch_hweight(), rename the compile-time versions to __const_hweight()
and then have hweight() pick between them.

Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100318111929.GB11152@aftab>
Acked-by: H. Peter Anvin <hpa@zytor.com>
LKML-Reference: <1265028224.24455.154.camel@laptop>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-04-06 15:52:11 -07:00
Akinobu Mita
39d997b514 x86, core: Optimize hweight32()
Optimize hweight32 by using the same technique in hweight64.

The proof of this technique can be found in the commit log for
f9b4192923fa6e38331e88214b1fe5fc21583fcc ("bitops: hweight()
speedup").

The userspace benchmark on x86_32 showed 20% speedup with
bitmap_weight() which uses hweight32 to count bits for each
unsigned long on 32bit architectures.

 int main(void)
 {
	#define SZ (1024 * 1024 * 512)

	static DECLARE_BITMAP(bitmap, SZ) = {
	        [0 ... 100] = 1,
	};

	return bitmap_weight(bitmap, SZ);
 }

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <1258603932-4590-1-git-send-email-akinobu.mita@gmail.com>
[ only x86 sets ARCH_HAS_FAST_MULTIPLIER so we do this via the x86 tree]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-28 10:41:39 +01:00
Jiri Slaby
1977f03272 remove asm/bitops.h includes
remove asm/bitops.h includes

including asm/bitops directly may cause compile errors. don't include it
and include linux/bitops instead. next patch will deny including asm header
directly.

Cc: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:41 -07:00
Andi Kleen
0136611c62 [PATCH] optimize hweight64 for x86_64
Based on patch from David Rientjes <rientjes@google.com>, but
changed by AK.

Optimizes the 64-bit hamming weight for x86_64 processors assuming they
have fast multiplication.  Uses five fewer bitops than the generic
hweight64.  Benchmark on one EMT64 showed ~25% speedup with 2^24
consecutive calls.

Define a new ARCH_HAS_FAST_MULTIPLIER that can be set by other
architectures that can also multiply fast.

Signed-off-by: Andi Kleen <ak@suse.de>
2006-09-26 10:52:38 +02:00
Akinobu Mita
f9b4192923 [PATCH] bitops: hweight() speedup
<linux@horizon.com> wrote:

This is an extremely well-known technique.  You can see a similar version that
uses a multiply for the last few steps at
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel whch
refers to "Software Optimization Guide for AMD Athlon 64 and Opteron
Processors"
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

It's section 8.6, "Efficient Implementation of Population-Count Function in
32-bit Mode", pages 179-180.

It uses the name that I am more familiar with, "popcount" (population count),
although "Hamming weight" also makes sense.

Anyway, the proof of correctness proceeds as follows:

	b = a - ((a >> 1) & 0x55555555);
	c = (b & 0x33333333) + ((b >> 2) & 0x33333333);
	d = (c + (c >> 4)) & 0x0f0f0f0f;
#if SLOW_MULTIPLY
	e = d + (d >> 8)
	f = e + (e >> 16);
	return f & 63;
#else
	/* Useful if multiply takes at most 4 cycles */
	return (d * 0x01010101) >> 24;
#endif

The input value a can be thought of as 32 1-bit fields each holding their own
hamming weight.  Now look at it as 16 2-bit fields.  Each 2-bit field a1..a0
has the value 2*a1 + a0.  This can be converted into the hamming weight of the
2-bit field a1+a0 by subtracting a1.

That's what the (a >> 1) & mask subtraction does.  Since there can be no
borrows, you can just do it all at once.

Enumerating the 4 possible cases:

0b00 = 0  ->  0 - 0 = 0
0b01 = 1  ->  1 - 0 = 1
0b10 = 2  ->  2 - 1 = 1
0b11 = 3  ->  3 - 1 = 2

The next step consists of breaking up b (made of 16 2-bir fields) into
even and odd halves and adding them into 4-bit fields.  Since the largest
possible sum is 2+2 = 4, which will not fit into a 4-bit field, the 2-bit
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                          "which will not fit into a 2-bit field"

fields have to be masked before they are added.

After this point, the masking can be delayed.  Each 4-bit field holds a
population count from 0..4, taking at most 3 bits.  These numbers can be added
without overflowing a 4-bit field, so we can compute c + (c >> 4), and only
then mask off the unwanted bits.

This produces d, a number of 4 8-bit fields, each in the range 0..8.  From
this point, we can shift and add d multiple times without overflowing an 8-bit
field, and only do a final mask at the end.

The number to mask with has to be at least 63 (so that 32 on't be truncated),
but can also be 128 or 255.  The x86 has a special encoding for signed
immediate byte values -128..127, so the value of 255 is slower.  On other
processors, a special "sign extend byte" instruction might be faster.

On a processor with fast integer multiplies (Athlon but not P4), you can
reduce the final few serially dependent instructions to a single integer
multiply.  Consider d to be 3 8-bit values d3, d2, d1 and d0, each in the
range 0..8.  The multiply forms the partial products:

	           d3 d2 d1 d0
	        d3 d2 d1 d0
	     d3 d2 d1 d0
	+ d3 d2 d1 d0
	----------------------
	           e3 e2 e1 e0

Where e3 = d3 + d2 + d1 + d0.   e2, e1 and e0 obviously cannot generate
any carries.

Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26 08:59:30 -08:00
Akinobu Mita
3b9ed1a5d2 [PATCH] bitops: generic hweight{64,32,16,8}()
This patch introduces the C-language equivalents of the functions below:

unsigned int hweight32(unsigned int w);
unsigned int hweight16(unsigned int w);
unsigned int hweight8(unsigned int w);
unsigned long hweight64(__u64 w);

In include/asm-generic/bitops/hweight.h

This code largely copied from: include/linux/bitops.h

Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26 08:57:11 -08:00